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We show how to transform the problem of finding d + 1 mutually unbiased bases in C d into the one of finding d(d + 1) vectors in C d 2 . The transformation formulas admit a solution when d is a prime number.

Introduction

The determination of mutually unbiased bases (MUBs) is of pivotal importance in the theory of information and in finite quantum mechanics. Let us recall that two orthonormal bases of a unitary space are said to be unbiased if the modulus of the inner product of any vector of one basis with any vector of the other is independent of the considered vectors (see Section II for a definition of MUBs in C d ). Such bases are useful in classical information (network communication protocols) [START_REF] Calderbank | Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets[END_REF] and quantum information (quantum state tomography and quantum cryptography) [START_REF] Cerf | Security of quantum key distribution using d-level systems[END_REF] as well as for the construction of discrete Wigner functions [START_REF] Gibbons | Discrete phase space based on finite fields[END_REF], the solution of the mean King problem [START_REF] Englert | The mean king's problem: prime degrees of freedom[END_REF] and the understanding of the Feynman path integral formalism [START_REF] Tolar | Feynman's path integral and mutually unbiased bases[END_REF]. They are at the root of a formulation of the Bohr complementarity principle for finite quantum systems.

There exist numerous ways of constructing sets of MUBs. Most of them are based on discrete Fourier transform over Galois fields and Galois rings, quadratic discrete Fourier transform of qudits, discrete Wigner distribution, generalized Pauli operators, generalized Hadamard matrices, mutually orthogonal Latin squares, finite geometry methods, angular momentum theory, Lie-like approaches, and phase states associated with a generalized Weyl-Heisenberg algebra (see [START_REF] Durt | On mutually unbiased bases[END_REF] and [START_REF] Kibler | An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, unitary group and Pauli group[END_REF] for a review on the subject).

The aim of this note is to introduce a transformation that makes possible to replace the search

of d + 1 MUBs in C d by the determination of d(d + 1) vectors in C d 2 .

Mutually unbiased bases in C d

Two distinct orthonormal bases

B a = {|aα : α = 0, 1, . . . , d -1} (1) 
and

B b = {|bβ : β = 0, 1, . . . , d -1} (2) 
(with a = b) of the d-dimensional Hilbert space C d (d ≥ 2) are said to be unbiased if

| aα|bβ | = 1 √ d , (3) 
where | denotes the inner product in C d . It is well-known that the maximum number of MUBs in C d is d + 1 and that a complete set of d + 1 MUBs exists if d is prime or the power of a prime number [START_REF] Calderbank | Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets[END_REF], [START_REF] Ivanović | Geometrical description of quantum state determination[END_REF], [START_REF] Wootters | Optimal state-determination by mutually unbiased measurements[END_REF]. On the other hand, it is not known if it is possible to construct a complete set of d + 1 MUBs in C d in the case where d is not the nth power (n ∈ N * ) of a prime. However, in this case there exists at least 3 MUBs, a well-known result for d = 6. In spite of a great number of numerical studies, no more than 3 MUBs were obtained for d = 6 [START_REF] Grassl | Tomography of quantum states in small dimensions[END_REF], [START_REF] Bengtsson | Mutually unbiased bases and Hadamard matrices of order six[END_REF], [START_REF] Brierley | Constructing mutually unbiased bases in dimension six[END_REF], [START_REF] Mcnulty | The limited role of mutually unbiased product bases in dimension 6[END_REF], [START_REF] Mcnulty | On the impossibility to extend triples of mutually unbiased product bases in dimension six[END_REF], in agreement with the fact that it is widely believed that only 3 MUBs exist for d = 6.

If we include the a = b case, Eq. (3) leads to

| aα|bβ | = δ α,β δ a,b + 1 √ d (1 -δ a,b ) (4) 
or equivalently

| aα|bβ | 2 = δ α,β δ a,b + 1 d (1 -δ a,b ). (5) 
We note the presence of a modulus in Eqs. ( 4) and ( 5). This modulus certainly constitutes a handicap when performing numerical calculations.

3 Passing from

C d to C d 2
The problem of finding a complete set of d + 1 MUBs in C d amounts to find d(d + 1) vectors |aα satisfying Eq. ( 5), where a = 0, 1, . . . , d and α = 0, 1, . . . , d -1 (the indexes of type a refer to the bases and, for fixed a, the index α refers to one of the d vectors of the basis corresponding to a). By following the approach developed in [START_REF] Albouy | A unified approach to SIC-POVMs and MUBs[END_REF] for positive operator valued measures and MUBs, we can transform this problem into a (possibly) simpler one (not involving a square modulus like in Eq. ( 5)). The idea of the transformation is to introduce a projection operator associated with the |aα vector.

