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Introduction aux incertitudes de mesure

Introduction

La mesure étant une étape essentielle de toute démarche scientifique, il nous paraît important que les élèves se destinant aux sciences aient des notions sur les outils qui servent à estimer sa qualité. L'évaluation de l'incertitude de mesure est cependant une démarche complexe et cet article a pour but de clarifier certains points.

Depuis les années 1970, l'évaluation de l'incertitude fait l'objet d'un travail de normalisation international à l'instar de ce qui a été fait pour les unités de mesure. La première recommandation internationale INC-1, Expression des incertitudes expérimentales (1980), préparée par un groupe de travail du Bureau International des Poids et Mesures (BIPM) tient en une page. Il a ensuite été décidé de transférer à l'Organisation internationale de normalisation (ISO) la responsabilité d'élaborer un guide détaillé qui est paru en 1993. Sa traduction française date de 1995.

Le Guide pour l'expression de l'incertitude de mesure, communément appelé le GUM pour Guide to Uncertainty in Measurement, est disponible en ligne gratuitement avec ses suppléments sur le site du BIPM [START_REF]Évaluation des données de mesure -Guide pour l'expression de l'incertitude de mesure[END_REF]. Il a été repris sous forme de norme européenne et donc française sous la référence NF ENV 13005 en 1999.

Ce travail de normalisation n'est pas fini puisque 3 suppléments ont été publiés depuis, le dernier datant de 2012. D'autres sont en cours de préparation.

Par ailleurs, le Vocabulaire International de Métrologie, communément appelé le VIM, est aussi disponible sur ce site [START_REF]Vocabulaire international de métrologie -Concepts fondamentaux et généraux et termes associés[END_REF] en français et en anglais. C'est un complément très utile qui précise que « le mot « mesure » a, dans la langue française courante, plusieurs significations. Aussi n'est-il pas employé seul dans le présent vocabulaire. C'est également la raison pour laquelle le mot « mesurage » a été introduit pour qualifier l'action de mesurer. Le mot « mesure » intervient cependant à de nombreuses reprises pour former des termes de ce Vocabulaire, suivant en cela l'usage courant et sans ambiguïté. On peut citer par exemple : instrument de mesure, appareil de mesure, unité de mesure, méthode de mesure ».

Cet article n'a pas l'ambition d'être exhaustif sur le sujet. Il se limite à présenter les notions nécessaires pour enseigner les incertitudes aux élèves de terminale scientifique, conformément au programme [START_REF]Programme de l'enseignement spécifique et de spécialité de physique-chimie ; Classe terminale de la série scientifique[END_REF].

Quand le résultat de mesure est une variable aléatoire 2.1 Introduction

Il n'y a pas de mesurage parfait, même pour déterminer une grandeur aussi simple que la longueur d'une table par exemple. Tous les élèves ne feront pas le mesurage de la table au même endroit, ou n'utiliseront pas le même instrument de mesure. On peut aussi imaginer que la grandeur mesurée est sensible aux conditions de température et de pression. Bref, si l'on multiplie les mesurages, on obtient un ensemble de valeurs. La première question qui se pose alors est quel résultat choisir ? Si tous ces résultats sont proches les uns des autres, ce sera assez facile. En revanche, s'ils sont très dispersés, on aura moins confiance. La deuxième question est donc comment quantifier la dispersion des résultats ?

Il nous faut choisir le résultat que l'on estime le meilleur et estimer la dispersion de tous les résultats à l'aide d'outils mathématiques que nous allons définir et utiliser. Pour cela, nous allons donc considérer les valeurs obtenues comme une variable aléatoire pour laquelle nous allons utiliser des probabilités.

