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S U M M A R Y
Density tomography of rock volumes with cosmic muons involves telescopes equipped with
pixelized matrices of scintillator strips able to simultaneously measure the flux of muons in
hundredths of directions. The resulting muon radiography images are a measure of the amount
of matter integrated along each line of sight inside the geological target. This information
constitutes the primary data at the root of muon density 3-D tomography. Before being used
for either interpretation or tomography inversion, the radiographies must be corrected from
artefacts due to imperfect detection capacity of the detection matrices. We present a correction
method based on a Bayesian inversion to construct a probabilistic model of the distorted
telescope acceptance from which undistorted radiographies may be obtained. The method
also allows to simultaneously derive a stochastic model for the incident flux of muons. The
resulting non-linear inverse problem is solved with the Metropolis-annealing algorithm, which
allows to easily implement symmetry constraints to reduce the non-uniqueness. An inversion
of real data acquired with one of our field muon telescopes is presented and discussed.

Key words: Inverse theory; Tomography; Probability distributions; Instrumental noise.

1 I N T RO D U C T I O N

The objective of muon tomography is to determine the density of
large volumes of rock by using the attenuation of the flux of cos-
mic muons crossing the geological body of interest (e.g. Nagamine
2003). The small cross-section of muons (Barrett 1952) and their
energy range in the secondary cosmic ray spectrum (Gaisser &
Stanev 2008) allow to probe geological objects at subkilometre
scales. Muon tomography presently benefits from a growing inter-
est since the pioneering studies by Nagamine (1995) and Nagamine
et al. (1995). These studies were soon followed by others to im-
age spatial and temporal variations of the density inside volca-
noes (Tanaka et al. 2008, Tanaka et al. 2009a,b and references
therein).

In this paper, we shall consider the case where muons flux is
measured by so-called ‘telescopes’ made of scintillator matrices as
shown in Fig. 1 (Marteau et al. 2011). Each matrix is composed of
Nx horizontal and Ny vertical scintillator strips whose intersections
define pixels. The detected muon trajectory is determined by the
pair of pixels (ai,j, bk,l) fired by the particle, where ai,j is a pixel
belonging to matrix A and bk,l belongs to matrix B. Such a pair of
matrices defines a set of (2Nx − 1) × (2Ny − 1) discrete directions
rm,n , where the indices m = i − k and n = j − l only depend on the
relative shift between the ai,j and bk,l pixels.

In practice, the muon count ν, detected by the telescope in a
given direction, rm,n , directly depends on the telescope acceptance,
T , expressed in cm2 sr. T quantifies the telescope capability to

measure a flux coming in a given solid angle centred in a given
direction. ν reads

ν(rm,n,�T ) = I (rm,n) × �T × T (rm,n), (1)

where I is the muons flux in cm−2 sr−1 s−1, and �T is the measure-
ment duration obtained by the feasibility formula as established by
Lesparre et al. (2010). The acceptance may be written as

T (rm,n) = S(rm,n) × δ�(rm,n). (2)

The detection surface S is given by the pixels size d and number
Nx × Ny in a matrix, and the angular aperture δ� depends on the
distance D between the matrices. Fig. 2 shows the angular aperture
and the acceptance for the 961 discrete directions rm,n of a telescope
as shown in Fig. 1 with Nx = Ny = 16, d = 5 cm and D = 115 cm.
As expected, the acceptance is maximum for direction r0,0, perpen-
dicular to the matrices since all pixels contribute to the detection
surface. The acceptance is small for a margin corresponding to the
directions, which most depart from r0,0 and only a fraction of all
possible directions of detection will be efficient in practice.

The quantity of interest is the integrated flux I to be compared
with the flux obtained for the tomography models. Using eq. (1),
we have

I (rm,n) = ν(rm,n, �T )

�T × T (rm,n)
, (3)

which explicitly shows the importance of the acceptance function,
appearing in the right-hand part denominator.
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Figure 1. Schematic view of a muon telescope equipped with two 16 × 16
pixels matrices.

Figure 2. Angular properties of a two 16 × 16 matrices telescope with pixel
size d = 5 cm and D = 115 cm interdistance: (top panel) acceptance T (rm,n)
for each discrete direction rm,n of the pair of matrices; (bottom panel)
corrected acceptance with the malfunctioning bar Y 12 (Fig. 3) removed
from the computation.

