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INTRODUCTION

Density matrices of finite dimensions are basic objects in quantum information theory and in nuclear or high-energy spin physics. In the first field it is important to know if a given multi-partite density matrix is separable or entangled. In spin physics the attention is focused on the positivity constraints on the spin correlations [1]. These correlations are encoded in a cross section matrix R which is a density matrix except for a trace differing from unity. In Ref. [1], some properties of R related to quantum information, like entropy and entanglement are also discussed. In this paper we will review the concepts of classical and quantum positivity of R introduced in Refs. [START_REF] Artru | Advanced Research Workshop on High-Energy Spin Physics[END_REF]1] with the help of graphical representations. We will also review a duality between the domains of separability and classical positivity of R. This property can be usefull in quantum information theory.

STATES, DENSITY MATRIX AND S-MATRIX

We take the example of spin quantum states, but the results can be applied to any system containing quantum information of finite-dimension. To help the intuition, a graphical representation of states and operators is shown in Fig. 1: a state ψ is represented by an oriented line, a density operator by a cocoon, the S-matrix by a disk and the scalar 
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(

The 

which reduces crossing to a partial transposition.

The exclusive cross section matrix, represented on the left of Fig. 2, is R = |Ψ⟩⟨Ψ|. It is a pure-state density matrix (in this section we relax the condition that the trace of a density matrix is 1). Its matrix elements are given by

⟨a ′ , b ′ , c ′ , d ′ |R|a, b, c, d⟩ = ⟨a ′ , b ′ , |S † |c ′ , d ′ ⟩ ⟨c, d|S|a, b⟩ .
(3) R encodes all polarization observables. The fully polarized cross section is

σ (A↑ +B↑→ C↑ +D↑) ∝ Tr { R ( ρ C ⊗ ρ D ⊗ ρ t A ⊗ ρ t B )} . ( 4 
)
The right diagram of Fig. 2 represents the semi-inclusive cross section matrix when particles, which form the set X, are undetected or when particles of known momenta are not polarized or not analyzed (here B). This R matrix is obtained from the exclusive one by taking the partial trace over unpolarized particles and integrating over the momenta of undetected particles. It is therefore a mixed-state density matrix. 

QUANTUM AND CLASSICAL POSITIVITY

In this section and the next one, the cross section matrix R is taken as an example of a multipartite density matrix, except for the trace ̸ = 1.

The R matrix is semi-positive definite, that is to say ⟨φ|R|φ⟩ ≥ 0 for any, separable or entangled, multiparticle spin state |φ⟩ (we will use the inexact but simpler word "positive"). Physically it means that the cross section is positive for all independent or entangled polarizations [1]. An equivalent statement is Tr {R ρ} ≥ 0 for any ρ , separable or entangled.

(5)

However, in ordinary collisions the particle are polarized or spin-analyzed independently, therefore what is experimentally verified is only the positivity of (4), which is equivalent to Tr {R ρ} ≥ 0 for any separable ρ . 

POSITIVITY AND SEPARABILITY DOMAINS

In this section we assume that all density matrices have unit-traces. R is renormalized accordingly. A density matrix can be parametrized as 

ρ = (1 + r. ⃗ Σ)/d ( 
R = 1 +C x0 σ x (A) +C y0 σ y (A) +C z0 σ z (A) + C 0x σ x (B) + • • • (11) +C xx σ x (A) ⊗ σ x (B) +C xy σ x (A) ⊗ σ y (B) + • • • (12)
Let us focus on the three correlation coefficients C xx , C yy and C zz . Their 3-dimensional domain is contained the cube [-1, +1] ⊗3 shown in Fig. 5. Quantum positivity restricts this domain to the tetrahedron. It is the projection P(Q) of the positivity domain Q on the hyperplane {C i j = 0 for i ̸ = j}. Also shown are the projections P(C) and P(S) of the classical positivity and separability domains (the whole cube and the octahedron).

One can see that P(C) and P(S) are dual under the polar reciprocal transformation of power -1 and that P(Q) is self-dual. This is a trace of the dualities of the nonprojected domains. In fact, if two domains D 1 and D 2 are dual, the projection P(D 1 ) on a hyperplane H is dual to the intersection I(D 2 ) of D 2 with H. In our example it happens that P(D) = I(D) for the three considered domains.

CONCLUSION

We have shown that spin correlations in nuclear or high-energy physics provide usefull examples in quantum information theory. More details can be found in Ref. [1]. The concept of classical positivity and its dual relationship with separability can help to find efficient entanglement criteria, for instance in quantum cryptography.

  ⟨ ā, b, c, d| S |vacuum⟩ of the (fictitious) reaction vacuum → Ā + B +C + D, shown in the lower middle. One can also write it as ⟨ ā, b, c, d| Ψ⟩, represented at the lower right, with |Ψ⟩ = S |vacuum⟩. In the following |Ψ⟩ will be restricted to Ā + B + C + D spin states, excluding other sets of particles. It is then normalized to the unpolarized cross section:

  crossing operation changes the spin variables a and b into ā and b. However, relabelling the spin bases of Ā and B, one can omit the bars and take ā = a, b = b. Then ⟨c, d|S|a, b⟩ = ⟨a, b, c, d| S |vacuum⟩ = ⟨a, b, c, d| Ψ⟩ ,
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 2 FIGURE 2. Graphical representations of the cross section matrix. Left: exclusive case. Right: semiinclusive case. A summation over b is understood.
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 6 This is the classical positivity condition. It is weaker than the quantum positivity condition (5). The traces in Eqs.(5) and (6) are represented on the left and right of Fig.3.
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 34 FIGURE 3. Graphical representations of the traces in Eq.(5) for quantum positivity (left) and Eq.(6) for classical positivity (right).

  FIGURE 5. 3-dimensional projections of the domains of classical positivity C (cube), quantum positivity Q (tetrahedron) and separability S (octahedron).

Fig. 4

 4 Fig.4 also shows the boundary of the domain Q pt where the partial transposed ρ pt of ρ is positive. S and C are invariant under partial transposition. As a precise example, let us consider the reaction A↑ +B↑→ C + D, where A and B have spin 1/2 and the polarizations of C and D are not measured. The normalized R matrix can be parametrized by 4R = 1 +C x0 σ x (A) +C y0 σ y (A) +C z0 σ z (A) + C 0x σ x (B) + • • • (11) +C xx σ x (A) ⊗ σ x (B) +C xy σ x (A) ⊗ σ y (B) + • • • (12)

  Upper raw: graphical representation of a 3-particle wave function ⟨i, j, k|ψ⟩, a pure-state density matrix ⟨i, j, k|ψ⟩⟨ψ|i ′ , j ′ , k ′ ⟩ and a mixed-state density matrix ⟨i, j, k|ρ|i ′ , j ′ , k ′ ⟩. Lower raw: representations of the equivalent quantities ⟨c, d|S|a, b⟩, ⟨ ā, b, c, d| S |vacuum⟩ and ⟨ ā, b, c, d| Ψ⟩. The lower left diagram represents the S-matrix element ⟨c, d|S|a, b⟩ of a polarized reaction A↑ +B↑→ C↑ +D↑. By crossing symmetry, it is equal to the S-matrix element

	product by a small bullet. |i⟩, | j⟩, |k⟩, |a⟩, |b⟩, etc. are base vectors for the one-particle
	spin states (the base may differ from one particle to another). The upper raw represents
	a 3-particle wave function ⟨i, j, k|ψ⟩, the corresponding density matrix which is of rank
	1 and a mixed-state density matrix, of rank ≥1.
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