**Abstract** : The general question, crucial to an understanding of the internal structure of the nucleon, of how to split the total angular momentum of a photon or gluon into spin and orbital contributions is one of the most important and interesting challenges faced by gauge theories like Quantum Electrodynamics and Quantum Chromodynamics. This is particularly challenging since all QED textbooks state that such an splitting cannot be done for a photon (and a fortiori for a gluon) in a gauge-invariant way, yet experimentalists around the world are engaged in measuring what they believe is the gluon spin! This question has been a subject of intense debate and controversy, ever since, in 2008, it was claimed that such a gauge-invariant split was, in fact, possible. We explain in what sense this claim is true and how it turns out that one of the main problems is that such a decomposition is not unique and therefore raises the question of what is the most natural or physical choice. The essential requirement of measurability does not solve the ambiguities and leads us to the conclusion that the choice of a particular decomposition is essentially a matter of taste and convenience. In this review, we provide a pedagogical introduction to the question of angular momentum decomposition in a gauge theory, present the main relevant decompositions and discuss in detail several aspects of the controversies regarding the question of gauge invariance, frame dependence, uniqueness and measurability. We stress the physical implications of the recent developments and collect into a separate section all the sum rules and relations which we think experimentally relevant. We hope that such a review will make the matter amenable to a broader community and will help to clarify the present situation.