En effet, un mesurage, ou une série de mesurages, ne sont pas toujours effectués pour simplement évaluer la valeur d'une grandeur, mais aussi, par exemple, pour contrôler la conformité d'un produit. Supposons que la concentration d'un polluant quelconque dans de l'eau soit égale à 0,90±0,05 (peu importe l'unité) et que la norme impose une concentration inférieure à 1. Cette eau pourra-t-elle être commercialisée ou non ? Pour pouvoir répondre, il faut connaître la probabilité que la concentration dépasse le seuil imposé. Si cette probabilité est jugée suffisamment faible, l'eau sera commercialisée. Elle ne le sera pas dans le cas contraire.

Ainsi, en plus de la détermination du résultat que l'on estime le meilleur et de la dispersion des valeurs de mesure, il peut parfois être utile de connaître aussi la fonction de densité de probabilité qui permet de calculer la probabilité que la grandeur mesurée ait une valeur dans un intervalle donné.

Valeur moyenne

Quand on a n résultats de mesure x i d'une même grandeur, c'est la valeur moyenne, bien connue, qui est retenue comme meilleure estimation de la valeur de la grandeur mesurée,

x = 1 n x i i=1 n ∑ .
Nous verrons plus loin pourquoi. Si le nombre de répétitions, n, tend vers l'infini, la valeur moyenne tend vers l'espérance mathématique, µ, que les élèves de terminale scientifique utilisent en mathématiques [START_REF]Programme de l'enseignement spécifique et de spécialité de mathématiques ; Classe terminale de la série scientifique[END_REF].

Variance et écart-type

Pour estimer la dispersion des résultats, on fait la moyenne du carré de l'écart à la moyenne pour obtenir la variance, 

s 2 (x) = 1 n -1 (x i -x ) 2 i=1 n ∑ . s = s 2 (x)
s 2 (x ) = 1 n s 2 (x) = 1 n(n -1) (x i -x ) 2 i=1 n ∑ .
Pour bien comprendre la différence, s(x) est l'écart-type obtenu quand on choisit une valeur particulière au hasard et s(x ) celui que l'on obtient quand on choisit la valeur moyenne.

On peut aussi prendre l'exemple des notes de bac pour comprendre. Si l'on regarde toutes les notes sur une épreuve donnée, elles vont de 0 à 20. En revanche, si l'on regarde la moyenne obtenue par une classe, elle sera plus proche de 10. Il est peu probable qu'une classe ait une moyenne proche de 0 ou 20.

Ainsi, la distribution des moyennes est plus étroite. D'où l'intérêt de choisir la moyenne comme résultat final d'un mesurage.

Estimateur de la variance

On peut aussi regarder les variances obtenues par chaque binôme du paragraphe précédent. Elles seront toutes différentes car le nombre de mesurages est fini. Chaque résultat correspond à une estimation de la variance et les formules s 2 (x) ou s 2 (x ) sont appelées des estimateurs des variances.

Si le nombre de binômes tend vers l'infini et que l'on fait la moyenne des variances obtenues, Bessel a montré qu'il fallait bien mettre n-1 au dénominateur de la formule utilisée pour retrouver le résultat des mathématiques.

Et si l'on calcule la variance des variances obtenues par les différents binômes pour estimer la qualité de l'estimation de chaque binôme, on peut montrer [START_REF] Taylor | An introduction to Error Analysis, the study of uncertainties in physical measurements[END_REF] que l'incertitude relative sur l'écart-type estimé s(x) par un nombre n de mesurages vaut 1 / 2(n -1) .

L'annexe E du GUM propose une formule pour s(x ) qui est plus complexe et dont on peut tirer le tableau n°1.

On voit immédiatement que l'estimation de l'écart-type de la moyenne est très mauvaise si le nombre d'observations est faible. Pour n plus petit que 10, on gagne beaucoup en faisant un mesurage supplémentaire. Au-delà, il faut un grand nombre de répétitions pour faire baisser de façon significative l'incertitude relative sur l'estimation de l'écarttype.

Nombre d'observations n

Incertitude relative sur s(x )

2 76% 3 52% 4 42% 5 36% 10 24% 50 10%
Tableau n°1 : Incertitude relative sur l'estimateur de l'écart-type de la moyenne en fonction du nombre d'observations.

