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Abstract. Magneto optical trap recoil ion momentum spectroscopy is used to

measure energy-dependent charge exchange cross sections in the Cs+ + Rb(5s,5p)

system over a range of projectile energies from 3.2 keV to 6.4 keV. The measurements

are kinematically complete and yield cross sections that are differential in collision

energy, scattering angle, and initial and final states.
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1. Introduction:

Understanding charge exchange processes is of importance to a broad range of pure

and applied research. For this reason charge transfer processes in collisions of single

and multi-charged ions with ground and excited target atoms have been the subject of

extensive theoretical and experimental studies. The important role of these processes

in many laboratory and astrophysical plasmas stems from their large cross sections,

which are proportional to the ionic charge, and pronounced final-state-selectivity. With

increasing ionic charge, higher excited states are populated in the electron transfer

process, the decay radiation from which can serve as a useful plasma diagnostic tool.

An example of this is the widely used charge-exchange-recombination spectroscopy

diagnostic in magnetic fusion plasmas [1]. The electron capture processes of multiply

charged impurity ions with neutral hydrogen species are also important in the studies

of impurity transport in the edge and diverter plasma regions [2].

In the late 1960’s Perel and coworkers, using then state-of-the-art techniques, were

able to detect distinct oscillations in the total charge transfer cross sections as a function

of collision energy in alkali ion-alkali atom systems [3]. Target-atom excited states were

attributed to polarization excitation by the incident ion during the initial phases of the

collision. However, investigations of collisions of cesium projectiles with excited target

rubidium at these energies were not possible due to the technical difficulties at the time

to create a well-characterized excited state target.

Since the advent of the laser and laser cooling, excited states of rubidium targets

can be routinely prepared for this type of collision. Studies of energy dependent state

specific charge exchange processes are now possible using Magneto Optical Trap Recoil

Ion Momentum Spectroscopy (MOTRIMS) [4, 5, 6, 7, 8, 9]. This new technique,

an outgrowth of the more general COLTRIMS (COLd Target Recoil Ion Momentum

Spectroscopy)[10, 11, 12, 13] method, enables high resolution Q-value and scattering

angle measurements in ionizing ion-atom collisions. Of paramount importance in this

technique is that the thermal momentum distribution of the target be small compared

to the momentum transferred to it in the collision. In the COLTRIMS method, this

is typically accomplished by pre-cooling the target, and then allowing it to undergo

supersonic expansion. The technique is a powerful one and a tremendous amount

of collisions physics has been understood through its use[10, 11]. In the MOTRIMS

technique, the supersonically expanded gas target is replaced by a magneto optical trap

which yields several advantages. First, the atoms can be laser cooled to a far lower

temperature than through supersonic expansion, thereby allowing improved momentum

resolution, now limited only by detector time and position resolution. Second, target

atoms which are unsuitable for supersonic expansion, such as the alkalis and alkali

earth elements, are readily laser cooled and trapped. Third, these target species are of

necessity readily excited by lasers, allowing for collisions studies on excited as well as

ground state targets.

Recently, using a combination of a Magneto Optical Trap and a Reaction



Nguyen et al 3

Microscope [14], kinematically complete break-up processes of laser-cooled atoms

were measured. The dynamics in swift ion-atom collision of 1.5 MeV/amu O8+ +

Li were studied at an unprecedented level of precision and detail. In a different

experiment, using MOTRIMS, low-energy single charge transfer Na++87Rb(5s, 5p)

collisions were investigated using trapped Rb atoms as the target [15]. High resolution,

fully differential cross sections in scattering angle, initial state, and final state of

the system were measured with an extraction of the recoil ions transverse to the ion

beam axis and a fast switch for the MOT magnetic fields. Three dimensional recoil-

ion momentum reconstruction provided accurate relative cross sections for the active

channels and clearly resolved their associated distributions in projectile scattering angle.

Experimental results were found to be in excellent agreement with molecular close-

coupling calculations. Also, using similar MOTRIMS techniques, single electron transfer

and ionization in collisions of N5+ and Ne8+ with Na(3s, 3p) were investigated both

experimentally and theoretically at collision energies from 1 to 10 keV/amu [16, 17].

Relative cross section magnitudes and energy dependencies were found to be in good

agreement with classical-trajectory Monte Carlo calculations.

In this work, MOTRIMS is used to measure charge exchange cross sections that

are energy-dependent, kinematically complete, differential in initial state, final state and

scattering angles, for the dominant channels over a range of projectile energies in the

Cs+ + 87Rb(5s, 5p) system. The data are suitable for use as a check of future theoretical

calculations; for example using the two center atomic or molecular orbital close-coupling

method [15, 18].