Because of the power-law fall-off of the energy spectrum,
the muons flux emerging from, say a volcano, is orders of mag-
nitude lower than the flux measured in open-sky conditions. Also,
the flux variations induced by tiny density heterogeneities inside
the object of interest are small and may be blurred by defects
in the acceptance function, a problem early recognized by Alvarez
et al. (1970). A prior estimate of function T may be obtained from
purely geometrical consideration (Gibert et al. 2010; Lesparre et al.
2010). Despite its usefulness for preliminary modellings and design
of field operations, this theoretical acceptance is far too inaccurate
to determine the measured flux with eq. (3).

Figure 3. Events distribution detected on the front and rear X and Y planes
of a telescope for the third data set of Table 1.

Table 1. Orientations and acquisition times of
the data sets analysed.

Data set Zenith Azimuth Acquisition
number angle angle time (hr)

1 61.4◦ 72◦ 141
2 47.2◦ 72◦ 170
3 1.35◦ 45◦ 170

In this paper, we derive an inverse method to obtain the acceptance
function of a telescope using a reference data set. The so-obtained
acceptance relies on the determination of the bars efficiency forming
the scintillator matrices and, consequently, accounts for eventual
defects in the detection efficiency of these bars.

Before going into the details of the method, we briefly present
an example of acceptance defect for telescope (Fig. 3), due to the
bad optical coupling of the rear matrix Y 12 channel. In this exam-
ple, the telescope has been oriented in three different directions to
measure the open-sky muon flux for zenith angles ranging from
0◦ to 90◦ and a total acquisition time of about 3 weeks (Table 1).
The flux computed with the theoretical telescope acceptance (top
part of Fig. 2) is shown on the top part of Fig. 4. This flux varies
principally with the zenith angle from 1 × 10−4 cm−2 sr−1 s−1 to
8.5 × 10−3 cm−2 sr−1 s−1, but one can observe several defects af-
fecting the circular symmetry expected for the open-sky flux. These
defects disappear (bottom part of Fig. 4) when accounting for the
Y 12 bar failure to compute the corrected acceptance shown in the
bottom part of Fig. 2). The circular symmetry is recovered but
some irregularities are still observed.

2 B AY E S I A N I N V E R S I O N O F T H E
A C C E P TA N C E - F LU X M O D E L

2.1 Parametrization of the model

Both the acceptance and the integrated flux are fundamental un-
knowns of the muon tomography problem, and are inversely corre-
lated quantities as shown in eq. (3). For this reason, we propose a
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492 N. Lesparre, D. Gibert and J. Marteau

Figure 4. (Top panel) Detected flux: number of particles detected divided
by the acquisition time and the theoretical telescope acceptance. (Bottom
panel) Corrected flux of particles detected, computed with the acceptance
on right part of Fig. 2.

simultaneous dual inversion of the integrated flux and the telescope
acceptance.

In the example discussed earlier, the bar failure is considered
as total, and the corrected acceptance was computed by simply
removing the Y 12 bar from the rear matrix model. However, in most
cases, the deficiency of the bars is not evident and it is necessary to
consider that the number of events detected by a given bar is only
a fraction, hereafter called the efficiency, of the particles number
which actually hit the bar.

Assuming a constant efficiency for each scintillator bar of a tele-
scope, the number of muons ν i,j,k,l detected by a set of four bars
[one (X , Y ) pair for both the front and rear matrices] can be written
as

νi, j,k,l = ax
i × ay

j × bx
k × by

l × ni, j,k,l , (4)

where ax
i and ay

j , respectively, represent the efficiencies of bars X i

and Y j of the front matrix and bx
k and by

l play the same role for the
rear matrix. The efficiencies are real numbers belonging to the [0, 1]
interval, and the number of a and b values to be determined equals
2(Nx + Ny) (e.g. 64 for Nx = Ny = 16). The ni,j,k,l terms represent
the unknown number of particles, which actually crossed the bars
and are such that ni,j,k,l ≥ ν i,j,k,l. The number of ni,j,k,l terms equals
(Nx × Ny)2 (e.g. 65 536 for Nx = Ny = 16).

We assume that all ni,j,k,l terms, such that i − k = m, j − l = n,
and corresponding to the same direction rm,n , are realizations of the
same Poissonian process P with parameter λm,n > 0. Consequently,

the ni,j,k,l terms are realizations of the generating P process.