Les distributions gaussiennes et de Student

Obtenir une estimation de la valeur moyenne et la variance ou l'écart-type d'une série de mesurages n'est pas toujours suffisant. Parfois, il est aussi utile de connaître la fonction de densité de probabilité. Or, la distribution de probabilité des valeurs moyennes obtenues par un très grand nombre de binômes s'approche presque toujours de la même forme. C'est la conséquence d'un théorème mathématique appelé théorème central limite que nous n'aborderons pas. La fonction de distribution de probabilité que l'on rencontre dans un cas idéal est appelée distribution gaussienne ou distribution normale, connue des élèves [START_REF]Programme de l'enseignement spécifique et de spécialité de mathématiques ; Classe terminale de la série scientifique[END_REF].

Les notes de bac de l'exemple précédent, sont bien réparties sur tout l'intervalle [0,20], mais les moyennes de chaque classe sont, quant à elles, réparties suivant une distribution proche de la distribution gaussienne.

Ainsi, la probabilité de mesurer une valeur donnée dans l'intervalle compris entre

x et x+dx est f(x) dx avec f (x) = 1 2πσ exp- (x -µ) 2 2σ 2 .
Cette fonction a l'allure d'une courbe en cloche avec un maximum en x = µ . La largeur de la cloche est caractérisée par σ : plus σ est grand, plus le pic est large. On peut montrer que la valeur moyenne de cette distribution est µ et la variance σ Dans le GUM, la table de Student est exprimée en fonction du nombre de degrés de liberté qui est égal à ν = n -1 si l'on ne détermine que la moyenne. Des tables plus complètes sont données.

Lien avec la classe de mathématiques

Les notions d'espérance, de variance et d'écart-type, ainsi que la distribution normale sont vues dans le cours de mathématiques de terminale scientifique [START_REF]Programme de l'enseignement spécifique et de spécialité de mathématiques ; Classe terminale de la série scientifique[END_REF]. Il est important, cependant, de bien marquer la différence entre les outils mathématiques développés dans un cas idéal où n tend vers l'infini, et les estimateurs de ces grandeurs que l'on utilise en métrologie.

Estimation de l'incertitude de mesure

Le GUM « prend bien soin de Les erreurs ne sont pas l'objet de cet article. Ici, nous nous limiterons à l'évaluation de l'incertitude pour laquelle, le GUM distingue deux façons de procéder.

Estimation de type A

Le GUM définit l'évaluation de type A de l'incertitude comme étant « l'évaluation d'une composante de l'incertitude de mesure par une analyse statistique des valeurs mesurées obtenues dans des conditions définies de mesurage ».

Quand on a répété plusieurs fois le même mesurage et obtenu une série de valeurs x i , la valeur retenue est la moyenne, x , à laquelle on associe la variance On peut aussi utiliser

s 2 (x ) = 1 n s 2 (x) = 1 n(n -1) (x i -x ) 2 i=1 n ∑ ,
s 2 (x ) = 1 n(n -1) x i 2 -n(x ) 2 i=1 n ∑ # $ % & ' ( = 1 n(n -1) x i 2 - 1 n ( x i ) 2 i=1 n ∑ i=1 n ∑ # $ % & ' ( ,
qui est équivalente et plus simple à utiliser.

Cette estimation de type A ne contient pas toute l'incertitude. Reprenons l'exemple de la longueur de la table. Si chaque mesurage est fait avec le même mètre, l'incertitude sur l'instrument de mesure n'est pas incluse. En revanche, si l'on change de mètre à chaque fois, elle l'est. Dans le premier cas, il faut l'ajouter en prenant en compte les indications du fabricant de l'instrument de mesure.

On peut imaginer aussi mesurer la longueur de la table avec un instrument grossier : il ne sert à rien de multiplier les mesurages si l'on trouve toujours le même résultat. Dans ce cas aussi, il faut trouver une autre méthode pour estimer l'incertitude.

