PHASE STATES AND COHERENT STATES FOR GENERALIZED WEYL-HEISENBERG ALGEBRAS - IN2P3 - Institut national de physique nucléaire et de physique des particules Access content directly
Conference Papers Year : 2012

PHASE STATES AND COHERENT STATES FOR GENERALIZED WEYL-HEISENBERG ALGEBRAS

Mohammed Daoud
  • Function : Author
  • PersonId : 834784

Abstract

This paper is concerned with the construction of phase operators, phase states, vector phase states, and coherent states for a generalized Weyl-Heisenberg algebra. This polynomial algebra (that depends on real parameters) is briefly described. The various states are defined on a finite- or infinite-dimensional space depending on the parameters. This report constitutes an introduction to three papers published by the authors in J. Phys. A [43 (2010) 115303 and 45 (2012) 244036] and J. Math. Phys. [52 (2011) 082101]. See these three papers for the relevant references.
Fichier principal
Vignette du fichier
HAL_proc_Kibler_Daoud.pdf (103.6 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

in2p3-00741945 , version 1 (15-10-2012)

Identifiers

  • HAL Id : in2p3-00741945 , version 1
  • ARXIV : 1210.4022

Cite

Maurice Robert Kibler, Mohammed Daoud. PHASE STATES AND COHERENT STATES FOR GENERALIZED WEYL-HEISENBERG ALGEBRAS. The XXIXth International Colloquium on Group-Theoretical Methods in Physics, Aug 2012, Tianjin, China. ⟨in2p3-00741945⟩
68 View
25 Download

Altmetric

Share

Gmail Facebook X LinkedIn More