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Abstract

A search for the decay B0
s → D∗∓π± is presented using a data sample corresponding

to an integrated luminosity of 1.0 fb−1 of pp collisions collected by LHCb. This decay
is expected to be mediated by a W -exchange diagram, with little contribution from
rescattering processes, and therefore a measurement of the branching fraction will
help to understand the mechanism behind related decays such as B0

s → π+π− and
B0

s → DD. Systematic uncertainties are minimised by using B0 → D∗∓π± as a
normalisation channel. We find no evidence for a signal, and set an upper limit
on the branching fraction of B(B0

s → D∗∓π±) < 6.1 (7.8) × 10−6 at 90% (95%)
confidence level.
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Decays of B0
s mesons to final states such as D+D−, D0D0 [1] and π+π− [2] have been

recently observed by LHCb. Such decays can proceed, at short distance, by two types of
amplitudes, referred to as weak exchange and penguin annihilation. Example diagrams
are shown in Fig. 1(a) and (b). There is also a potential long distance contribution
from rescattering. For example, the D+D− final state can be obtained from a b → cc̄s
decay to D+

s D
−
s followed by the ss̄ pair rearranging to dd̄. Understanding rescattering

effects in hadronic B meson decays is important in order to interpret various CP -violating
observables.

Figure 1: Decay diagrams for (a) B0
s → D(∗)+D(∗)− via weak exchange, (b) B0

s → D(∗)+D(∗)−

via penguin annihilation, (c) B0
s → D(∗)−π+ via weak exchange.

A measurement of the branching fraction of the decay B0
s → D∗−π+ can be used to

disentangle the contributions from different decay diagrams and from rescattering [3, 4].
This decay has only weak exchange contributions, as shown in Fig. 1(c). (The suppressed
diagram for B0

s → D∗+π− is not shown.) Moreover, rescattering contributions to the
B0

s → D(∗)∓π± decay are expected to be small [5]. Therefore, if the observed branching
fraction for the decay B0

s → π+π− is explained by rescattering, a low value of B(B0
s →

D∗−π+) = (1.2 ± 0.2) × 10−6 is predicted [5]. However, if short-distance amplitudes are
the dominant effect in B0

s → π+π− and related decays, B(B0
s → D∗−π+) could be much

larger. The measured B0
s → DD [1] and B+ → D+

s φ [6] rates are at the upper end of the
expected range in the rescattering-based model, but further measurements are needed to
establish whether long-distance processes are dominant in these hadronic B decays.

In this paper, the result of a search for the decay B0
s → D∗∓π± is presented. No

previous measurements of this decay have been made. The inclusion of charge conjugated
processes is implied throughout the paper. Since the flavour of the B0

s meson at production
is not tagged, the D∗−π+ and D∗+π− final states are combined. The analysis is based on
a data sample corresponding to an integrated luminosity of 1.0 fb−1 of LHC pp collision
data, at a centre-of-mass energy of 7 TeV, collected with the LHCb detector during 2011.
In high energy pp collisions all b hadron species are produced, so the B0 → D∗∓π± decay,
with branching fraction B(B0 → D∗−π+) = (2.76±0.13)×10−3 [7,8], is both a potentially
serious background channel as well as the ideal normalisation mode for the measurement
of the B0

s branching fraction.
The LHCb detector [9] is a single-arm forward spectrometer covering the

pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c
quarks. The detector includes a high precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region, a large-area silicon-strip detector

1



located upstream of a dipole magnet with a bending power of about 4Tm, and three sta-
tions of silicon-strip detectors and straw drift tubes placed downstream. The combined
tracking system has momentum resolution ∆p/p that varies from 0.4% at 5GeV/c to 0.6%
at 100GeV/c, and impact parameter (IP) resolution of 20µm for tracks with high trans-
verse momentum (pT). Charged hadrons are identified using two ring-imaging Cherenkov
detectors. Photon, electron and hadron candidates are identified by a calorimeter system
consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter
and a hadronic calorimeter. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers.