Estimation de type B

L'évaluation de type B de l'incertitude est définie très simplement : « évaluation d'une composante de l'incertitude de mesure par d'autres moyens qu'une évaluation de type A de l'incertitude ». Elle est généralement notée u, comme uncertainty.

Les incertitudes de type B proviennent de tables, de valeurs trouvées dans la littérature scientifique ou des spécifications des fabricants d'instruments de mesure… Si les valeurs données ont été établies en suivant le GUM, il suffit de reprendre la valeur indiquée, en la divisant, le cas échéant, par le facteur d'élargissement. Sans information spécifique, la loi de densité de probabilité associée est alors supposée gaussienne.

Mais parfois, il faut faire des calculs, comme pour les incertitudes de lecture. Prenons le cas d'un ménisque du niveau de liquide x dans une éprouvette. S'il est compris entre deux graduations successives que l'on notera a et b, quelle valeur choisir ? Avec quelle incertitude ? Nous reviendrons sur un exemple précis plus loin. Concentrons nous sur le calcul de la variance ici.

Si la subdivision est bien adaptée au mesurage et qu'il n'y a aucune raison de privilégier une valeur plutôt qu'une autre dans l'intervalle [a,b], on suppose que la probabilité d'avoir la valeur x, P(x), est la même pour chaque point de cet intervalle et nulle en dehors. On parle alors de distribution rectangulaire ou uniforme sur l'intervalle.

La valeur moyenne peut donc être aisément calculée :

x = xP(x)dx a b ∫ P(x)dx a b ∫ = x dx a b ∫ dx a b ∫ = a + b 2 .
Le résultat obtenu n'est pas une surprise.

La variance, quant à elle, peut être évaluée de la même façon :

u 2 = (x -x ) 2 P(x)dx a b ∫ P(x)dx a b ∫ = ... = (b -a) 2 12 .
Le GUM liste de nombreux autres cas pour d'autres situations. Si l'on est sûr que les valeurs sont bien toutes comprises dans l'intervalle [a,b], mais qu'il y a une incertitude sur les valeurs de a et b, on prend une distribution trapézoïdale. En chimie, la distribution triangulaire est recommandée pour les volumes des solutions achetées car la valeur nominale est plus probable que les autres [START_REF]Ménisque dans une burette de classe B[END_REF]. D'autres formes sont disponibles dans le supplément n°1 du GUM [START_REF]Évaluation des données de mesure -Guide pour l'expression de l'incertitude de mesure[END_REF]. Le choix n'a rien d'arbitraire : il repose sur la maximisation de l'entropie de l'information en prenant en compte l'information disponible. Mais cela nous mène beaucoup trop loin.

Ainsi, avec une distribution rectangulaire, l'incertitude de lecture est ba 12 . Et quand la longueur de l'intervalle est notée 2d, on a une incertitude égale à d 3 .

Comment prendre en compte simultanément les incertitudes de type A et de type B ?

Loi de composition des incertitudes

On mesure rarement directement la grandeur qui nous intéresse. Par exemple, pour la surface d'un rectangle, on doit mesurer une longueur et une largeur et faire un calcul. Quelle sera l'incertitude sur la surface, connaissant les incertitudes sur la longueur et la largeur ?

Supposons que la grandeur qui nous intéresse, y, appelée grandeur de sortie, dépende de deux grandeurs mesurées ou tabulées x 1 et x 2 , appelées grandeurs d'entrée. La relation entre ces grandeurs, se fait à l'aide d'une fonction mathématique que l'on note y = f (x 1 , x 2 ) . A partir de la définition de la différentielle,

dy = ∂f ∂x 1 dx 1 + ∂f ∂x 2 dx 2 ,
on en déduit, pour un petit écart par rapport à la moyenne,

y -y ≈ ∂f ∂x 1 (x 1 -x 1 ) + ∂f ∂x 2 (x 2 -x 2 ) .
En élevant au carré et en prenant la moyenne, on obtient finalement la variance 