P(λm,n) �→ Nm,n ≡ {ni, j,k,l / i − k = m, j − l = n}. (5)

This equation shows that the elements of subset Nm,n depend on a
single parameter λm,n. Consequently the unknown parameters are
no more the ni,j,k,l terms but the λm,n terms instead, and the dimen-
sionality of the parameter space is dramatically reduced from 2(Nx

+ Ny) + (Nx × Ny)2 to 2(Nx + Ny) + (2Nx − 1) × (2Ny − 1) (e.g.
from 65 600 to 1025 for Nx = Ny = 16). From underdetermined,
the inverse problem becomes overdetermined.

Constraints tighter than the ones represented by eq. (5) could be
put on the ni,j,k,l terms by exploiting the fact that several directions
r may share the same Poissonian parameter λ. This is possible in
particular instances where the measured integrated flux is supposed
to satisfy some symmetry properties. For example, the open-sky
flux shown in Fig. 4 has a circular symmetry, which could be used
to further reduce the dimensionality of the parameter space, hence
stabilizing the inverse problem. Such constrains are case dependent
contrarily to the weak constrains of eq. (5), which hold in all situa-
tions. However, these specific constraints consist in equating some
λm,n terms and merging the corresponding Nm,n . The generic form
of the resulting mapping reads

P(λα) �→ Nα ≡
⋃

Nm,n, (6)

where the union symbol is understood to concern the Nm,n whose
elements are linked to the common λα .

2.2 Derivation of the Bayesian posterior probability

We now formulate a Bayesian solution of eq. (4) accounting for
all constraints discussed earlier. The posterior probability of the
parameters reads

P(�, e | ν) = P(�, e) × P(ν | �, e)∫
�,e P(�, e) × P(ν | �, e)

, (7)

where

ν = (ν1,1,1,1 · · · νi, j,k,l · · · νNx ,Ny ,Nx ,Ny )t , (8a)

� = (· · · λα · · ·)t , (8b)

e = (a | b)t , (8c)

a =
(

ax
1 · · · ax

Nx
| ay

1 · · · ay
Ny

)t
, (8d)

b =
(

bx
1 · · · bx

Nx
| by

1 · · · by
Ny

)t
. (8e)

The vector ν is the data set, that is, a number of muons detected
(see also eq. 4). Vectors � and e represent the unknown parameters
to be determined.

The joined prior probability P(�, e) may be rewritten as

P(�, e) =
∏
α

P(λα) ×
∏
β

P(eβ ), (9)

with (non-normalized)

P(λα) =
{

0 if λα ≤ 0

1 if λα > 0
, (10a)

P(eβ ) =
{

1 if eβ ∈ (0, 1)

0 otherwise .
(10b)
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The conditional probability P(ν | �, e) may equally be rewritten
as

P(ν | �, e) =
∏

all νi, j,k,l

P(νi, j,k,l | �, e). (11)

Accounting for the mapping of eq. (6) which assigns a unique λα to
the ν terms of the Nα set, eq. (11) becomes

P(ν | �, e) =
∏
α

∏
νi, j,k,l ∈Nα

P(νi, j,k,l | λα, e) (12a)

=
∏
α

∏
νi, j,k,l ∈Nα

P(νi, j,k,l |P(λα,i, j,k,l )) (12b)

=
∏
α

∏
νi, j,k,l ∈Nα

exp(−λα,i, j,k,l )
ν

λα,i, j,k,l
i, j,k,l

νi, j,k,l !
, (12c)

with the corrected Poissonian parameters defined as λα,i, j,k,l ≡
ax

i ay
j bx

k by
l λα .

In eq. (12b) we introduce the Poissonian process and the prob-
ability resumes to the chance that ν i,j,k,l muons are detected under
the condition that this number is supposed to be drawn from a Pois-
sonian process with the corrected parameter λα,i,j,k,l. For both ν i,j,k,l

and λα,i,j,k,l larger than 50, the Poissonian distribution may safely be
replaced by the Gaussian with mean and variance λα,i,j,k,l (Papoulis
& Pillai 2002), and eq. (12c) becomes

P(ν | �, e) =
∏
α

∏
νi, j,k,l ∈Nα

exp
[
− (νi, j,k,l −λα,i, j,k,l )2

2λα,i, j,k,l

]
√

2πλα,i, j,k,l

. (13)

The probability densities derived (see eqs 10a, 10b and 12c or 13)
may now be inserted in eq. (7) to obtain the Bayesian solution of the
inverse problem with unknown parameters λα and eβ . Solving eq.
(7) to obtain models with the highest posterior probability is a non-
linear inverse problem as can be seen from either eq. (12c) or (13)
(Tarantola, 2005). In the next section, we present the Metropolis-
annealing method used to numerically solve the inverse problem.

