D. Benbouzid, R. Busa-fekete, N. Casagrande, F. Collin, and B. Kégl, MultiBoost: a multi-purpose boosting package, JMLR, vol.13, pp.549-553, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00698455

L. Bourdev and J. Brandt, Robust Object Detection via Soft Cascade, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.236-243, 2005.
DOI : 10.1109/CVPR.2005.310

. Cambazoglu, Early exit optimizations for additive machine learned ranking systems, Proceedings of the third ACM international conference on Web search and data mining, WSDM '10, pp.411-420, 2010.
DOI : 10.1145/1718487.1718538

O. Chapelle, Y. Chang, and T. Liu, Future directions in learning to rank, JMLR W&CP, pp.91-100, 2011.

O. Chapelle, Y. Chang, and T. Y. Liu, Yahoo ! Learning-to-Rank Challenge, JMLR W&CP, vol.14, 2011.

O. Chapelle and Y. Chang, Yahoo! Learning-to- Rank Challenge overview, JMLR W&CP, pp.1-24, 2011.

G. Davis, S. Mallat, and M. Avellaneda, Adaptive greedy approximations, Constructive Approximation, vol.21, issue.1, pp.57-98, 1997.
DOI : 10.1007/BF02678430

G. Dulac-arnold, L. Denoyer, P. Preux, and P. Gallinari, Datum-Wise Classification: A Sequential Approach to Sparsity, ECML, 2011.
DOI : 10.1007/978-3-642-23780-5_34

URL : https://hal.archives-ouvertes.fr/hal-00617913

V. Ejov, J. Filar, and J. Gondzio, An Interior Point Heuristic for the Hamiltonian Cycle Problem via Markov Decision Processes, Journal of Global Optimization, vol.29, issue.3, pp.315-334, 2004.
DOI : 10.1023/B:JOGO.0000044772.11089.1a

Y. Freund and R. E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, issue.1, pp.119-139, 1997.
DOI : 10.1006/jcss.1997.1504

V. Gligorov, A single track HLT1 trigger, 2011.

K. Järvelin and J. Kekäläinen, Cumulated gain-based evaluation of IR techniques, ACM Transactions on Information Systems, vol.20, issue.4, pp.422-446, 2002.
DOI : 10.1145/582415.582418

H. Larochelle and G. Hinton, Learning to combine foveal glimpses with a third-order Boltzmann machine, NIPS, pp.1243-1251, 2010.

H. Lee, A. Battle, R. Raina, and A. Ng, Efficient sparse coding algorithms, NIPS, pp.801-808, 2007.

P. Li, C. Burges, and Q. Wu, McRank: Learning to rank using multiple classification and gradient boosting, NIPS, pp.897-904, 2007.

S. Munder and D. M. Gavrila, An Experimental Study on Pedestrian Classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.11, pp.1863-1868, 2006.
DOI : 10.1109/TPAMI.2006.217

M. Ranzato, C. Poultney, S. Chopra, and Y. Lecun, Efficient learning of sparse representations with an energybased model, NIPS, pp.1137-1144, 2007.

G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems, 1994.

M. Saberian and N. Vasconcelos, Boosting classifier cascades, NIPS, pp.2047-2055, 2010.

R. E. Schapire and Y. Singer, Improved boosting algorithms using confidence-rated predictions, Proceedings of the eleventh annual conference on Computational learning theory , COLT' 98, pp.297-336, 1999.
DOI : 10.1145/279943.279960

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction. Adaptive computation and machine learning, 1998.
DOI : 10.1007/978-1-4615-3618-5

C. Szepesvári, Algorithms for Reinforcement Learning, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.4, issue.1, 2010.
DOI : 10.2200/S00268ED1V01Y201005AIM009

P. Viola and M. Jones, Robust Real-Time Face Detection, International Journal of Computer Vision, vol.57, issue.2, pp.137-154, 2004.
DOI : 10.1023/B:VISI.0000013087.49260.fb