2. Experimental setup:

Magneto optical trap-recoil ion momentum spectroscopy is the principal tool used in

these experiments to measure the recoil ion’s 3-dimensional momentum vector through

time-of-flight (TOF) and 2-dimensional position-sensitive detection (2D-PSD). Q-values

and scattering angles are determined from this measured momentum vector. Using the

Kansas State University MOTRIMS apparatus, we performed our experiments using

the longitudinal extraction method [7, 19]. The relative advantages of transverse versus

longitudinal experimental design for extractions is well discussed in the literature[10,

11, 12, 13]. For the experiment described here the recoil ion TOF was approximately

70 µsec, and was measured with a precision of about 2 nsec. The slight energy spread

in the projectile beam, which was of the order of 1 eV out of a few keV, determined the

limits on resolution for the TOF measurement. The small angle (3.5 degrees) between

the projectile beam axis and spectrometer extraction field was accounted for in the

analysis; uncertainty in this angle had negligible effects on the timing or spatial precision.

Longitudinal and transverse momentum components were deduced through recoil

TOF and position on the 2D-PSD. The Q-value of the collision, defined as the difference

between the system’s total binding energy before and after the collision, is found through



Nguyen et al 4

conservation of energy and momentum and is given by

Q = −
mev

2
Pinitial

2
− vPinitial

PR‖ , (1)

where non-subscripted P indicates momentum, and the subscripts P , R, and e refer to

projectile, recoil, and electron, respectively. Thus, as Eq. [1] shows, one can express the

collision Q-value in terms of the recoil ion longitudinal momentum.

The projectile scattering angle is given by

tan θP =
PP⊥

PPinitial
− PR‖

, (2)

where θP is the polar projectile scattering angle. In Eqs. [1] and [2], the subscripts ‖
and ⊥ refer to the components of momentum that are parallel and perpendicular to the

collision axis, respectively.

In general, the momentum equations must also account for the momentum of any

ejected electrons. However in these measurements we are investigating the Cs+ +Rb→
Cs + Rb+ collision processes for which no electrons are emitted into the continuum.

Therefore, in addition to Eqs. [1] and [2], we have

−PR⊥ = PP⊥ . (3)

Because PPinitial
� PR‖, Eq. [2] becomes, in the small angle approximation,

θP =
−PR⊥

PPinitial

, (4)

where we have used Eq. [3]. Notice that Eq. [4] shows that the projectile scattering

angle can be characterized by the transverse component of the recoil ion momentum

while the component of recoil momentum parallel to the projectile axis, PR‖ , is directly

related to the Q-value.

3. Results:

A rubidium magneto optical trap (MOT) was used as a target for the charge exchange

collisions with cesium projectiles. When the trapping lasers are on, there are two target

states available for charge transfer: the ground state (5s) and the first excited state

(5p) which is populated by the trapping laser. When the trapping lasers are off, the

only available state is the ground state (5s). Individual cross sections for each charge

transfer channel originating from both the rubidium 5s and 5p states were measured,

and these cross sections were measured as functions of scattering angle. (At the low

collision energies studied in this work, charge capture from the core by singly charged

ions is completely negligible.) For these measurements the cesium projectile ion energy

was varied from 3.2 keV to 6.4 keV.

In Fig. 1, the relevant channels for charge exchange from the trapped rubidium

target to the cesium projectile are shown. One expects that, at low energies, the quasi

resonant charge exchange channel from the ground state is the Rb(5s)-Cs(6s) because
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Figure 1. Partial energy level diagram for Cesium and Rubidium.

the electron requires no additional energy to make the transfer. Similarly, the quasi-

resonant channel for capture from the first excited state is the Rb(5p)-Cs(6p). Charge

exchange via other channels is significantly less, based on this energy pooling argument.

Furthermore, at higher collision energy, charge exchange from Rb(5s)-Cs(6p) should

become more pronounced because of the available collision energy to make the transfer.

Knowledge of excited state fraction is critical in the measurement of relative charge

transfer cross sections from excited targets. Because measured charge transfer rates are

proportional to the product of the cross section for transfer from some state and the

population of that state, one must have an independent measurement of the relative

populations in order to obtain the cross sections. Here, the excited state fraction is

determined in situ for every projectile energy [18, 20]. The conditions essential for the

success of this method are that the relative capture rates from, and into the various

channels can be distinguished, and that the target is cold. Both conditions are met by

MOTRIMS.