The trigger [10] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage which applies a full event reconstruction.
In this analysis, signal candidates are accepted if one of the final state particles created
a cluster in the calorimeter with sufficient transverse energy to fire the hardware trigger.
Events that are triggered at the hardware level by another particle in the pp → bb̄X
event are also retained. The software trigger requires characteristic signatures of b-hadron
decays: at least one track, with pT > 1.7 GeV/c and χ2

IP with respect to any primary
interaction vertex (PV) greater than 16, that subsequently forms a two-, three- or four-
track secondary vertex with a high sum of the pT of the tracks and significant displacement
from the PV. The χ2

IP is the difference between the χ2 of the PV reconstruction with and
without the considered track. In the offline analysis, the software trigger decision is
required to be due to the candidate signal decay.

Candidates that are consistent with the decay chain B0
(s) → D∗∓π±, D∗− → D0π−,

D0 → K+π− are selected. The D0 and D∗− candidate invariant masses are required to sat-
isfy 1814 < mK+π− < 1914MeV/c2 and 2008.78 < mD0π− < 2011.78MeV/c2, respectively,
where a D0 mass constraint is applied in the evaluation of mD0π− . The bachelor pion,
from the B0

(s) decay, is required to be consistent with the pion mass hypothesis, based

on particle identification (PID) information from the RICH detectors [11]. All other se-
lection criteria were tuned on the B0 → D∗∓π± control channel in a similar manner to
that used in another recent LHCb publication [12]. The large yield in the normalisation
sample allows the selection to be based on data, though the efficiencies are determined
using Monte Carlo (MC) simulated events in which pp collisions are generated using
Pythia 6.4 [13] with a specific LHCb configuration [14]. Decays of hadronic particles are
described by EvtGen [15]. The interaction of the generated particles with the detector
and its response are implemented using the Geant4 toolkit [16] as described in Ref. [17].

The selection requirements include criteria on the quality of the tracks forming the
signal candidate, their p, pT and inconsistency with the hypothesis of originating from
the PV (χ2

IP). Requirements are also placed on the corresponding variables for candidate
composite particles (D0, B0

(s)) together with restrictions of the decay fit (χ2
vertex), the flight

distance (χ2
flight), and the cosine of the angle between the momentum vector and the line

joining the PV to the B0
(s) vertex (cos θdir) [18].

Further discrimination between signal and background categories is achieved by calcu-
lating weights for the remaining B0 candidates [19]. The weights are based on a simplified
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fit to the B candidate invariant mass distribution, where the B0
s region is neither exam-

ined nor included in the fit. The weights are used to train a neural network [20] in order
to maximise the separation between categories. To retain sufficient background events for
the network training, the requirement on mD0π− is not applied. A total of fifteen vari-
ables are used as input to the network. They include the χ2

IP of the four candidate tracks,
the χ2

IP, χ
2
vertex, χ

2
flight and cos θdir of the D0 and B0

(s) candidates, and the B0
(s) candidate

pT. The pT asymmetry and track multiplicity in a cone with half-angle of 1.5 units in
the plane of pseudorapidity and azimuthal angle (measured in radians) [21] around the
B0

(s) candidate flight direction are also used. The input quantities to the neural network

depend only weakly on the kinematics of the B0
(s) decay. A requirement on the network

output is imposed that reduces the combinatorial background by an order of magnitude
while retaining about 75% of the signal. Potential biases from this data-driven method
are investigated by training the neural network with different fractions of the data sample.
The same results are obtained using a neural network trained on 30, 40, 50, 60 and 70%
of the total data sample.

After all selection requirements are applied, approximately 50 000 candidates are se-
lected in the invariant mass range 5150 < mD∗−π+ < 5600MeV/c2. About 1% of events
with at least one candidate also contain a second candidate. Such multiple candidates
are retained and treated the same as other candidates.

