The partonic structure of the nucleon from generalized transverse momentum-dependent parton distributions
Abstract
We discuss the general formalism for the calculation in light-front quark models of the fully unintegrated, off-diagonal quark-quark correlator of the nucleon, parametrized in terms of generalized transverse momentum dependent parton distributions (GTMDs). By taking specific limits or projections, these GTMDs yield various transverse-momentum dependent and generalized parton distributions, thus providing a unified framework to simultaneously model different observables. The corresponding distributions in impact-parameter space are the Wigner functions which provide multidimensional images of the quark distributions in phase space. We present results within a light-front constituent quark model, discussing some of the complementary aspects encoded in the different distributions and the relation to the quark orbital angular momentum of the proton.