u 2 (y) = ∂f ∂x 1 " # $ % & ' 2 u 2 (x 1 ) + ∂f ∂x 2 " # $ % & ' 2 u 2 (x 2
u 2 (y) = i=1 N ∑ ∂f ∂x i # $ % & ' ( 2 u 2 (x i ) .
C'est la formule de propagation des incertitudes pour des grandeurs d'entrée indépendantes. On ne distingue pas ici les incertitudes de type A et celles de type B qui sont traitées de la même façon. Les incertitudes des grandeurs d'entrée ont été notées u(x i ) par commodité. Ce pourrait être s(x i ) .

Exemples d'application

Détermination d'une résistance

Considérons le cas d'une résistance R obtenue à partir du mesurage de la tension V et de l'intensité I. R = V I . On a donc une grandeur de sortie, R qui dépend de deux grandeurs d'entrée, V et I. L'application de la formule de propagation de l'incertitude donne,

u 2 (R) = ∂R ∂V " # $ % & ' 2 u 2 (V ) + ∂R ∂I " # $ % & ' 2 u 2 (I ) = 1 I 2 u 2 (V ) + V 2 I 4 u 2 (I ) .
Comme on part d'un produit, le résultat est plus simple si l'on exprime l'incertitude relative,

u(R) R = u 2 (V ) V 2 + u 2 (I ) I 2 .
Comparons ce résultat à l'ancienne méthode d'évaluation des incertitudes. En partant de la différentielle logarithmique,

dR R = dV V - dI I ,
on considérait alors que les incertitudes ne pouvaient pas se compenser. En étant pessimiste, on mettait alors des valeurs absolues pour obtenir finalement,

ΔR R = ΔV V + ΔI I .
Une application numérique supposant que V et I sont connues à 1,0% près, donne

ΔR R = 2, 0% et u(R) R = 1, 4% .
Cette différence de résultats s'explique par la différence de philosophie de chacune des approches. Si V et I sont tous les deux trop grandes, les incertitudes se compensent et R sera plus proche de la valeur vraie. De même si elles sont toutes les deux trop petites. Cette situation est bien prise en compte dans l'approche basée sur les statistiques, mais pas dans celle pessimiste avec les valeurs absolues où l'on suppose que les erreurs ne peuvent que s'ajouter et jamais se compenser.

Dans l'ancienne méthode, il s'agit d'encadrer une valeur en étant pessimiste, alors que dans la nouvelle, il s'agit plutôt d'estimer une dispersion des valeurs qui pourraient être raisonnablement attribuées à la grandeur mesurée pour ensuite attribuer un degré de confiance au résultat. La démarche suivie se veut opérationnelle.

Incertitude de lecture

Considérons le cas d'une burette comme sur la figure 2. Les questions de l'introduction se posent aussi ici : quelle valeur retenir, avec quelle incertitude de lecture ? On va supposer que la graduation la plus petite est adaptée à l'épaisseur du ménisque, comme c'est le cas sur la photo.

En première approche, on peut dire que l'incertitude de lecture correspond à la graduation la plus petite. En supposant que la distribution des valeurs est rectangulaire sur cet intervalle, on peut en déduire l'incertitude correspondante, comme nous l'avons déjà vu. Si les élèves ne suivent pas les instructions et que leur oeil n'est pas bien en face du ménisque, l'incertitude peut être plus large. L'expérience peut être menée avec plusieurs élèves qui se placent à différentes hauteurs. Inversement, un expérimentateur aguerri, utilisant du matériel de classe A équipé d'une bande photophore pour repérer la position du ménisque pourra prendre une distribution moins pénalisante : les normes en chimie [START_REF]Ménisque dans une burette de classe B[END_REF] préconisent de choisir une distribution triangulaire qui privilégie la valeur nominale.

A cette incertitude de lecture s'ajoute l'incertitude due au matériel utilisé. La valeur lue a elle-même une incertitude donnée par le fabricant qui a dû faire une étude statistique sur les burettes qu'il produit pour la déterminer.

