Skip to Main content Skip to Navigation
New interface
Journal articles

Multiboost: a multi-purpose boosting package

D. Benbouzid 1, 2 Róbert Busa-Fekete 1 N. Casagrande 3 F.-D. Collin 1 Balázs Kégl 1, 2, 4 
4 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : The MultiBoost package provides a fast C++ implementation of multi-class/multi-label/multi-task boosting algorithms. It is based on AdaBoost.MH but it also implements popular cascade classifiers and FilterBoost. The package contains common multi-class base learners (stumps, trees, products, Haar filters). Further base learners and strong learners following the boosting paradigm can be easily implemented in a flexible framework.
Document type :
Journal articles
Complete list of metadata

Cited literature [9 references]  Display  Hide  Download
Contributor : Sabine Starita Connect in order to contact the contributor
Submitted on : Monday, May 21, 2012 - 4:39:51 PM
Last modification on : Friday, November 18, 2022 - 9:25:23 AM
Long-term archiving on: : Wednesday, August 22, 2012 - 2:21:28 AM


Publisher files allowed on an open archive


  • HAL Id : in2p3-00698455, version 1


D. Benbouzid, Róbert Busa-Fekete, N. Casagrande, F.-D. Collin, Balázs Kégl. Multiboost: a multi-purpose boosting package. Journal of Machine Learning Research, 2012, 13, pp.549-553. ⟨in2p3-00698455⟩



Record views


Files downloads