Let us suppose that it is possible to find d + 1 sets B a (with a = 0, 1, . . . , d) of vectors of C d such that Eq. ( 5) is satisfied. It is thus possible to construct d(d + 1) projection operators

Π aα = |aα aα|, a = 0, 1, . . . , d, α = 0, 1, . . . , d -1. (6) 
From Eqs. ( 5) and ( 6), it is clear that the Π aα operators (of rank-1) satisfy the trace conditions

Tr (Π aα ) = 1, Tr (Π aα Π bβ ) = δ α,β δ a,b + 1 d (1 -δ a,b ), (7) 
where the traces are taken over C d . Each operator Π aα can be developed on an orthonormal basis {E pq : p, q = 0, 1, . . . , d -1} of the space of linear operators on C d (orthonormal with respect to the Hilbert-Schmidt inner product). In other words

Π aα = d-1 p=0 d-1 q=0 w pq (aα)E pq . (8) 
The E pq operators are generators of the GL(d, C) complex Lie group. Their main properties are

E † pq = E qp , E pq E rs = δ q,r E ps , Tr (E pq ) = δ p,q
, Tr E † pq E rs = δ p,r δ q,s , p, q, r, s ∈ Z/dZ [START_REF] Wootters | Optimal state-determination by mutually unbiased measurements[END_REF] and they can be represented by the projectors

E pq = |p q|, p, q ∈ Z/dZ. (10) 
The w pq (aα) expansion coefficients in Eq. ( 8) are complex numbers such that w pq (aα) = w qp (aα), p, q ∈ Z/dZ, [START_REF] Bengtsson | Mutually unbiased bases and Hadamard matrices of order six[END_REF] where the bar denotes complex conjugation. By combining Eqs. ( 7) and ( 8), we get

d-1 p=0 d-1 q=0 w pq (aα)w pq (bβ) = δ α,β δ a,b + 1 d (1 -δ a,b ). (12) 
The Π aα operators can be considered as vectors w(aα) = (w 00 (aα), w 01 (aα), . . . , w mm (aα)) , m = d -1

in the Hilbert space C d 2 of dimension d 2 endowed with the usual inner product

w(aα) • w(bβ) = d-1 p=0 d-1 q=0 w pq (aα)w pq (bβ) (14) 
(in Eq. ( 13), we use the dictionary order for ordering the components of w(aα)). Equation ( 12) can then be rewritten as

w(aα) • w(bβ) = δ α,β δ a,b + 1 d (1 -δ a,b ), (15) 
to be compared with Eq. ( 5).

The determination of the Π aα operators and, therefore, of the |aα vectors in C d , is equivalent to the determination of the w pq (aα) components of the w(aα) vectors in C d 2 . This yields the following.

Proposition 1. For d ≥ 2, to find d + 1 MUBs in C d (if they exist) is equivalent to find d(d + 1) vectors w(aα) in C d 2 , of components w pq (aα) such that w pq (aα) = w qp (aα) (with p, q = 0, 1, . . . , d -1) and d-1 p=0 w pp (aα) = 1, satisfying

w(aα) • w(aβ) = δ α,β (16) 
and

w(aα) • w(bβ) = 1 d for a = b, (17) 
where a, b = 0, 1, . . . , d and α = 0, 1, . . . , d -1.

Proof. The proof follows from Eqs. ( 6)- [START_REF] Albouy | A unified approach to SIC-POVMs and MUBs[END_REF]. 2

For a = b, Eqs. ( 16) and [START_REF] Berndt | Gauss and Jacobi Sums[END_REF] show that angle ω aαbβ between any vector w(aα) and any vector is

ω aαbβ = cos -1 (1/d) (18) 
and therefore does not depend on a, α, b and β. Proposition 1 can be transcribed in terms of matrices. Let M aα be the positive-semidefinite matrix of dimension d whose elements are w pq (aα) with p, q ∈ Z/dZ. Then, Eq. ( 14) gives

w(aα) • w(bβ) = Tr (M aα M bβ ) . (19) 
Therefore, we have the following proposition. 

Tr (M aα ) = 1, Tr (M aα M bβ ) = δ α,β δ a,b + 1 d (1 -δ a,b ) (20) 
where a, b = 0, 1, . . . , d and α, β = 0, 1, . . . , d -1.

Proof. The proof is trivial. 2

It is to be noted that Proposition 2 is in agreement with the result of Ref. [START_REF] Bengtsson | Mutually unbiased bases and the complementary polytope[END_REF] according to which a complete set of d + 1 MUBs forms a convex polytope in the set of Hermitian matrices of dimension d and unit trace.

Finally, as a test of the validity of Propositions 1 and 2, we have the following result.

Proposition 3. For d prime, Eqs. ( 16) and [START_REF] Berndt | Gauss and Jacobi Sums[END_REF] or Eq. ( 20) admit the solution w pq (aα) = 1 d e iπ(p-q)[(d-2-p-q)a-2α]/d , a, α, p, q ∈ Z/dZ (21) and w pq (dα) = δ p,q δ p,α , α, p, q ∈ Z/dZ (22

)
for a = d.