Finalement, le volume V versé dans la solution à l'aide de la burette nécessite deux lectures. On écrit

V = (b + X b ) -(a + X a ) ,
où a et b correspondent aux valeurs lues sur la graduation et les X, à la correction due aux incertitudes de lecture correspondantes. La valeur moyenne de X est nulle, mais pas sa variance. L'application de la formule de propagation des incertitudes donne

u 2 (V ) = u 2 (b) + u 2 (X b ) + u 2 (a) + u 2 (X a ) .
Ici, u 2 (a) et u 2 (b) correspondent aux incertitudes liées aux valeurs indiquées, qui doivent être données par le fabricant. Cette indication est souvent donnée sous forme d'une incertitude relative (pourcentage).

Pour les incertitudes de lecture, on va prendre le cas le plus réaliste pour une classe : l'intervalle d entre les deux plus petites graduations successives avec une distribution rectangulaire. Les incertitudes de lecture sont donc identiques et valent

u(X a ) = u(X b ) = d 12
, comme nous l'avons vu.

Faisons une application numérique avec une burette graduée en dixièmes de centimètres cube pour mesurer un volume : a = 0, 00 , b = 100, 00 cm 3 et d = 0,10 cm 3 . Le fabricant de la burette indique une précision de 0,010%. Ainsi, u(V ) = (100, 00 × 0, 010%) 2 + 2 0,10 2 12 = 0, 042 cm 3 .

Que ce soit avec une échelle graduée ou avec un affichage digital, la lecture du résultat induit une incertitude de lecture qu'il faut estimer, même si elle peut se révéler négligeable à la fin.

Détermination d'une période

On détermine la période d'un mouvement périodique en mesurant l'intervalle de temps Δt correspondant à, par exemple, 3 périodes. Ainsi,

T = Δt 3 et donc, on a u(T ) = u(Δt) 3 .
La détermination de u(Δt) peut être aussi compliquée que dans l'exemple précédent. Mais on a tout intérêt à mesurer l'intervalle de temps entre un grand nombre de périodes si l'on veut une incertitude petite. Pour ces cas en particulier, mais aussi pour valider une formule analytique, on peut faire une estimation numérique de l'incertitude. La démarche à suivre est décrite dans les suppléments n°1 et 2 du GUM, disponibles en anglais sur le site du BIPM [START_REF]Évaluation des données de mesure -Guide pour l'expression de l'incertitude de mesure[END_REF].

pH

Il est important de noter que des développements récents basés sur la théorie de l'information et les inférences bayésiennes sont de plus en plus utilisés pour évaluer les incertitudes et commencent à faire leur apparition dans des normes internationales spécifiques. Mais cela dépasse largement les compétences d'un élève de terminale scientifique.

  figure n°1.

Figure n°1 :

 n°1 Figure n°1 : Représentation de la distribution normale ou gaussienne et de la proportion d'évènements inclus dans l'intervalle -kσ, kσ [ ] pour différentes valeurs du facteur d'élargissement k. La valeur moyenne a été fixée à 0 ici.

  

4 Variance et écart-type de la moyenne Imaginons

  est appelé écart-type et a la même dimension que la grandeur mesurée, alors que la variance a la dimension du carré de la grandeur mesurée. Plus les résultats sont dispersés, plus les termes (x i -x ) 2 sont grands et plus la variance et l'écart-type sont grands. qu'un binôme ait fait une première série de n mesurages et ait calculé la moyenne de ses résultats. Un autre binôme, qui fait le même TP et n mesurages, ne va pas obtenir la même moyenne, même s'il travaille aussi bien. On peut étudier la distribution des moyennes obtenues par plusieurs binômes. Un calcul, que nous ne ferons pas ici, permet de montrer que la variance des moyennes vaut

	Au dénominateur, c'est bien n-1 qui est utilisé et non n comme pour la définition de la
	variance apprise en mathématiques. Cette correction est due à Friedrich Wilhelm Bessel
	et est donc appelée correction de Bessel. Nous y reviendrons.
	2.

