
HAL Id: in2p3-00698455
https://hal.in2p3.fr/in2p3-00698455

Submitted on 21 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiboost: a multi-purpose boosting package
D. Benbouzid, Róbert Busa-Fekete, N. Casagrande, F.-D. Collin, Balázs Kégl

To cite this version:
D. Benbouzid, Róbert Busa-Fekete, N. Casagrande, F.-D. Collin, Balázs Kégl. Multiboost: a multi-
purpose boosting package. Journal of Machine Learning Research, 2012, 13, pp.549-553. �in2p3-
00698455�

https://hal.in2p3.fr/in2p3-00698455
https://hal.archives-ouvertes.fr


Journal of Machine Learning Research 13 (2012) 549-553 Submitted 8/11; Published 3/12

MultiBoost: A Multi-purpose Boosting Package

Djalel Benbouzid1,2 djalel.benbouzid@gmail.com

Róbert Busa-Fekete1,3 busarobi@gmail.com

Norman Casagrande4 norman@wavii.com

François-David Collin1 fradav@gmail.com

Balázs Kégl1,2 balazs.kegl@gmail.com

1Linear Accelerator Laboratory, University of Paris-Sud, CNRS Orsay 91898, France
2Computer Science Laboratory, University of Paris-Sud, CNRS Orsay 91405, France
3Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University of

Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary
4wavii.com

Editor: Sören Sonnenburg

Abstract

The MultiBoost package provides a fast C++ implementation of multi-class/multi-
label/multi-task boosting algorithms. It is based on AdaBoost.MH but it also implements
popular cascade classifiers and FilterBoost. The package contains common multi-class
base learners (stumps, trees, products, Haar filters). Further base learners and strong learn-
ers following the boosting paradigm can be easily implemented in a flexible framework.

Keywords: boosting, AdaBoost.MH, FilterBoost, cascade classifier

1. Introduction

AdaBoost (Freund and Schapire, 1997) is one of the best off-the-shelf learning methods
developed in the last fifteen years. It constructs a classifier in an incremental fashion
by adding simple classifiers to a pool, and uses their weighted “vote” to determine the
final classification. AdaBoost was later extended to multi-class classification problems
(Schapire and Singer, 1999). Although various other attempts have been made handle the
multi-class setting, AdaBoost.MH has become the gold standard of multi-class boosting
due to its simplicity and versatility.

Despite the simplicity and the practical success of the AdaBoost, there are relatively
few off-the-shelf implementations available in the free software market. Whereas binary
AdaBoost with decision stumps is easy to code, multi-class AdaBoost.MH and complex
base learners are not straightforward to implement efficiently. The MultiBoost software
package is intended to fill this gap. Its main boosting engine is based on the AdaBoost.MH

algorithm of Schapire and Singer (1999), but popular cascade classifiers (VJCascade (Viola
and Jones, 2004), SoftCascade (Bourdev and Brandt, 2005)) and FilterBoost (Bradley
and Schapire, 2008) have also been implemented. The package includes common multi-class
base learners (real and nominal valued decision stumps, trees, products (Kégl and Busa-

c©2012 Djalel Benbouzid, Róbert Busa-Fekete, Norman Casagrande, François-David Collin and Balázs Kégl.



Benbouzid, Busa-Fekete, Casagrande, Collin, and Kégl

Strong Learner

AdaBoost.MH

FilterBoost

Viola-Jones Cascade

Soft Cascade

Data Representation

Dense

Sparse

Integral Image

Data Parser

ARFF

SVM Light

Simple text

Base Learner

SingleStump

HaarSingleStump

SparseSingleStump

Selector

Indicator

Meta Base Learner

Tree learner

Product Learner

Output Information

0-1 loss

Hamming loss

AUC

...

op
ti
on

al

Figure 1: The architecture of MultiBoost

Fekete, 2009), and Haar filters), but the flexible architecture makes it simple to add new base
learners without interfering with the main boosting engine. MultiBoost was designed in
the object-oriented paradigm and coded in C++, so it is fast and it provides a flexible base
for implementing further modules.

The rest of this paper is organized as follows. Section 2 describes the general archi-
tecture and the modules of MultiBoost. Section 3 deals with practical issues (website,
documentation, licence), and Section 4 describes some of our results obtained on benchmark
data sets and in data mining challenges.

2. The Architecture

MultiBoost was implemented within the object-oriented paradigm using some design
patterns. It consists of several modules which can be changed or extended more or less
independently (Figure 1). For instance, an advanced user can implement a data-type/base-
learner pair without any need to modify the other modules.

2.1 Strong Learners

The strong learner1 calls the base learners iteratively, stores the learned base classifiers and
their coefficients, and manages the weights of the training instances. The resulting classifier
is serialized in a human-readable XML format that allows one to resume a run after it was
stopped or crashed. MultiBoost implements the following strong learners:

1. The name originally comes from the boosting (PAC learning) literature. Here, we use it in a broader
sense to mean the “outer” loop of the boosting iteration.

550



MultiBoost

• AdaBoost.MH (Schapire and Singer, 1999): a multi-class/multi-label/multi-task
version of AdaBoost that learns a “flat” linear combination of vector-valued base
classifiers.

• FilterBoost (Bradley and Schapire, 2008): an online “filtering” booster.

• VJCascade (Viola and Jones, 2004): an algorithm that learns a cascade classifier
tree by running AdaBoost at each node.

• SoftCascade (Bourdev and Brandt, 2005): another cascade learner that starts with
a set of base classifiers, reorders them, and augments them with rejection thresholds.