In addition to combinatorial background, candidates may be formed from misiden-
tified or partially reconstructed B0

(s) decays. Contributions from partially reconstructed

decays are reduced by requiring the invariant mass of the B0
(s) candidate to be above

5150MeV/c2. The contribution from B0
(s) decays to identical final states but without in-

termediate charmed mesons is negligible due to the requirement on the D∗− candidate
invariant mass. A small but significant number of background events are expected from
B0 → D∗−K+ decays with the K+ misidentified as a pion. The branching fractions of
B0

s → D∗−K+ and Λ0
b → D∗−p are expected to be small due to CKM suppression, so that

these potential backgrounds are negligible.
Since the B0 decay mode is several orders of magnitude more abundant than the

B0
s decay, it is critical to understand precisely the shape of the B0 signal peak. The

dependence of the width of the peak on different kinematic variables of the B0 decay
was investigated. The strongest correlation was found to be with the angle between the
momenta of the D∗− candidate and the bachelor π+ in the lab frame, denoted as θbach.
Simulated pseudo-experiments were used to find an optimal number of θbach bins to be
used in a simultaneous fit. The outcome is that five bins are used, with ranges 0–0.046,
0.046–0.067, 0.067–0.092, 0.092–0.128 and 0.128–0.4 rad, chosen to have approximately
equal numbers of B0 decays in each. The peak width in the highest bin is approximately
60% of that in the lowest bin. The pseudo-experiments show that the simultaneous fit
in bins of θbach is approximately 20% more sensitive to a potential B0

s signal than the fit
without binning.

The signal yields are obtained from a maximum likelihood fit to the D∗−π+ invariant
mass distribution in the range 5150–5600MeV/c2. The fit is performed simultaneously in
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the five θbach bins. The fit includes double Gaussian shapes, where the two Gaussian func-
tions share a common mean, for B0 and B0

s signals, together with an exponential compo-
nent for the partially reconstructed background, a linear component for the combinatorial
background and a non-parametric function, derived from simulation, for B0 → D∗−K+

decays. The probability density function (PDF) for the B0 → D∗−K+ background is
shifted by the mass difference between data and simulation for each bin of θbach.

The parameters of the double Gaussian shapes are constrained to be identical for B0

and B0
s signals, with an offset in their mean values fixed to the known B0–B0

s mass differ-
ence [8]. Additionally, the relative normalisation of the two Gaussian functions and the
ratio of their widths are constrained within uncertainties to the value obtained in simula-
tion. A total of thirty-three parameters are allowed to vary in the fit: the ratio of yields
N(B0

s )/N(B0), the linear slope of the combinatorial background and the exponential pa-
rameter of the partially reconstructed background, plus separate parameters in each of
the θbach bins to describe the peak position and core Gaussian width of the signal PDF,
and the yields of the B0 peak, the combinatorial background, the partially reconstructed
background, and the background from B0 → D∗−K+.

The results of the fit are shown in Fig. 2. The total number of B0 → D∗∓π± decays
is found to be 30 000± 400, and the ratio of yields is determined to be N(B0

s )/N(B0) =
(1.4±3.5)×10−4, where the uncertainty is statistical only. The number of B0 → D∗−K+

decays found is 1 200± 200, with a correlation of 7% to the ratio of signal yields.
The ratio of yields is converted to a branching fraction following

B(B0
s → D∗∓π±) =

N(B0
s )

N(B0)
×

ǫ(B0)

ǫ(B0
s )

×
fd
fs

× B(B0 → D∗−π+) , (1)

where ǫ(B0) and ǫ(B0
s ) are the efficiencies for the B0 and B0

s decay modes respectively,
while fd (fs) is the probability that a b quark produced in the acceptance results in a B0

(B0
s ) meson. Their ratio has been determined to be fs/fd = 0.256± 0.020 [22].
The total efficiencies are (0.165 ± 0.002)% and (0.162 ± 0.002)% for the B0 and B0

s

decay modes respectively, including contributions from detector acceptance, selection cri-
teria, PID and trigger effects. The ratio is consistent with unity, as expected. The PID
efficiency is measured using a control sample of D∗− → D0π−, D0 → K+π− decays to
obtain background-subtracted efficiency tables for kaons and pions as functions of their
p and pT [2]. The kinematic properties of the tracks in signal decays are obtained from
simulation, allowing the PID efficiency for each event to be obtained from the tables. Note
that this calibration sample is dominated by promptly produced D∗ mesons. The remain-
ing contributions to the total efficiency are determined from simulation, and validated
using data.

