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Onbehalf of the FREYA collaboration 

Abstract 

Accelerator-Driven Systems (ADS) could be employed to incinerate minor actinides and so partly 

contribute to answer the problem of nuclear waste management. An ADS consists of the coupling of a 

subcritical fast reactor to a particle accelerator via a heavy material spallation target. The on-line 

reactivity monitoring of such an ADS is a serious issue regarding its safety. 

In order to study the methodology of this monitoring, zero-power experimentswere undertaken at the 

GUINEVERE facility within the framework of the FP6-IP-EUROTRANS programme. Such 

experiments have been under completion within the FREYA FP7 project. The GUINEVERE facility is 

hosted at the SCK-CEN site in Mol (Belgium). It couples the VENUS-F subcritical fast core with the 

GENEPI-3C accelerator. The latter delivers a beam of deuterons, which are converted into 14-MeV 

neutrons via fusion reactions on a tritiated target. 

This paper presents one of the investigated methods for ADS on-line reactivity monitoring which has 

to be validated in the program of the FREYA project. It describes the results obtained when Pulsed 

Neutron Source experiments are analysed using the so called Area Method, in order to estimate the 

reactivity of a few sub-critical configurations of the VENUS-F reactor, around keff= 0.96. 

First the GUINEVERE facility is described. Then, following general considerations on the Area 

method, the results of its application to the neutron population time decrease spectra measured after a 

pulse by several fission chambers spread out over the whole reactor are discussed. Finally the 

reactivity values extracted are compared to the static reactivity values obtained using the Modified 

Source Multiplication (MSM) method. 
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Introduction 

Accelerator-Driven Systems (ADS) could be employed to incinerate minor actinides and so partly 

contribute to answer the problem of nuclear waste management. An ADS consists of the coupling of a 

subcritical fast reactor to an accelerator whose light ion beam hits a heavy material spallation target 

immersed inside its lead alloy cooled core, so as to provide the extra external neutrons needed to 

sustain the power delivered by the reactor core. The on-line reactivity monitoring of such an ADS is a 

serious issue regarding its safety. 

In order to study the methodology of this monitoring, zero-power experiments were initiated 

within the framework of the MUSE programme (FP5) [1] and further developed within the 

GUINEVERE (Generation of Uninterrupted Intense NEutron pulses at the lead VEnusREactor) 

project[2] of the FP6-IP-EUROTRANS programme [3]. Such experiments have been under 

completion within the FP7 FREYA (Fast Reactor Experiments for hYbrid Applications) project [4]. 

The GUINEVERE facility is hosted at the SCK-CEN site in Mol (Belgium). It is the result of the 

coupling of the VENUS-F subcritical fast core, composed of enriched uranium and solid lead, with the 

GENEPI-3C accelerator delivering a deuteron beam which impinges on a Tritium target installed at 

the reactor core center. The 14-MeV neutrons produced by the T(d,n) fusion reactions provide the 

external neutron source. The latter can be operated in a pulsed mode or in a continuous mode with 

periodic short beam interruptions, referred to as “beam trips”.  

This paper presents one of the investigated methods for ADS on-line reactivity monitoring which 

has to be validated in the program of the FREYA project. It describes the results obtained when Pulsed 

Neutron Source experiments are analysed using the so called Area Method [5], in order toestimate the 

reactivity of a fewsub-critical configurations of the VENUS-F reactor, around keff = 0.96 (a typical 

configuration among the ones of interest for ADS studies). This technique could be exploited during 

core loading and start-up phases of an ADS. 

First the GUINEVERE facility is described. Then, following general considerations on the Area 

method, the results of its application to the neutron population time decrease spectra measured after a 

pulse by several fission chambers spread out over the whole reactorare discussed. Finally the reactivity 

values extracted are compared to the static reactivity values obtained using the Modified Source 

Multiplication (MSM) method. 

 

The Guinevere facility 

Initially, the VENUS facility, located at SCK-CEN,Mol (Belgium), was a critical water-

moderated thermal reactor. It was modified to become a fast reactor with highly enriched metal 

uranium and lead, further on referred to as VENUS-F (Fig.1). It can be coupled to an accelerator, 

GENEPI-3C, which delivers a deuteron beam (at about 220 keV energy), either in a continuous mode 

(with and without beam interruptions) or in a pulsed mode. The beam impinging on a copper target 

with a titanium-tritium (TiT) deposit, provides 14-MeV neutrons via T(d,n)
4
He reactions, right at the 

center of the VENUS-F core. 