3 M E T RO P O L I S - A N N E A L I N G
N O N - L I N E A R I N V E R S I O N

3.1 Presentation of the method

We now describe the Metropolis-annealing algorithm used to ob-
tain the maximum likelihood solution of eq. (7) (Metropolis et al.
1953; Kirkpatrick et al. 1983; Bhanot 1988). This algorithm is a
two-loop iterative procedure with the inner loop corresponding to
a Metropolis stochastic relaxation and the outer one to an anneal-
ing anamorphosis of the posterior probability (eq. 7) to progres-
sively guide the Markov Chain Monte Carlo sequence towards the
maximum likelihood model. A great advantage of this approach
is that the Metropolis algorithm does not need normalized proba-
bility densities, so that the unknown integral at the numerator of
eq. (7) may be ignored. The reader interested in the details of the
Metropolis-annealing non-linear inversion is referred to Gibert &
Virieux (1991), Pessel & Gibert (2003), Gibert & Le Mouël (2008)
and Nicollin et al. (2010) for applications in various fields of geo-
physics.

The Metropolis relaxation is a stochastic process producing a
Markov Chain Monte Carlo sequence whose elements are asymp-
totically statistically distributed according to a given probability

density. The algorithm proceeds as a stochastic filter which issues
the desired sequence of models from a white input series of mod-
els randomly chosen in the parameter space. In practice, the next
model (�, e)γ+1 is obtained by drawing a trial model, (�, e)TRY,
and making the insertion in the Markov sequence according to the
probability

P[(�, e)γ+1 ← (�, e)TRY] = min

[
P[(�, e)TRY|ν]

P[(�, e)γ |ν]
, 1

]
, (14a)

else (�, e)γ+1 ← (�, e)γ . (14b)

Eq. (14b) simply states that, in case of rejection of the trial model,
the last accepted model is duplicated in the sequence and a new
move in the parameter space is attempted from this point. With this
method, the probability of the trial model P[(�, e)TRY|ν] is system-
atically compared to the previous model probability P[(�, e)γ |ν]
by computing their ratio. Therefore non-normalized probabilities
may be used to compute the denominator of eq. (7).

The annealing algorithm uses a control parameter, ζ > 0, to
obtain a deformed version of the posterior probability.

Pζ (�, e | ν) = exp

[
ln P(�, e | ν)

ζ

]
. (15)

By varying ζ from infinity to one, Pζ continuously goes from the
uniform probability to the posterior probability. If ζ is further de-
creased to zero, the probability density Pζ converges towards a
Dirac distribution located on the model with the largest posterior
probability.

Pζ=0(�, e | ν) = δ [(�, e) − (�, e)BEST] . (16)

This anamorphosis of the posterior probability is performed by
decreasing ζ while running the Metropolis algorithm so that the
generated Markov Chain Monte Carlo sequence is progressively
guided towards the region of the parameter space where P is maxi-
mum. It is important to note that this random walk will be successful
only if the successive models forming the Markov chain are strongly
correlated, that is, if (�, e)TRY only slightly differs from (�, e)γ .

3.2 Implementation of the method

We now explain the details of the implementation of the Metropolis-
annealing method to solve eq. (7) using the probability densities
given in eqs (10a), (10b), (12c) and (13).

In the first stage of the Metropolis-annealing inversion ζ is de-
creased down to a very small value, numerically equivalent to zero,
to converge near (�, e)BEST, that is, the model with the largest
posterior probability. During this stage, the posterior probability
asymptotically converges towards the Dirac distribution of eq. (16).
The absolute amplitude of the posterior probability is not important
as long as the topology of Pζ (�, e | ν) is preserved. Consequently,
during this search for the best model, the posterior probability may
be replaced, both in the Metropolis filtering and in the annealing
anamorphosis, by any function

ϑζ (�, e | ν) = χ [Pζ (�, e | ν)], (17)

where χ is any strictly monotonously increasing function defined
in R

+, Pζ (�, e | ν) has then to be strictly positive. This condition is
satisfied when the values of the unknown parameters are restricted
to � > 0 and e ∈ [0, 1] as required by eqs (10a) and (10b). From
eq. (9), this implies that the non-normalized value of P(�, e) is
a constant on the whole restricted domain. The prior constraints
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represented by eqs (10a) and (10b) can then easily be satisfied
by bounding the parameter space. Consequently, for any model
belonging to this bounded space, the posterior probability of eq. (7)
is given by either eq. (12c) or (13) depending on the value of the
parameters.