Proof. The proof is based on the use of Gauss sums [START_REF] Berndt | Gauss and Jacobi Sums[END_REF] in connection with ordinary [START_REF] Vourdas | Quantum systems with finite Hilbert space[END_REF] and quadratic [START_REF] Kibler | Quadratic discrete Fourier transform and mutually unbiased bases[END_REF] discrete Fourier transforms. Indeed, it is sufficient to calculate w(aα) • w(bβ) as given by ( 14) with the help of ( 21 

w(dα) • w(dβ) = d-1 p=0 d-1 q=0 δ p,q δ p,α δ p,β = δ α,β . (23) 
(ii) Case a = b = 0, 1, . . . , d -1: We have

w(aα) • w(aβ) = 1 d 2 d-1 p=0 d-1 q=0 e i2π(p-q)(α-β)/d = δ α,β . (24) 
(iii) Case a = b (a = 0, 1, . . . , d -1 and b = d): We have

w(aα) • w(dβ) = 1 d d-1 p=0 d-1 q=0 e -iπ(p-q)[(d-2-p-q)a-2α]/d δ p,q δ p,α = 1 d d-1 p=0 δ p,α = 1 d . (25) 
(iv) Case a = b (a, b = 0, 1, . . . , d -1): We have

w(aα) • w(bβ) = 1 d 2 d-1 p=0 d-1 q=0 e iπ(p-q)[(d-2-p-q)(b-a)+2(α-β)]/d . ( 26 
)
The double sum in (26) can be factored into the product of two sums. This leads to

w(aα) • w(bβ) = 1 d 2 d-1 k=0 e iπ{(a-b)k 2 +[(d-2)(b-a)+2(α-β)]k}/d 2 . ( 27 
)
By introducing the generalized Gauss sums [START_REF] Berndt | Gauss and Jacobi Sums[END_REF] S(u, v, w)

= |w|-1 k=0 e iπ(uk 2 +vk)/w , (28) 
(where u, v and w are integers such that u and w are coprime, uw is nonvanishing and uw + v is even), we obtain

w(aα) • w(bβ) = 1 d 2 |S(u, v, w)| 2 , ( 29 
) with u = a -b, v = -(a -b)(d -2) + 2(α -β), w = d. (30) 
The S(u, v, w) Gauss sum in (29)-(30) can be calculated from the methods in [START_REF] Berndt | Gauss and Jacobi Sums[END_REF]. This yields

w(aα) • w(bβ) = 1 d , (31) 
which completes the proof. 2

Conclusion

As a conclusion, passing from C d to C d 2 amounts to replace the square of the modulus of the inner product aα|bβ in C d (see Eq. ( 5)) by the inner product w(aα) • w(bβ) in C d 2 (see Eqs. ( 16) and ( 17)). It is expected that the determination of the d(d + 1) vectors w(aα) satisfying Eqs. ( 16) and ( 17) (or the d(d + 1) corresponding matrices M aα satisfying Eq. ( 20)) should be easier than the determination of the d(d + 1) vectors |aα satisfying Eq. ( 5). In this respect, the absence of a modulus in [START_REF] Berndt | Gauss and Jacobi Sums[END_REF] represents an incremental step. Now we may ask the question: How to pass from the w(aα) to |aα vectors? Suppose we find d(d + 1) vectors of type [START_REF] Mcnulty | The limited role of mutually unbiased product bases in dimension 6[END_REF] satisfying Eqs. ( 16) and [START_REF] Berndt | Gauss and Jacobi Sums[END_REF]. Then, the Π aα operators given by (8) are known. A matrix realization of each Π aα operator immediately follows from the standard matrix realization of the generators of the GL(d, C) group. The eigenvector of the matrix of Π aα corresponding to the eigenvalue equal to 1 gives the |aα vector.

Of course, the impossibility of finding d(d + 1) vectors w(aα) or d(d + 1) matrices M aα would mean that d + 1 MUBs do not exist in C d when d is not a strictly positive power of a prime.

Transforming a given problem into another one is always interesting even in the case where the new problem does not lead to the solution of the first one. In this vein, the existence problem of MUBs in d dimensions was approached from the points of view of finite geometry, Latin squares, and Hadamard matrices (see [START_REF] Durt | On mutually unbiased bases[END_REF] and references therein) with some interesting developments. We hope that the results presented here will stimulate further works, especially a new way to handle the d = 6 unsolved problem.

To close, let us mention that it should be interesting to apply the developments in this paper to the concept of weakly MUBs recently introduced for dealing in the Z/dZ × Z/dZ phase space [START_REF] Shalaby | Weak mutually unbiased bases[END_REF].

An extended version of this note will be published elsewhere.

Proposition 2 .
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