The GENEPI-3C accelerator 

On the contrary to an industrial ADS, the GUINEVERE neutron source is not provided by high 

energy spallation reactions but by T(d,n)
4
He fusion reactions by means of the accelerator GENEPI-3C 

(GEnérateur de NEutronsPulsé et Intense) [2]. Built by a collaboration of CNRS-IN2P3 laboratories 

and first assembled at the Laboratoire de Physique Subatomiqueet de Cosmologie (Grenoble, France), 

it accelerates deuteron ions to the energy of 220 keV and guides them onto a tritiated target. In the 
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GUINEVERE facility, the target is located at the core mid-plane of the VENUS-F reactor. This source 

provides a quasi-isotropic field of about 14 MeV neutrons. 

This accelerator was designed for the GUINEVERE program and has dedicated specifications. In 

pulsed mode the GENEPI-3C accelerator provides one-microsecond pulses of around 20 mA peak 

current. The neutron source intensity in this mode is around 1-2x10
6
 neutrons/pulse. 

 

Figure 1.Sketch of the GUINEVERE facility. 

The VENUS-F reactor 

The VENUS-F fast zero power reactor takes place in a cylindrical vessel of approximately 80 cm 

in radius and 140 cm in height. A 12x12 grid surrounded by a 30 mm stainless steel casing can receive 

up to 144 elements of 8x8 cm
2
 in section, which currently can be fuel assemblies, lead assemblies or 

specific elements for accommodating detectors or absorbent rods. The remaining room in the vessel is 

filled with semi-circular lead plates, which act as an outer radial neutron reflector. In addition, the core 

is reflected by top and bottom 40 cm-thick lead reflectors. Each fuel assembly (FA) consists of a 5x5 

pattern filled with 9 fuel rodlets and 16 lead bars surrounded by lead plates. The fuel is 30 wt. % 

enriched metallic uranium provided by the CEA.  

Various configurations of the reactor in terms of reactivity can be studied thanks to the modular 

shape of the core. The main configurations of interest herein are all derived from the so-called SC1 

subcritical configuration shown in Fig. 2. 93 FAs (dark gray) are arranged in a way to create a pseudo-

cylindrical core. Among them, six are actually safety rods (SR) made of boron-carbide with fuel 

followers with the absorbent part retracted from the core in normal operation. At the core periphery 

two boron-carbide control rods (CR, light gray) are used to adjust the reactivity. They can be moved 

from 0 mm (fully inserted inside the core) to 600 mm (fully retracted). For the SC1 configuration, both 

CRs are at 479.3 mm. The so-called PEAR (Pellet Absorber Rod) rod (light gray) is used for rod drop 

experiments. Its reactivity worth is very small (-136±5 pcm [6]) and it can be dropped almost 

instantaneously (in less than 0.5 second). It is fully inserted when the reactor is in the SC1 

configuration. The remaining slots in the 12x12 grid are filled with pure lead assemblies (very light 

gray). 
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Figure 2.Cross view of the SC1 configuration. 

SC1 was the first configuration to be studied in the foreseen dynamical reactivity measurement 

experiments. By moving the two control rods around their initial position, that is 479.3 mm,the other 

subcritical reactor configurations,also studied in this paper, were obtained. There are named 

SC1/CR=0 mm and SC1/CR=600mm. 

In order to study the evolution of the neutron population in the reactor after injection of neutron 

pulses at the core center, ten fission chambers (FC) with 
235

U deposit were installed in the reactor. 

Table 1 gathers the detector names and their compositions as well as their deposit masses. For 

practical issues (presence of the guiding structure of the vertical beam line and, safety and control rod 

mechanisms) but also owing to experimental requirements (interest for a homogeneous fissile zone 

without local perturbation) all the detectors except one have been positioned in the reflector as shown 

in Fig. 2. 

Table1.Detectors used for the PNS experiments. 

