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Classical positivity, quantum positivity and
entanglement of a multi-partite density matrix,

with the example of polarized reactions1

Artru X.

Université de Lyon, CNRS/IN2P3 and Université Lyon 1, Institut de Physique Nucléaire de Lyon

Abstract. The spin correlations in a reaction involving initial and final polarized particles are
encoded in a cross section matrix which is taken as an example of multipartite density matrix.
Quantum positivity stipulates that the cross section is positive for any spin states - separable or
entangled - of the particles. A weaker condition, classical positivity only requires that the cross
section is positive for separable spin state. Classical and Quantum positivity are represented by
diagrams. The domains of classical positivity and of separability are dual under a reciprocal polar
transformation. This property can be usefull in quantum information theory.
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INTRODUCTION

Density matrices of finite dimensions are basic objects in quantum information theory
and in nuclear or high-energy spin physics. In the first field it is important to know if a
given multi-partite density matrix is separable or entangled. In spin physics the attention
is focused on the positivity constraints on the spin correlations [1]. These correlations
are encoded in a cross section matrix R which is a density matrix except for a trace
differing from unity. In Ref. [1], some properties of R related to quantum information,
like entropy and entanglement are also discussed. In this paper we will review the
concepts of classical and quantum positivity of R introduced in Refs.[2, 1] with the
help of graphical representations. We will also review a duality between the domains
of separability and classical positivity of R. This property can be usefull in quantum
information theory.

STATES, DENSITY MATRIX AND S-MATRIX

We take the example of spin quantum states, but the results can be applied to any system
containing quantum information of finite-dimension. To help the intuition, a graphical
representation of states and operators is shown in Fig.1: a state ψ is represented by
an oriented line, a density operator by a cocoon, the S-matrix by a disk and the scalar

1 Presented at the 8th International Workshop on Progress in Theoretical Physics, Constantine, Algeria,
23-25 October 2011
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FIGURE 1. Upper raw: graphical representation of a 3-particle wave function ⟨i, j,k|ψ⟩, a pure-state
density matrix ⟨i, j,k|ψ⟩⟨ψ|i′, j′,k′⟩ and a mixed-state density matrix ⟨i, j,k|ρ|i′, j′,k′⟩. Lower raw: rep-
resentations of the equivalent quantities ⟨c,d|S|a,b⟩, ⟨ā, b̄,c,d|S |vacuum⟩ and ⟨ā, b̄,c,d|Ψ⟩.

product by a small bullet. |i⟩, | j⟩, |k⟩, |a⟩, |b⟩, etc. are base vectors for the one-particle
spin states (the base may differ from one particle to another). The upper raw represents
a 3-particle wave function ⟨i, j,k|ψ⟩, the corresponding density matrix which is of rank
1 and a mixed-state density matrix, of rank ≥1.

The lower left diagram represents the S-matrix element ⟨c,d|S|a,b⟩ of a polarized
reaction A↑+B↑→C↑+D↑. By crossing symmetry, it is equal to the S-matrix element
⟨ā, b̄,c,d|S |vacuum⟩ of the (fictitious) reaction vacuum → Ā+ B̄+C+D, shown in the
lower middle. One can also write it as ⟨ā, b̄,c,d|Ψ⟩, represented at the lower right, with
|Ψ⟩ = S |vacuum⟩. In the following |Ψ⟩ will be restricted to Ā+ B̄+C+D spin states,
excluding other sets of particles. It is then normalized to the unpolarized cross section:

⟨Ψ|Ψ⟩= ∑
a,b,c,d

|⟨c,d|S |a,b,⟩|2 ∝ (2sA +1)(2sB +1)σ(A+B →C+D) . (1)

The crossing operation changes the spin variables a and b into ā and b̄. However, re-
labelling the spin bases of Ā and B̄, one can omit the bars and take ā = a, b̄ = b. Then

⟨c,d|S|a,b⟩= ⟨a,b,c,d|S |vacuum⟩= ⟨a,b,c,d|Ψ⟩ , (2)

which reduces crossing to a partial transposition.
The exclusive cross section matrix, represented on the left of Fig.2, is R = |Ψ⟩⟨Ψ|.

It is a pure-state density matrix (in this section we relax the condition that the trace of a
density matrix is 1). Its matrix elements are given by

⟨a′,b′,c′,d′|R|a,b,c,d⟩ = ⟨a′,b′, |S†|c′,d′⟩ ⟨c,d|S|a,b⟩ . (3)

R encodes all polarization observables. The fully polarized cross section is

σ(A↑+B↑→C↑+D↑) ∝ Tr
{
R

(
ρC ⊗ρD ⊗ρ t

A ⊗ρ t
B
)}

. (4)

The right diagram of Fig.2 represents the semi-inclusive cross section matrix when
particles, which form the set X, are undetected or when particles of known momenta are
not polarized or not analyzed (here B). This R matrix is obtained from the exclusive one
by taking the partial trace over unpolarized particles and integrating over the momenta
of undetected particles. It is therefore a mixed-state density matrix.
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FIGURE 2. Graphical representations of the cross section matrix. Left: exclusive case. Right: semi-
inclusive case. A summation over b̄ is understood.