Systematic uncertainties on B(B0
s → D∗∓π±) are assigned due to the following sources,

given in units of 1 × 10−6, summarised in Table 1. Event selection efficiencies for both
modes are found to be consistent in simulation to within 2%, yielding a systematic un-
certainty of 0.02. The fit model is varied by replacing the double Gaussian signal shapes
with double Crystal Ball [23] functions (with both upper and lower tails), changing the
linear combinatorial background shape to quadratic and including a possible contribution
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Figure 2: Simultaneous fit to the full data sample in five bins of θbach: (a) 0–0.046, (b) 0.046–
0.067, (c) 0.067–0.092, (d) 0.092–0.128 and (e) 0.128–0.4 rad. Note the y-axis scale is logarithmic
and is the same for each bin. Data points are shown in black, the full PDF as a solid blue line
and the component PDFs as: (red dot-dashed) partially reconstructed background, (magenta
dashed) combinatorial background, (blue dashed) B0 signal, (black dot-dashed) B0

s signal and
(green 3 dot-dashed) B0 → D∗−K+ background.
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Table 1: Systematic uncertainties on B(B0
s → D∗∓π±).

Source Uncertainty (10−6)
Efficiency 0.02
Fit model 1.44
Fit bias 0.12
Multiple candidates 0.22
fs/fd 0.12
B(B0 → D∗−π+) 0.08
Total 1.47

from B0
s → D∗−K+. The non-parametric function for the B0 → D∗−K+ background

was scaled in each bin to account for the change in the width of the B0 signal. Com-
bined in quadrature these sources contribute 1.44 to the systematic uncertainty. Possible
biases in the determination of the fit parameters are investigated by simulated pseudo-
experiments, leading to an uncertainty of 0.12. Events with multiple candidates are
investigated by performing a fit having chosen one candidate at random. This fit is per-
formed 100 times, with different seeds, and the spread of the results, 0.22, is taken as
the systematic uncertainty. The uncertainty on the quantity fs/fd contributes 0.12, while
that on B(B0 → D∗−π+) gives 0.08. Combining all sources in quadrature, the total abso-
lute systematic uncertainty is 1.47 × 10−6, and the B0

s branching fraction is determined
to be B(B0

s → D∗∓π±) = (1.5± 3.8± 1.5)× 10−6, where the first uncertainty is statistical
and the second is systematic.

A number of cross-checks are performed to test the stability of the result. Candidates
are divided based upon the hardware trigger decision into three groups; events in which a
particle from the signal decay created a large enough cluster in the calorimeter to fire the
trigger, events that were triggered independently of the signal decay and those events that
were triggered by both the signal decay and the rest of the event. The neural network
and PID requirements are tightened and loosened. The non-parametric PDF used to
describe the background from D*K decays was smoothed to eliminate potential statistical
fluctuations. All cross-checks give consistent results.

Since no significant signal is observed, upper limits are set, at both 90% and 95%
confidence level (CL), using a Bayesian approach. The statistical likelihood curve from
the fit is convolved with a Gaussian function of width given by the systematic uncertainty,
and the upper limits are taken as the values containing 90% (95%) of the integral of the
likelihood in the physical region. The obtained limits are

B(B0
s → D∗∓π±) < 6.1 (7.8)× 10−6 at 90% (95%) CL .

In summary, the decay B0
s → D∗∓π± is searched for in a data sample of 1.0 fb−1 of

data collected with the LHCb detector during 2011. No significant signal is observed
and upper limits on the branching fraction are set. The absence of a detectable signal
indicates that rescattering effects may make significant contributions to other hadronic
decays, such as B0

s → π+π− and B0
s → DD, as recently suggested [5].