Detector Deposit ~Mass (mg) 

CFUL659 235
U (92%) 1000 

CFUL658 235
U (92%) 1000 

CFUL653 235
U (92%) 1000 

RS-10071 235
U (90%) 100 

RS-10072 235
U (90%) 100 

RS-10074 235
U (90%) 100 

RS-10075 235
U (90%) 100 

CFUF34 235
U (100%) 1 

CFUM21-325 235
U (90%) 10 

CFUM21-326 235
U (90%) 10 

 

In order to test the performances of the Area method for reactivity monitoring, the reactivity of 

each subcritical configuration was first determined by other experiments using the MSM (Modified 

Source Multiplication) method [6]. It is a well-established static reactivity measurement technique, 

which has been extensively and successfully used to determine large subcriticality levels (up to several 
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dollars). The unknown reactivity is determined by comparing detector count rates driven by an 

external neutron source in the configuration of interest with those obtained in another subcritical 

configuration whose reactivity is known [7].Indeed, SC1 was first obtained from a critical 

configuration CR0 by removing the four central fuel assemblies (which allows inserting the 

accelerator beam tube) and by dropping the PEAR rod. A slightly subcritical configuration of known 

reactivity was created by simply dropping the PEAR rod in the reactor in CR0 configuration. Results 

of the MSM experiments are shown in Table 2. These results will be considered as reference reactivity 

values and will be used as a benchmark for the Area method. 

Table2.Reactivity of the subcritical configurations determined by the MSM method [6]. 

Configuration SC1/CR=0mm SC1 SC1/CR=600mm 

Height of Control Rod 1 (mm) 0 479.3 600 

Height of Control Rod 2 (mm) 0 479.3 600 

MSM reactivity ($) -6.35 ± 0.27 -5.30 ± 0.23 -5.09 ± 0.22 

 

The Area Method 

Principle of the Area method 

When dealing with Pulsed Neutron Source (PNS) experiments, the Area method (also referred as 

the Sjöstrand method) [5] allows one to determine in a straightforward way the reactivity (in dollar) of 

a subcritical nuclear reactorwith no input from theoretical calculations, as long as the assumptions of 

the neutron point kinetics hold in the reactor. This technique is based on the analysis of the 

timeresponse of detectors placed in the reactor after a source neutronpulse. The evolution of the 

detector count rates strongly reflects that of the neutron population over time. Indeed, assuming that 

neutron point kinetics can representthe neutron population evolution over time, the equation of its time 

decrease after a pulse (considered as a Dirac peak) within the one-delayed neutron group 

approximationreads: 
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where𝜆  is the average decay constant obtained by averaging the inverse constants 
1

𝜆𝑖
. In equation 

(1), we can distinguish a “fast” component due to prompt neutrons, and a “slow” component, due to 

delayed neutrons. The integration of the prompt component over time gives the prompt surface Ap: 
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whereas the integration of the delayed component gives the delayed surface Ad: 
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Then, the ratio of these two surfaces gives directly the value of the antireactivity in dollars: 
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Experimentally, for a set of pulses repeated with a fixed frequency, a single Pulsed Neutron 

Source (PNS) histogram is constructed by summing thefission chamber time responses as a function of 

the time elapsed after the neutron pulse. The analysis consists in separating in this histogram the 

prompt neutron contribution from the delayed neutron one. After integrating the time spectrum to get 

the surfaces Ap and Ad, the antireactivity can be calculated using Eq (4) 

 

Figure 3.Time-dependent PNS histograms obtained with 4 different FCs for the reactor configuration 

SC1/CR=479.3 mm. 

Typical PNS histograms 

In order to extract the reactivity value of the SC1 and the SC1 variant configurations, the Area 

method was applied to the count rates measured during the PNS experiments by the ten FCs installed 

in the reactor. When necessary, count rates were corrected for dead time. Typical PNS histograms are 

presented in Figure 3 for various detector positions: CFUF34 in the core, CFUM21-326 at the core-

reflector interface, RS100-71 in the corner of the 12x12 grid and CFUL658 inside the outer part of the 

reflector. These histograms were built by adding-up at least one million pulses for a beam frequency 

of 200 Hz and they are normalized to the same maximum. 

Except for the CFUL658, we observe that the PNS time spectrahave almost the same shapes, 

which however depend on the detector position inside the reactor (they are not homothetic). First, right 

after the neutron pulse injection, a sharp increase of the fission rates is observed. This delay,before 

reaching the maximumcount rate, is explained by the neutron transport time from the source location 

all the way to the FC position. Then, the count rates decrease more or less rapidly, depending on the 

reactor region, within about 1.5 ms.This “fast component” corresponds to the prompt neutron driven 

decay of the neutron population. It is also observed that the closer to the reflector the FC, the slower 

the decay of this fast component. This behaviour might sign the presence of spatial effects, which are 

not predictedby the point kinetics model.Except for the two detectors located inside the outer lead 

reflector, beyond 2 ms, a quasi-constant level referred hereafter to as the delayed neutron level Ld, is 

reached. This so-called “slow component” is the sum of the contributions ofthe delayed neutrons 

originating from the successive pulses. 