Choosing χ as the natural logarithm, eq. (15) becomes

ϑζ (�, e | ν) = ln P(�, e | ν)

ζ
. (18)

This equation gives

ϑζ (�, e | ν) = 1

ζ

∑
α

∑
νi, j,k,l ∈Nα

(−λα,i, j,k,l

+ λα,i, j,k,l ln νi, j,k,l − ln νi, j,k,l !
) (19)

for the probability density of eq. (12c), and

ϑζ (�, e | ν) = − 1

ζ

∑
α

∑
νi, j,k,l ∈Nα

(
(νi, j,k,l − λα,i, j,k,l )2

2λα,i, j,k,l

+ 0.5 ln(2πλα,i, j,k,l )

)
(20)

for the probability density of eq. (13).
The use of ϑζ instead of Pζ allows to both save a significant

amount of computational time and to gain in numerical accuracy by
avoiding to estimate products of exponentials with either very large
or very small arguments.

At the end of the first stage of the algorithm, the Markov sequence
is supposed to have converged, and the second stage can start to
construct the posterior probability in the vicinity of (�, e)BEST. In
practice, this is done by initializing a new Markov Chain Monte
Carlo sequence at (�, e)BEST, running a Metropolis loop with ζ =
1 and using the actual posterior probability densities of eqs (12c)
and (13). By this way, the so-obtained sequence models gives a
large sampling of the posterior probability density (Mosegaard &
Tarantola 1995). This sequence can be used to derive statistical
quantities such as marginal probabilities.

4 S Y N T H E T I C E X A M P L E S

4.1 Common detection direction constraint

We first discuss a synthetic example using a parametrization where
the λm,n terms are defined for all directions as indicated in eq. (5).
We simulate a synthetic data set, {ν i,j,k,l}, for a virtual telescope
equipped with matrices of 5 × 5 pixels and oriented towards the
zenith. The efficiencies of the scintillator bars are uniformly drawn
in the [0.8, 1] interval excepted for ay

5 = 0.3 and bx
3 = 0.2, which

simulate two deficient bars. The Poissonian parameters, λm,n, are
taken equal to 5 × 103cos (θ ) with θ the zenith angle to generate
the ni,j,k,l terms. The synthetic data, ν i,j,k,l, are obtained through eq.
(4).

The annealing loop starts at ζ = 105 and stops at ζ = 1, and
the decrease of temperature at the end of iteration K is given by
ζ K+1 = 0.9ζ K . Each Metropolis sequence counts 5 × 103 iterations.
The efficiencies obtained at the end of the annealing normalized by
their true values are shown in the top part of Fig. 5. In this figure,
the relative efficiencies are ranked according to their geometri-
cal arrangement, and the normalization emphasizes the presence
of trends in the efficiency values. It can be observed that a trend
for a given group of efficiencies (i.e. scintillator bars) is compen-
sated by an opposite trend in the corresponding group of the other
matrix.
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Figure 5. Top panel: relative efficiencies inverted under the common-
direction constraint. Observe the linear trend bias affecting each family
of parameters. Bottom: same as top for an inversion performed with the
common-zenith angle constraint. The linear trend bias have disappeared,
but constant-offset bias remain.

These trends are understandable by considering eq. (4) where the
product of the (ax, ay, bx, by) allows, for instance, a multiplicative
bias αx in the ax terms to be compensated by an opposite multiplica-
tive bias βx in the bx terms. The bias must be such that,

αx ax × βx bx = ax × bx . (21)

This synthetic example shows that such compensations are left pos-
sible despite the coupling imposed by the common direction con-
straint represented by eq. (5). The trends belong to the null-space
of the forward problem, making the inversion ill-posed and non-
unique.

4.2 Common zenith angle constraint

We now consider a constraint which assigns a common λα to all
data sharing the same zenith angle as introduced in Section 2.1. This
constraint exploit the circular symmetry of the open-sky integrated
flux of muons around the vertical axis (Gaisser & Stanev 2008).