6



Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the
excellent performance of the LHC. We thank the technical and administrative staff at the
LHCb institutes. We acknowledge support from CERN and from the national agencies:
CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Re-
gion Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN
(Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS/IFA (Romania);
MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal
and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC
(United Kingdom); NSF (USA). We also acknowledge the support received from the ERC
under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and
BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain),
GridPP (United Kingdom). We are thankful for the computing resources put at our dis-
posal by Yandex LLC (Russia), as well as to the communities behind the multiple open
source software packages that we depend on.

References

[1] LHCb collaboration, R. Aaij et al., First observation of B0 → D+D−, D+
s D

− and
D0D̄0 decays, arXiv:1302.5854, submitted to Phys. Rev. D.

[2] LHCb collaboration, R. Aaij et al., Measurement of b-hadron branching frac-
tions for two-body decays into charmless charged hadrons, JHEP 10 (2012) 037,
arXiv:1206.2794.

[3] M. Gronau, O. F. Hernandez, D. London, and J. L. Rosner, Broken SU(3) symmetry
in two-body B decays, Phys. Rev. D52 (1995) 6356, arXiv:hep-ph/9504326.

[4] R. Fleischer, New strategies to obtain insights into CP violation through
Bs → D±

s K
∓, D∗±

s K∓, ... and Bd → D±π∓, D∗±π∓, ... decays,
Nucl. Phys. B671 (2003) 459, arXiv:hep-ph/0304027.

[5] M. Gronau, D. London, and J. L. Rosner, Rescattering contributions to rare B-meson
decays, Phys. Rev. D87 (2013) 036008, arXiv:1211.5785.

[6] LHCb collaboration, R. Aaij et al., First evidence for the annihilation decay mode
B+ → D+

s φ, JHEP 02 (2013) 043, arXiv:1210.1089.

[7] BaBar collaboration, B. Aubert et al., Branching fraction measurement of
B0 → D(∗)+π−, B− → D(∗)0π− and isospin analysis of B̄ → D(∗)π decays,
Phys. Rev. D75 (2007) 031101, arXiv:hep-ex/0610027.

[8] Particle Data Group, J. Beringer et al., Review of particle physics,
Phys. Rev. D86 (2012) 010001.

7

http://arxiv.org/abs/1302.5854
http://arxiv.org/abs/1302.5854
http://dx.doi.org/10.1007/JHEP10(2012)037
http://arxiv.org/abs/1206.2794
http://arxiv.org/abs/1206.2794
http://dx.doi.org/10.1103/PhysRevD.52.6356
http://arxiv.org/abs/hep-ph/9504326
http://arxiv.org/abs/hep-ph/9504326
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.010
http://arxiv.org/abs/hep-ph/0304027
http://arxiv.org/abs/hep-ph/0304027
http://dx.doi.org/10.1103/PhysRevD.87.036008
http://arxiv.org/abs/1211.5785
http://arxiv.org/abs/1211.5785
http://dx.doi.org/10.1007/JHEP02(2013)043
http://arxiv.org/abs/1210.1089
http://arxiv.org/abs/1210.1089
http://dx.doi.org/10.1103/PhysRevD.75.031101
http://arxiv.org/abs/hep-ex/0610027
http://arxiv.org/abs/hep-ex/0610027
http://pdg.lbl.gov/
http://dx.doi.org/10.1103/PhysRevD.86.010001


[9] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC,
JINST 3 (2008) S08005.

[10] R. Aaij et al., The LHCb trigger and its performance, arXiv:1211.3055, submitted
to JINST.

[11] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC,
arXiv:1211.6759, submitted to Eur. Phys. J. C.

[12] LHCb collaboration, R. Aaij et al., Observation of the decay B0 → D̄0K+K− and ev-
idence of B0

s → D̄0K+K−, Phys. Rev. Lett. 109 (2012) 131801, arXiv:1207.5991.
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