Obviously one must check that the neutron precursors have reached equilibrium before analysing 

the data within the framework of the Area Method. A study of the delayed neutron level saturation 
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using point kinetics shows that at least 200000 pulses should be considered. Also, the PNS 

experiments should not be performed at frequencies larger than about f  500 Hz. Indeed, above this 

value, shorter time intervals between pulses would prevent the PNS histogram from reaching the 

delayed neutron level. Looking at Fig. 3, one can see, unfortunately, that this frequency upper limit 

becomes lower when a detector farther away from the core is considered. 

The constant level of the delayed neutrons Ldis first obtained by calculating the average count rate 

on a domain ranging from a fixed upper time limit, tmax, to a lower time limit, tmin. tmax is simply the 

period between two beam pulses. The lower limit tmin is chosen in the flat region of the PNS histogram 

in order to get a good estimate of Ld even for the smaller FC (CFUF34) and in order to maintain the 

systematic error on Ldaround 1% for the FCs having the slowest prompt neutron population decrease. 

Finally tmin was fixed to tmin = tmax- 0.5 ms.Then : 

 
𝐴𝑑 =  𝐿𝑑𝑑𝑡 =

𝐿𝑑
𝑓

𝑡𝑚𝑎𝑥

𝑡=0

 (5) 

Introducing Atot, the total number of counts in the PNS histogram, we have: 

 𝜌

𝛽𝑒𝑓𝑓
= −

𝐴𝑝

𝐴𝑑
=  −

𝐴𝑡𝑜𝑡 − 𝐴𝑑
𝐴𝑑

= 1 −
𝐴𝑡𝑜𝑡
𝐴𝑑

 (6) 

This relationship is valid only ifthe neutron intrinsic source originating from the fuel can be 

neglected. It is the case here, since the fuel ismetallic uranium and was never irradiated at high power. 

 

Results 

The Area method was applied to reaction rates measured by the ten fission chambers during the 

PNS experiments for the three different subcritical configurationsobtained by moving the control rods. 

Figures 4 and 5 show the results. Reactivity values extracted according to formula (6) are represented 

by solid dots. The error bars were calculated by taking into account the statistical as well as systematic 

errors. The horizontal dashed line represents the reactivity of the subcritical configuration as inferred 

from the MSM method, while the solid horizontal lines show the uncertainty range on the MSM value. 

One notices a dispersion of the results, which seem to depend on the detector location in the 

reactor. Three groups can be identified. The first one contains only the CFUF34 detector, which is the 

only one located in the reactor core. It is also the only one from which the reactivity value obtained 

with the Area method is in very good agreement with that of the MSM method. The second group 

gathers six (RS10074, RS100-71, CFUL659, CFUM326, CFUM325 and RS10072) or even seven 

(RS10075) detectors, which are located either at the core-reflector interface or in the corners of the 

12x12 grid, in the inner part of the reflector. The last detectors (RS10075, CFUL653 and CFUL659) 

form the third group. They are located rather far away from the core, in the outer part of the reflector, 

outside the casing. Clearly the Area Method fails at providing the correct value of the reactivity when 

the FCare not in the core. The effect seems to be stronger when the detector is farther from the core. In 

the case of the third group, one just needs to look at Figure 3 to observe that the neutron population 

does not decay as predicted by neutron point kinetics. Furthermore the neutron population does not 

even reach the delayed neutron level within the time window corresponding to the period between the 

beam pulses. In these conditions, the area Ad is overestimated, which leads to an underestimation of Ap 

and the reactivity value extracted is wrong. 

