J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl, Aggregate features and ADABOOST for music classification, Machine Learning, vol.10, issue.5, pp.473-484, 2006.
DOI : 10.1007/s10994-006-9019-7

URL : https://hal.archives-ouvertes.fr/inria-00176062

L. Bourdev and J. Brandt, Robust Object Detection via Soft Cascade, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.236-243, 2005.
DOI : 10.1109/CVPR.2005.310

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. K. Bradley and R. E. Schapire, FilterBoost: Regression and classification on large datasets, Advances in Neural Information Processing Systems, 2008.

R. Busa-fekete and B. Kégl, Fast boosting using adversarial bandits, International Conference on Machine Learning, pp.143-150, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00614564

G. Escudero, L. , and G. Rigau, Boosting Applied to Word Sense Disambiguation, Proceedings of the 11th European Conference on Machine Learning, pp.129-141, 2000.
DOI : 10.1007/3-540-45164-1_14

URL : http://arxiv.org/abs/cs/0007010

Y. Freund and R. E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, issue.1, pp.119-139, 1997.
DOI : 10.1006/jcss.1997.1504

B. Kégl and R. Busa-fekete, Boosting products of base classifiers, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.497-504, 2009.
DOI : 10.1145/1553374.1553439

R. E. Schapire and Y. Singer, Improved boosting algorithms using confidence-rated predictions, Proceedings of the eleventh annual conference on Computational learning theory , COLT' 98, pp.297-336, 1999.
DOI : 10.1145/279943.279960

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Viola and M. Jones, Robust Real-Time Face Detection, International Journal of Computer Vision, vol.57, issue.2, pp.137-154, 2004.
DOI : 10.1023/B:VISI.0000013087.49260.fb

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=