  Bien entendu, on peut avoir une distribution de valeurs avec une grande incertitude et une valeur moyenne proche de la valeur vraie, même si on ne le sait pas. C'est même le but de tout mesurage. Inversement, on peut, malheureusement, faire un mesurage avec une faible incertitude qui est erroné et avoir une valeur moyenne très éloignée de la valeur vraie.Pour détecter d'éventuelles erreurs et les corriger au mieux, il faut tester les instruments de mesure et la procédure mise en place. On peut, par exemple, faire des tests à l'aide d'étalons qui donnent une valeur de référence. Quand ce n'est pas possible, on peut utiliser un autre instrument pour comparer. Dans les laboratoires de mesure qualifiés, on a aussi souvent recours à des essais inter-laboratoires. Et quand il s'agit d'une mesure pionnière en recherche, une validation par un autre laboratoire est indispensable.

distinguer les termes « erreur » et « incertitude ». Ils ne sont pas synonymes mais représentent des concepts différents. Ils ne doivent pas être confondus ou utilisé à tort l'un pour l'autre » (p. 5 du GUM). En effet, pour détecter une erreur, il faut connaître la valeur exacte, appelée « valeur vraie ». Et généralement, on ne connaît pas la valeur vraie d'une grandeur donnée. On ne peut donc pas déterminer l'erreur.

La notion d'incertitude est différente et se veut opérationnelle. Pour le GUM, l'incertitude « caractérise la dispersion des valeurs qui pourraient raisonnablement être attribuées » à la grandeur mesurée. Elle est exprimée à l'aide d'un écart-type.

  comme nous l'avons déjà vu.L'écart-type issu d'une évaluation de type A est généralement noté s et sert à estimer l'incertitude statistique.Lors de la saisie, il faut veiller à ce que les différences x i -x aient au moins deux chiffres significatifs. Cette formule, qui a le mérite d'être simple, n'est pas pratique à mettre en oeuvre dans un tableur par exemple, car il faut d'abord calculer la moyenne.

  ) .Pour ce faire, nous avons supposé que les deux grandeurs d'entrée ne sont pas corrélées et que la moyenne sur le terme croisé (x 1 -x 1 )(x 2 -x 2 ) est nulle. Ce n'est pas toujours le cas et la formule donnée dans le GUM est plus complexe. Nous nous limiterons ici à des grandeurs d'entrée indépendantes mesurées avec des instruments de mesure différents.

Ce résultat est facilement généralisable à N grandeurs d'entrée indépendantes x i . Si y = f( x 1 ,..., x N ) , alors,