In orderto correct for this detector location effect, we now turn to Monte Carlo simulations with 

MCNP [8]. Indeed, if the dispersion of the reactivity values given by the Area method is due to spatial 

effects, it should be possible to use Monte Carlo simulations of neutron pulses to correct for themsince 
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Monte Carlo simulations transport neutrons without geometric approximations. First an MCNP input 

file with a simplified geometry of the VENUS-F reactor was created in order to save computing time 

and investigate our hypothesis that the spatial corrections are not very sensitive to the details of the 

geometry. Second, Monte Carlo correction factors to be applied to the experimental values of 

reactivity can be calculated for each configuration and each detector location by: 

 

𝑓𝑎𝑟𝑒𝑎 =

 
𝜌𝑐

𝛽𝑒𝑓𝑓
𝑐  

 
𝑅𝑝
𝑐

𝑅𝑑
𝑐 

=  
𝜌𝑐

𝛽𝑒𝑓𝑓
𝑐   

𝑅𝑐 − 𝑅𝑝
𝑐

𝑅𝑝
𝑐   (7) 

whereρ
c
 is the reactivity computed with the MCNP model for the considered core configuration 

of VENUS-F. 𝑅𝑑
𝑐and𝑅𝑝

𝑐  are fission rates at some detector location, due to a Dirac pulse at the core 

center, associated with delayed neutrons and with prompt neutrons, respectively. Since MCNP cannot 

calculate the former, the total fission rate R
c
 is computed and the difference 𝑅𝑐 − 𝑅𝑝

𝑐  is used 

instead. 𝛽𝑒𝑓𝑓  
𝑐 is the calculated effective delayed neutron fraction associated with the reactor 

configuration. Since Monte Carlo estimates of 𝛽𝑒𝑓𝑓  
𝑐 are very time consuming, this parameter was taken 

fromcalculations performed with the deterministic code ERANOS[9] for the same reactor 

configuration, which gave 𝛽𝑒𝑓𝑓  
𝑐 =722 pcm [10]. 𝜌𝑐/𝛽𝑒𝑓𝑓

𝑐 can be regarded as the “true” reactivity value, 

while 𝑅𝑝
𝑐/𝑅𝑑

𝑐 is the distorted one corresponding to some detector position. If point kinetics would hold 

everywhere in the VENUS-F reactor, farea would be equal to one. Finally the corrected reactivity value 

reads: 

 
𝜌$ = 𝑓𝑎𝑟𝑒𝑎 ×

𝐴𝑝

𝐴𝑑
 (8) 

 

Figure 4.Uncorrected (solid dots) and corrected (open squares) reactivity values extracted from 

detector counts for the reactor configuration SC1/CR=600 mm. The MSM reference value is the 

dashed line and its uncertainty range is given by the solid lines. 

The corrected values are symbolized by open squares on Figures4 and5. For every configuration, 

as expected, the effect of the correction is negligible for the CFUF34 located inside the core. Except 

for the fission chambers installed in the outer lead reflector, the corrected values are all compatible 

with the reactivity given by the MSM method. It is not surprising that the correction fails for the FCs 
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in the outer reflector, since for these, the delayed neutron level could not be reached in the PNS time 

window given by the 200 Hz frequency of the beam. 

Finally, discarding the results obtained for the fission chambers located in the outer part of the 

reflector, the average corrected value of reactivity was calculated for the three configurations studied. 

To calculate the uncertainty, it was assumed conservatively that the correlations are at maximum 

between the values given by the detectors. As can be seen in Table 3, the agreement between the MSM 

reactivity and that given by the Area Method is remarkable. 

 

 

 

 

 

 

 

 

 

 

Figure 5.Same as Figure 4 but CR height at 479.3 mm (left) and CR height at 0 mm (right). 

 

Table3.Average reactivity value given by the Area method compared with the MSM reference value, 

for the three reactor configurations studied. 

CR height (mm)  𝜌 $
𝐴𝑟𝑒𝑎   𝜌 $

𝑀𝑆𝑀  

600 -5.09 ± 0.03 -5.09 ± 0.22 

479.3 -5.26 ± 0.03 -5.30 ± 0.23 

0 -6.31 ± 0.05 -6.35 ± 0.27 

 

Conclusions 

In this paper, the reactivity estimates of three different subcritical levels of the VENUS-F 

reactorextracted from PNS experiments with the Area method were presented. First, the technique was 

applied to count rates measured by ten fission chambers used during PNS experiments driven by the 

GENEPI-3C deuteron accelerator and performed for three different reactivity levels of the reactor. The 

dispersion observed among the reactivity estimations inferred from the responses of the detectors 

spread over the entire reactor volume pointed out that space-energy effects bias the results and that 

they must be accounted for. Then we exposed the methodused to compute, by means of simulations 

performed with MCNP, correction factors for all the detector positions inside the VENUS-F reactor. 

Except for two fission chambers located inside the outer lead reflector, all the corrected reactivity 
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values were compatible and in good agreement with the reference values previously estimated with the 

MSM method. 
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