This symmetry assumption could eventually be questioned be-
cause of the east–west effect due to the geomagnetic field, which
deviates the charged particles contained in the primary cosmic rays
and makes the flux of particles coming from the west larger than
from east (Grieder 2001; Dorman 2009). However, the east–west
effect mainly concerns low-energy particles, which do not penetrate
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deep in the atmosphere, and detailed models of air showers account-
ing for the geomagnetic field have shown that the east–west effect
on the flux of muons is negligible at the ground level (Hansen et al.
2005). This could be no more valid for telescope data acquired on
high-altitude volcanoes. A small anisotropy of the muon flux related
to the anisotropic distribution of the Galactic sources also exists.
However, this anisotropy is of the order of 0.05 per cent (e.g. fig. 2
of Munakata et al. 1997) and may safely be neglected in this study.

The common zenith angle constraint merges data from several
directions and is tighter than the common-direction constraint dis-
cussed in the preceding section. It further reduces the number of
λα parameters and reinforces the coupling between the a and b effi-
ciencies. By this way, it is supposed to limit the non-uniqueness and,
hopefully, to eliminate the trends observed in the top part of Fig. 5.
For the telescope with two matrices of 5 × 5 pixels considered in
the present synthetic example, the common-zenith angle constraint
reduces the number of λα from 81 to 12.

The relative inverted efficiencies are shown in the bottom part
of Fig. 5. The most striking characteristic of the results is the dis-
appearance of the trends observed in the first example performed
with the common-direction constraint. All other inversions we per-
formed with the common-zenith angle constraint also contained no
trends. Although a formal demonstration remains to be done, this
seems to indicate that the common-zenith angle constraint suffi-
ciently couples the parameters to eliminate the null-space compo-
nent represented by the multiplicative trends. However, a constant
multiplicative bias remains. In the present example, the product of
bias observed for the efficiencies amounts to 8 per cent compensated
by an opposite 8 per cent bias on the λα values.

5 I N V E R S I O N O F R E A L DATA

We now turn to the inversion of the third data set of Table 1, which
has been obtained for the telescope axis oriented at a zenith angle
close to 0◦. This vertical orientation of the telescope allows a full
implementation of the common-zenith angle constraint. The num-
ber of events detected by each scintillator bar are given in Fig. 3.
The telescope configuration, with two matrices of 16 × 16 pix-
els, imposes 961 unknown λm,n and 64 efficiencies. By applying
the common-zenith angle constraint, the number of λα terms de-
creases to 43 giving 107 unknown parameters in total. In practice,
this reduction of the number of parameters not only reduces the
non-uniqueness of the inversion but also dramatically shrinks the
parameter space and speeds up the annealing convergence. The val-
ues of the annealing parameters are identical to those used for the
synthetic tests discussed earlier.

The inverted efficiencies are shown in the top part of Fig. 6.
The failure of the by

12 bar and, to a lesser extent, the one of bx
3

(both in the rear matrix) is confirmed as suspected by looking at the
events distribution in Fig. 3. All inverted ax efficiencies are lower
than 1 and, because of the possible existence of a multiplicative
constant bias, they could be multiplied by a constant factor to make
max (ax) = 1. Of course, this arbitrary shift, must be compensated
by a division of the λα terms by the same factor. This possibility
illustrates the fact that an absolute determination of both the flux
(i.e. the λα terms) and the acceptance (i.e. the a and b values) is
impossible. The inverted Poissonian parameters, λα , are shown in
Fig. 7. The monotonous decrease expected as a function of the
zenith angle is well reproduced.

The bottom part of Fig. 6 shows the number of events that would
have been measured with bars having a 100 per cent efficiency.

Figure 6. Top: inverted efficiencies for the third data set in Table 1. The
ay

12 bar clearly fails due to a bad optical coupling of the scintillator bar.
Bottom: reconstructed number of events for each scintillator bar obtained
by correcting the measured number of events of Fig. 3 with the inverted
efficiencies.
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Figure 7. Inverted Poissonian parameters, λα , as a function of the zenith
angle.
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Figure 8. Top: detected particles flux, corrected with the efficiencies dis-
played in Fig. 6. Bottom: influence of the correction on the detected flux.

These numbers are obtained by dividing the number of events actu-
ally measured (Fig. 3) by the inverted efficiencies. The symmetrical
distribution of event expected for a perfect telescope is recovered.