2.2 Base Learners

MultiBoost implements the following base learners.

• The Stump learner is a one-decision two-leaf tree learned on real-valued features. It
is indexed by the feature it cuts and the threshold where it cuts the feature.

• Selector is a one-decision two-leaf tree learned on nominal features. It is indexed
by the feature it cuts and the value of the feature it selects.

• Indicator is similar to Selector but it can select several values for a given feature
(that is, it can indicate a subset of the values).

• HaarStump is a Stump learned over a feature space generated using rectangular
filters on images.

• Tree is a meta base learner that takes any base learner as input and learns a vector-
valued multi-class decision tree using the input base learner as the basic cut.

• Product is another meta base learner that takes any base learner as input and learns
a vector-valued multi-class decision product (Kégl and Busa-Fekete, 2009) using the
input base learner as terms of the product.

2.3 The Data Representation

The multi-class data structure is a set of observation-label pairs, where each observation is
a vector of feature values, and each label is a vector of binary class indicators. In binary
classification, we also allow one single label that indicates the class dichotomy. In single-
label multi-class classification, only one of the K labels is 1 and the others are −1, but the
framework also allows multi-label classification with several positive classes per instance. In
addition, multi-task classification can be encoded by letting each label column represent a
different task. We implement a sparse data representation for both the observation matrix
and the label matrix. In general, base learners were implemented to work with their own
data representation. For example, SparseStump works on sparse observation matrices and
HaarStump works on an integral image data representation.

2.4 The Data Parser and the Output Information

The training and test sets can be input in the attribute-relation file format (ARFF), in
the SVMLight format, or using a comma separated text file. We augmented the first

551

http://svmlight.joachims.org
http://www.cs.waikato.ac.nz/~ml/weka/arff.html


Benbouzid, Busa-Fekete, Casagrande, Collin, and Kégl

two formats with initial label weighting, which is an important feature in the boosting
framework (especially in the multi-class/multi-label setup).

In each iteration, MultiBoost can output several metrics (specified by the user), such
as the 0-1 error, the Hamming loss, or the area under the ROC curve. New metrics can
also be implemented without modifying other parts of the code.

2.5 LazyBoost and BanditBoost

When the number of features is large, featurewise learners (Stump, Selector, and In-

dicator) can be accelerated by searching only a subset of the features in each iteration.
MultiBoost implements two options, namely, LazyBoost (Escudero et al., 2000), where
features are sampled randomly, and BanditBoost (Busa-Fekete and Kégl, 2010), where
the sampling is biased towards “good” features learned using a multi-armed bandit algo-
rithm.

3. Documentation and License

The code of MultiBoost has been fully documented in Doxygen. It is available under the
GPL licence at multiboost.org. The website also provides documentation that contains
detailed instructions and examples for using the package along with tutorials explaining
how to implement new features. The documentation also contains the pseudo-code of the
multi-class base learners implemented in MultiBoost.

4. Challenges and Benchmarks

We make available reproducible test results (validated test errors, learning curves) of Multi-

Boost on the web site as we produce them. Among other results, the boosted decision
product is one of the best reported no-domain-knowledge algorithms on MNIST. An early
version of the program (Bergstra et al., 2006) was the best genre classifier out of 15 submis-
sions and the second-best out of 10 submissions at recognizing artists in the MIREX 2005
international contest on music information extraction. More recently, we participated in the
Yahoo! Learning to Rank Challenge using a pointwise ranking approach based on hundreds
of MultiBoost classifiers. We finished 6th in Track 1 and 11th in Track 2 out of several
hundred participating teams (Busa-Fekete et al., 2011).

Acknowledgments

This work was supported by the ANR-2010-COSI-002 grant of the French National Research
Agency.

References

J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl. Aggregate features and Ada-
Boost for music classification. Machine Learning Journal, 65(2/3):473–484, 2006.

552

http://www.doxygen.org
http://multiboost.org
http://yann.lecun.com/exdb/mnist
http://learningtorankchallenge.yahoo.com


MultiBoost

L. Bourdev and J. Brandt. Robust object detection via soft cascade. In Conference on
Computer Vision and Pattern Recognition, volume 2, pages 236–243. IEEE Computer
Society, 2005.

J.K. Bradley and R.E. Schapire. FilterBoost: Regression and classification on large datasets.
In Advances in Neural Information Processing Systems, volume 20. The MIT Press, 2008.

R. Busa-Fekete and B. Kégl. Fast boosting using adversarial bandits. In International
Conference on Machine Learning, volume 27, pages 143–150, 2010.

R. Busa-Fekete, B. Kégl, Éltető T., and Gy. Szarvas. Ranking by calibrated AdaBoost. In
(JMLR W&CP), volume 14, pages 37–48, 2011.

G. Escudero, L. Màrquez, and G. Rigau. Boosting applied to word sense disambiguation.
In Proceedings of the 11th European Conference on Machine Learning, pages 129–141,
2000.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

B. Kégl and R. Busa-Fekete. Boosting products of base classifiers. In International Con-
ference on Machine Learning, volume 26, pages 497–504, Montreal, Canada, 2009.

R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predic-
tions. Machine Learning, 37(3):297–336, 1999.

P. Viola and M. Jones. Robust real-time face detection. International Journal of Computer
Vision, 57:137–154, 2004.

553


	Introduction
	The Architecture
	Strong Learners
	Base Learners
	The Data Representation
	The Data Parser and the Output Information
	LazyBoost and BanditBoost

	Documentation and License
	Challenges and Benchmarks