By chopping the target excitation (trapping) lasers and comparing the change in

charge transfer rates from the ground and excited states for lasers on and lasers off, one

can determine the excited state fraction and, independently, the relative capture cross

section from both states. If Ai refers to the area under a Q-value peak corresponding

to charge transfer from the target’s ith initial state whose relative population is given

by ni, to a particular final state, then

As ∝ σsns, (5)

Ap ∝ σpnp, (6)
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where the constant of proportionality contains acquisition time and geometric factors.

With a high enough chopping frequency, in the case of this work greater than 10 kHz,

ns + np = constant, (7)

because the cold atoms have no time to leave the collision region. Therefore

∆As ∝ σs∆ns (8)

∆Ap ∝ σp∆np (9)

∆ns + ∆np = 0, (10)

where ∆ni refers to changes in the ith population as the trapping (and/or re-pumping)

laser goes from the on condition to the off condition. Note that it is the low temperature

of the target which allows Eqs. [7] and [10] to be satisfied at relatively low chopping

frequencies.

Taking the ratio of Eq. [9] to Eq. [8], and using Eq. [10] we obtain

∆Ap

∆As

=
σp
σs

∆np

∆ns

= −σp
σs
. (11)

Then, using this with Eqs. [5], [6], and [7],

np

ns

=
σs
σp

Ap

As

= −Ap

As

∆As

∆Ap

. (12)

The method can be generalized to an arbitrary number of excited levels in the target,

the only limitation being the Q-value resolution of the MOTRIMS technique.

An acousto optical modulator (AOM) was used to quickly chop the trapping lasers

on and off. Typically, the lasers are off for 5 µsec and on for 15 µsec. A timing pulse,

synchronous with the AOM controller, was used as the START for a time-to-amplitude

converter (TAC). A Rb ion detected in coincidence with a neutral projectile provided the

STOP signal for the TAC. Thus, for every projectile energy investigated, we obtained

a spectrum of our TAC signal which record the laser on/off time as a function of TOF

signal which translates into Q-value via Eqs. [1]. A sample spectrum is shown in Fig. 2.

Vertical integration of this spectrum during laser-on time yields a Q-value spectrum

that can be compared to the corresponding Q-value spectrum taken from the laser-off

portion of Fig. 2. The analysis of Eqs. [11] and [12] was then applied to the pairs of

laser-on, laser-off Q-value spectra. Typically, the target excited state fraction was about

20%.

For every projectile energy investigated, we also obtained a spectrum such as the one

shown in Fig. 3. This figure, also synchronized to laser-on/laser-off, shows relative cross

sections, differential in Q-value and scattering angle, for a typical projectile energy of

5.5 keV. After identifying the channels of interest within a particular range of Q-values,

we can make downward projection to obtain the Q-value peaks as shown in Fig. 4. The

resolution in Q-value is limited by the detector timing, 2 nanoseconds, which translates

into about 100 meV for this collision system.
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Figure 2. Charge transfer counts are plotted versus Q-value (eV) and time in the

laser on/off cycle (µs). “*” on the labels indicate charge exchange from Rb(5p). Using

data plotted in this manner allows the determination of the excited state fraction in

the Rb target.

For the range of energies investigated here, as expected, the dominant electron

capture channel cross sections from ground state Rb is Rb(5s)-Cs(6s). The remaining

contribution to the total capture from ground state is the Rb(5s)-Cs(6p) channel.

Over the range of projectile energies studied, the relative capture cross sections remain

constant for both channels. The relative capture cross sections, normalized to the total

capture from the ground state Rb(5s) were measured to be 0.97± 0.03 and 0.03± 0.01

for the Rb(5s)-Cs(6s) and Rb(5s)-Cs(6p) channels, respectively.

Table 1 shows the relative capture cross sections from the first excited Rb(5p) state

to various final states. Charge transfer from Rb(5p) to Cs(6p) is quasi-resonant and

therefore dominates. Table 2 shows the energy-dependent relative cross section ratios

between the dominant channel for capture from Rb(5p) to that from Rb(5s) as well as

energy-dependent relative total cross section ratios for capture from Rb(5p) to capture

from Rb(5s); these data are also plotted in Fig. 5. In general, as projectile energy

increases, the total cross section for capture from Rb(5p) decreases with respect to
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Figure 3. For every projectile energy, cross sections differential in Q-value scattering

angles were obtained. Shown here are data for 5.5 keV Cs+ + Rb(5s, 5p). “*” on the

labels indicate charge exchange from Rb(5p).

capture from Rb(5s).