The inverted efficiencies of Fig. 6 can be used to derive a corrected
acceptance,T (rm,n), applied to the flux of Fig. 4 (top) corresponding
to the three data sets of Table 1. The resulting undistorted flux
is shown in the top part of Fig. 8, and the discrepancy between
the measured flux and the undistorted flux is given in the bottom
part of Fig. 8. The undistorted flux appears much more regular and
symmetrical than the empirically corrected flux shown at the bottom
of Fig. 4.

6 C O N C LU D I N G R E M A R K S

Combining individual muon radiographies to perform the tomogra-
phy inversion of the 3-D density distribution requires radiographies
cleaned from spurious features due to defects of the telescope ac-
ceptance. Indeed, such artefacts may induce inconsistencies in the
resulting linear system of equations leading to unpredictable recon-
struction errors. Undistorting images from the telescope acceptance
then constitute an important issue in the processing sequence of
muon tomography. In this study, we implement a systematic method

to account for the actual acceptance function of scintillator-based
muon telescopes where low efficiency and even failure of detection
bars may produce spurious features in the measured flux.

Using the number, ν i,j,k,l, of detected events for each pair of pix-
els of the telescope matrices, the determination of the acceptance
cannot be separated from the determination of the unknown number
of events, ni,j,k,l ≥ ν i,j,k,l, which actually hit the bars. This duality is
expressed in eq. (4) where the efficiencies, ax

i , ay
j , bx

k and by
l , play

the same role as ni,j,k,l. A fundamental non-uniqueness results from
this coupling, its main expression being that the efficiencies may be
decreased by an arbitrary factor without changing the fit to the data
provided the n values are increased by the same factor. Furthermore
this unavoidable non-uniqueness increases generally because trend
bias is present in the efficiencies. Such trends come from insuffi-
cient couplings among the parameters of the inverse problem. A
possibility to overcome this consists in merging data with the same
zenith angle as illustrated in Fig. 5. This requires either an open-sky
data flux measured towards the zenith or several measurements with
different orthogonal orientations of the detection matrices to couple
the x and y efficiency coefficients.

Let us remark that the fundamental coupling of the parameters
represented by eq. (5) supposes that the flux is the same for all pixel
pairs sharing the same direction. This constraint may be defeated
if the telescope is very near strong density heterogeneities as could
occur, for instance, against the edge of a cliff with the matrices partly
exposed to open sky. In such a particular case, the flux coming from
a given direction will no more be the same for all pixel pairs, and
the method discussed in this paper will fail.

The parametrization presented in Section 2.1 supposes that
ni,j,k,l ≥ ν i,j,k,l. This assumption implies that events correspond-
ing to fake tracks and the soft electronic component has properly
been removed from the data set. This issue is discussed in details by
Nagamine et al. (1995) and in the book (section 9.2.3) by Nagamine
(2003) who recommend to use an iron shielding to filter out the
soft component and a third detection matrix to make fortuitous co-
incidences highly unlikely by implementing a triple coincidence
constraint. Our telescopes are equipped with these devices.

The simulated annealing algorithm used to implement the
Bayesian inversion easily allows to eventually use more compli-
cated models. This is for instance the case of the bar efficiencies,
which are assumed constant in this study (eq. 4) and could instead
account for an eventual along-fibre attenuation of light. This could
be of some importance for large telescopes using scintillator bars
with a length of several metres not negligible with respect to the at-
tenuation length of the fibres. This is not the case for our telescopes
whose scintillator bars have a length of 0.8 m.

The Bayesian formalism discussed in this paper also furnishes an
inverted estimate of the number of muons ni,j,k,l—some of them
being undetected due to unperfect efficiencies—which actually
crossed the telescope. In practice, these numbers are represented
by the Poissonian hyperparameters, λα , which are the quantities ac-
tually inverted (Fig. 7). The λ values represent the parameters of the
Poissonian stochastic processes from which the ni,j,k,l can be drawn.
These stochastic processes then constitute the models for the flux
of muon measured in the directions spanned by the telescope. As
such, they form a stochastic model of the radiography from which
other quantities like opacity and integrated density images may be
derived (see Lesparre et al. 2010 for terminology) and subsequently
be used for 3-D tomography inversion. Whenever open-sky data are
available, the inversion of the λ terms can be further constrained
by using prior model of muon flux as discussed by Lesparre et al.
(2010).
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