  L'exemple du pH est intéressant car il montre le rôle de la relation mathématique qu'il y a entre deux grandeurs. A partir de la relation, [H 3 O + ] = 10 -pH = e -pH ln10 , on en déduit que Le résultat d'un mesurage doit être exprimé de façon à ce qu'il n'y ait aucune ambiguïté pour le lecteur. Autrement, il ne pourra pas l'utiliser. L'incertitude, qui correspond à l'écart-type obtenu finalement, est généralement exprimée avec un ou deux chiffres significatifs et le résultat doit être arrondi en conséquence. Si, pour des utilisations Pour faciliter la lecture, les nombres sont écrits par tranche de trois chiffres séparés par un espace, mais jamais par une virgule ou un point. Les années, millésimes... font exception à cette règle. En revanche, la virgule est obligatoire pour séparer la partie entière de la partie décimale, et non pas le point. Exemple : 1 234 567,890 123.Enfin, pour être utile, le résultat du mesurage doit être accompagné de la description précise du mesurande, qui est, d'après le VIM, une « grandeur particulière soumise à mesurage ». Dire que l'on a mesuré une température ne veut rien dire. La température de quoi ? La température de la pièce, mais où, à quelle heure ? Si l'on précise qu'il s'agit de la température moyenne de la pièce unetelle en son centre sur une journée à partir d'un mesurage effectué toutes les heures tel jour de l'année et que l'on ajoute les conditions météorologiques par exemple, le résultat exprimé aura beaucoup plus de sens pour l'utilisateur. En principe, le mesurande ne peut être complètement décrit qu'avec une quantité infinie d'informations. Les lacunes en information peuvent parfois introduire une composante dans l'incertitude d'un mesurage.6. ConclusionsL'évaluation de l'incertitude de mesure est souvent plus compliquée que la mesure ellemême. Comme le précise le GUM, « bien que ce Guide fournisse un cadre pour l'estimation de l'incertitude, il ne peut remplacer ni la réflexion critique ni l'honnêteté intellectuelle ni la compétence professionnelle. L'évaluation de l'incertitude n'est jamais une tâche de routine ni une opération purement mathématique ; elle dépend de la connaissance détaillée de la nature du mesurande et du mesurage. La qualité et l'utilité de l'incertitude fournie pour le résultat d'un mesurage dépend, en fin de compte, de la compréhension, de l'analyse critique et de l'intégrité de ceux qui contribuent à son évaluation. » Réduire l'incertitude est parfois un enjeu important. C'est le cas par exemple pour les constantes fondamentales utilisées en physique. Si leur incertitude était élevée, tout résultat les utilisant aurait aussi une incertitude élevée, même avec un travail soigné. On peut aussi penser à la localisation par GPS où il s'agit de définir à la dizaine de mètres près la position d'un appareil par rapport à des satellites situés à une altitude de 20 000 km.La formule de propagation des incertitudes est basée sur un développement de Taylor. Si les écart-types relatifs ne sont pas très petits ou si la relation entre les grandeurs d'entrée et la grandeur de sortie présente de fortes non-linéarités, ce développement peut ne pas être valable. La relation entre le facteur d'élargissement et le niveau de confiance est basée sur une hypothèse gaussienne ou sur la loi de Student. Mais si une incertitude d'entrée a une distribution rectangulaire et domine le calcul d'incertitudes ou si les incertitudes de type A sont évaluées avec un très petit nombre de données, il est alors difficile de lier un niveau de confiance et un facteur d'élargissement.

	u([H 3 O + ]) [H 3 O + ]	= pH ln10	u( pH ) pH	.	
	Par exemple, pour une solution avec un pH = 4,3, on a	u([H 3 O + ]) [H 3 O + ]	≈ 10	u( pH ) pH	.
	Ainsi, l'incertitude sur la concentration en ion H 3 O + ne sera connue qu'avec une
	incertitude relative environ 10 fois plus élevée que celle sur le pH à cause de la fonction
	puissance qui relie ces deux grandeurs. Ce facteur n'est pas toujours égal à 10 et
	dépend, bien-entendu, de la valeur choisie pour le pH.	
	5. Expression des résultats				

particulières, on est amené à multiplier par un facteur d'élargissement l'incertitude composée afin d'obtenir une incertitude globale, la valeur numérique de ce facteur doit toujours être donnée. Le lecteur pourra ainsi retrouver l'écart-type qui seul est utile pour un calcul d'incertitude ultérieur. Pour aider à la compréhension des résultats, on peut aussi indiquer le niveau de confiance. Bien entendu, il faut aussi indiquer l'unité, qui doit nécessairement être dans le système international ! Une petite règle grammaticale mérite d'être signalée : il est interdit d'utiliser des symboles après des nombres écrits en toutes lettres. Exemple : « cinq m » est interdit, on écrira « cinq mètres » ou « 5 m ». Avec les bars, cela donne, « 5 bar » ou « cinq bars ». Dans le premier cas, il s'agit du symbole qui est invariant et dans le deuxième, du nom que l'on accorde. L'écriture des nombres est aussi normalisée afin d'éviter toute ambiguïté.
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