Referring again to Fig. 3, by selectively gating a small range of Q-values centered

on individual capture channels, and projecting horizontally, we obtain the projectile

scattering angle information for the channels of interest. Shown in Figs. 6 and 7 are

energy dependent scattering angles for the dominant channels for capture from Rb(5s)

and Rb(5p), respectively. The resolution in scattering angle, essentially limited by the

resolution of the position sensitive detector, is about 30 microradians. There is some

distortion to the PSD image due to the magnetic field gradient of the MOT which,

consistent with ion trajectory calculations, leads to a rotation and “shearing” of the

recoil ion image. This distortion has been corrected in software and does not appear to

degrade the resolution in scattering angle. Energy dependent diffraction-like oscillations

reminiscent of data from a different system [15] can be compared to rigorous two center

atomic orbital and molecular close coupling calculations [15, 18].
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Energy (keV) 5p-6s 5p-5d 5p-6p

3.2 0.03 ± 0.01 0.06 ± 0.01 0.91 ± 0.03

4.3 0.02 ± 0.01 0.06 ± 0.01 0.92 ± 0.02

4.6 0.03 ± 0.01 0.06 ± 0.01 0.90 ± 0.02

5.5 0.03 ± 0.01 0.10 ± 0.01 0.87 ± 0.04

6.0 0.02 ± 0.01 0.03 ± 0.02 0.95 ± 0.07

6.4 0.03 ± 0.01 0.07 ± 0.01 0.90 ± 0.02

Table 1. Experimental state selective energy dependent relative cross sections for the

Cs+ + Rb(5p) collision system. Here the relative cross sections for each channel are

normalized to the excited state Rb(5p) total cross section. Note that electron capture

5p-7s channel is too small to be measured with any meaningful certainty.

Energy (keV)
σ5p−6p

σ5s−6s

σp
σs

3.2 15 ± 3 11 ± 3

4.3 10 ± 2 8 ± 2

4.6 13.6 ± 1.2 9.6 ± 1.2

5.5 6.7 ± 0.6 6.7 ± 0.7

6.0 8.1 ± 0.5 6.3 ± 0.5

6.4 7.3 ± 0.5 4.9 ± 0.5

Table 2. Energy-dependent relative cross section ratios for the dominant channels

and relative total cross section ratios for Cs+ + Rb(5l) where l = s and p.
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Figure 4. A typical plot of counts versus Q-value, or energy defect. The labels identify

the final state in cesium; “*” on the labels indicate charge exchange from Rb(5p).

4. Conclusions:

MOTRIMS was used to make energy-dependent kinematically complete experiments

of charge exchange cross sections for the major channels at various projectile energies

between Cs+ + 87Rb(5s,5p) in order to provide the most stringent test of theory in the

binary collisions with experimental results which are differential in as many parameters

as possible. Details of the experimental techniques and data for energy dependent cross

sections, differential in Q-value and scattering angle, were given for the two dominant

channels, Rb(5s)-Cs(6s)and Rb(5p)-Cs(6p). These high resolution energy dependent

measurements, differential in both in Q-value and scattering angle, provide benchmark

data which can be used to further develop theoretical treatment. In the projectile energy

range investigated here, the other channels remain weakly populated, with no significant

dependence on the projectile energy. In contrast, the ratio between total electron

capture cross section from Rb(5p) and from Rb(5s), was found to decrease rapidly

with the collision energy. We further found that the transverse momentum distribution
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Figure 5. The upper panel shows the experimental energy dependent relative cross

section ratios. The lower panel shows the experimental energy dependent relative total

cross section ratios.
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Figure 6. Energy dependent cross sections (arbitrary units) versus scattering angle

for electron charge transfer from Rb (5s) to Cs(6s). The resolution is approximately

30 microradians. The vertical error is statistical and they are the size of the black

diamond.

(scattering angle information) showed an oscillatory structure which is sensitive to

the projectile energy. Similar to the analysis suggested by Otranto et. al. [17], this

feature could be a consequence of the number of swaps the electron undergoes across

the potential energy saddle during the charge exchange process.
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Figure 7. Energy dependent cross sections (arbitrary units) versus scattering angle

for electron charge transfer from Rb (5p) to Cs(6p). The resolution is approximately

30 microradians. The vertical error is statistical and they are the size of the black

diamond.
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