QUANTUM AND CLASSICAL POSITIVITY

In this section and the next one, the cross section matrix R is taken as an example of a
multipartite density matrix, except for the trace ̸= 1.

The R matrix is semi-positive definite, that is to say ⟨φ |R|φ⟩ ≥ 0 for any, separable
or entangled, multiparticle spin state |φ⟩ (we will use the inexact but simpler word
"positive"). Physically it means that the cross section is positive for all independent
or entangled polarizations [1]. An equivalent statement is

Tr {R ρ} ≥ 0 for any ρ , separable or entangled. (5)

However, in ordinary collisions the particle are polarized or spin-analyzed indepen-
dently, therefore what is experimentally verified is only the positivity of (4), which is
equivalent to

Tr {R ρ} ≥ 0 for any separable ρ . (6)

This is the classical positivity condition. It is weaker than the quantum positivity condi-
tion (5). The traces in Eqs.(5) and (6) are represented on the left and right of Fig.3.
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FIGURE 3. Graphical representations of the traces in Eq.(5) for quantum positivity (left) and Eq.(6) for
classical positivity (right).
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FIGURE 4. Geometrical relationships between the domains of quantum positivity Q, classical positivity
C and separability S. The dashed line is the boundary of the domain Qpt where the partially transposed
matrix is positive.

POSITIVITY AND SEPARABILITY DOMAINS

In this section we assume that all density matrices have unit-traces. R is renormalized
accordingly. A density matrix can be parametrized as

ρ = (1+ r.⃗Σ)/d (7)

where d is the dimension of the quantum Hilbert space, r a real vector of dimension
D = d2−1 and the components Σ1, ...ΣD of Σ⃗ are hermitian and traceless d×d matrices
satisfying

Tr
(
Σi Σ j

)
= d δi j (8)

(this is a generalization of the spin-1/2 density matrix ρ = (1+ r.⃗σ)/2). Thus a den-
sity matrix is represented by a point in a D-dimensional Euclidean space. We have
Tr (ρ ρ ′) = (1+ r.r′)/d. Setting R ≡ ρ ′, Eq.(5) tells that the domain Q of quantum
positivity verifies

r · r′ ≥−1 for any r and r′ ∈ Q . (9)

According to (6) the domain C of classical positivity is the largest one such that

rS · rC ≥−1 for any rS ∈ S and rC ∈ C , (10)

S being the domain of separability.
Q, S and C are convex and S ⊂Q⊂C. From (10) one can show that the boundaries ∂C

and ∂S of C and S are dual in the polar reciprocal transformation of power −1. From
(9) the boundary ∂Q of Q is self-dual. A two-dimensional picture of these relationships
is shown in Fig.4, where a point rC of ∂C and its polar line r ·rC =−1, which is tangent
to ∂S, are drawn. The matrix ρC represented by rC is an entanglement witness, that is
to say, a density matrix ρ verifying Tr (ρ ρC) < 0 is certainly entangled. The matrices
sitting on ∂C form a minimal complete set of entanglement witnesses.
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FIGURE 5. 3-dimensional projections of the domains of classical positivity C (cube), quantum positiv-
ity Q (tetrahedron) and separability S (octahedron).

Fig.4 also shows the boundary of the domain Qpt where the partial transposed ρpt of
ρ is positive. S and C are invariant under partial transposition.

As a precise example, let us consider the reaction A↑ +B↑→ C+D, where A and B
have spin 1/2 and the polarizations of C and D are not measured. The normalized R
matrix can be parametrized by

4R = 1+Cx0 σx(A)+Cy0 σy(A)+Cz0 σz(A) + C0x σx(B)+ · · · (11)
+Cxx σx(A)⊗σx(B)+Cxy σx(A)⊗σy(B)+ · · · (12)

Let us focus on the three correlation coefficients Cxx, Cyy and Czz. Their 3-dimensional
domain is contained the cube [−1,+1]⊗3 shown in Fig.5. Quantum positivity restricts
this domain to the tetrahedron. It is the projection P(Q) of the positivity domain Q on
the hyperplane {Ci j = 0 for i ̸= j}. Also shown are the projections P(C) and P(S) of the
classical positivity and separability domains (the whole cube and the octahedron).

One can see that P(C) and P(S) are dual under the polar reciprocal transformation
of power −1 and that P(Q) is self-dual. This is a trace of the dualities of the non-
projected domains. In fact, if two domains D1 and D2 are dual, the projection P(D1) on
a hyperplane H is dual to the intersection I(D2) of D2 with H. In our example it happens
that P(D) = I(D) for the three considered domains.

CONCLUSION

We have shown that spin correlations in nuclear or high-energy physics provide usefull
examples in quantum information theory. More details can be found in Ref.[1]. The
concept of classical positivity and its dual relationship with separability can help to find
efficient entanglement criteria, for instance in quantum cryptography.
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