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Abstract

Hyperparameter learning has traditionally
been a manual task because of the limited
number of trials. Today’s computing in-
frastructures allow bigger evaluation bud-
gets, thus opening the way for algorithmic
approaches. Recently, surrogate-based opti-
mization was successfully applied to hyperpa-
rameter learning for deep belief networks and
to WEKA classifiers. The methods combined
brute force computational power with model
building about the behavior of the error func-
tion in the hyperparameter space, and they
could significantly improve on manual hyper-
parameter tuning. What may make experi-
enced practitioners even better at hyperpa-
rameter optimization is their ability to gen-
eralize across similar learning problems. In
this paper, we propose a generic method to
incorporate knowledge from previous experi-
ments when simultaneously tuning a learning
algorithm on new problems at hand. To this
end, we combine surrogate-based ranking and
optimization techniques for surrogate-based
collaborative tuning (SCoT). We demon-
strate SCOT in two experiments where it
outperforms standard tuning techniques and
single-problem surrogate-based optimization.

Proceedings of the 30" International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

1. Introduction

Hyperparameter tuning is a crucial step in machine
learning practice. Recently, it was shown that the
state of the art on image classification benchmarks can
be improved by configuring existing techniques better
rather than inventing new learning paradigms (Pinto
et al. 2009, Coates et al. 2011, Bergstra et al. 2011,
Snoek et al. 2012, Thornton et al. 2012). Hyperpa-
rameter tuning is often carried out by hand, progres-
sively refining a grid over the hyperparameter space.
Several automatic hyperparameter tuning methods are
already available, including local-search based meth-
ods (ParamlILS of Hutter et al. 2009), estimation of
distribution methods (REVAC of Nannen & Eiben
2007), and surrogate-based methods (Hutter, 2009).
Recently, Bergstra et al. (2011) successfully applied
surrogate-based optimization methods to tuning nu-
merous hyperparameters of deep belief networks. The
method combined brute force computational power
with building a model of the behavior of the cost func-
tion (validation error) in the hyperparameter space,
and it could significantly improve on manual hyper-
parameter tuning. In a similar setup, Thornton et al.
(2012) applied surrogate-based optimization for a large
number of classifiers from the WEKA package, outper-
forming the state of the art on a large set of problems.

What may still make experienced practitioners better
at hyperparameter optimization is their ability to gen-
eralize across similar learning problems. For example,
if somebody in the past successfully applied a clas-
sification algorithm A to the popular MNIST dataset
with a given set of hyperparameters x, he or she would
certainly use this set as a hint (or “prior”) to choose
the hyperparameters of A when tuning 4 on a slightly
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noisy or rotated version of MNIST. Our main contribu-
tion is to propose a way to mimic this human behavior
when performing an automatic, surrogate-based hy-
perparameter search.

Brendel & Schoenauer (2011) has recently proposed a
similar idea in artificial planning. They tuned an evo-
lutionary algorithm by learning a mapping from prob-
lems to hyperparameters using a neural network. This
setting may work well if the problem descriptors deter-
mine the optimal hyperparameters with high certainty.
In machine learning on diverse datasets, however, we
cannot hope to come up with a set of easily measur-
able problem descriptors that can predict the best hy-
perparameters with no uncertainty. What we propose
here instead is to build a model from past experience
that can bias the search on a new problem towards re-
gions in the hyperparameter space where the optimal
hyperparameters are likely to be found. Surrogate-
based methods suit well this setup. They also solve
efficiently the exploration/exploitation dilemma. Fur-
thermore, combining surrogate-based ranking and op-
timization techniques, we can define a novel Bayesian
optimization method that can be used to collabora-
tively optimize quantitatively different but similarly
behaving objective functions.

1.1. The formal setup

To tackle the problem, we first build a quality func-
tion f: DD x H — R that takes a dataset D € D and a
set of hyperparameters x € H as inputs, and outputs
the quality f(D,x) of the result A(D,x) obtained by
applying the algorithm A on the dataset D with hy-
perparameters x. The hyperparameters are usually
numerical so the space H is naturally R where dg
is the number of hyperparameters. To apply surrogate
optimization on the joint space D x H, we will also
represent datasets with a real vector of size dp. These
dp numerical descriptors should be such that datasets
with similar descriptors give rise to similar optimal hy-
perparameters. Coming up with such features is itself
an interesting (and, in general, open) research prob-
lem. We will describe our approach in Section 4.

Once the feature and dataset representation D x H is
fixed, we place a prior over f that incorporates knowl-
edge from previous experiments. The Gaussian pro-
cess (GP) prior is now a common choice in sequen-
tial model-based optimization (SMBO; Jones, 2001;
Lizotte, 2008). Since GPs are closed under sampling,
they provide a simple and elegant way of accumulating
more and more knowledge about the surrogate func-
tion as the observations arrive. On the other hand,
specifying the quality function f is more subtle. Typ-

ically, in single-set hyperparameter optimization, f is
a (cross-)validation error f(D,z) = R(A(D,z)) as
in the setup of Bergstra et al. (2011). The problem
with this choice in our multi-set setup is that when
applying the same algorithm A to different problems
Dy,...,Dy € D, the errors can differ significantly in
scale, which means that f can be non-smooth in its
dimensions coming from D (Figure 1). The raw valida-
tion error is thus a poor choice for f. At the same time,
similar problems may share a model about where the
error is minimized in the hyperparameter space. To
deal with this issue, we need a quality function that en-
codes knowledge on the ranking of hyperparameters on
individual problems, and can convey information such
that “if f(Dy,21) < f(D1,22) and Dy is similar D,
then probably f(Ds,x1) < f(D2,22)”, even though
the ranges of the errors R(A(Ds,-)) and R(A(D2, "))
are very different. We propose therefore to rank hy-
perparameters x; on each problem D; by the valida-
tion error R(A(D;,x;)), and take f : D x H — R as
the surrogate model output by surrogate-based rank-
ing algorithms. This results in a novel and rather
uncommon sequential model-based optimization algo-
rithm that redefines its training set at each time step,
since new rankings yield a new model.
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Figure 1. (a,b) Error surfaces on two similar datasets have
similar shapes although the errors are quantitatively dif-
ferent. (c) The similar shapes can be captured by a latent
ranker.

The rest of the paper is organized as follows: in Sec-
tion 2 we give a brief overview of sequential model-
based optimization. Section 3 contains our contribu-
tions, describing in detail the quality function f and
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the prior we place over it. Finally, in Section 4 we
present two experimental case studies on ADABOOST
and on multilayer perceptrons, where we compare our
approach to several standard tuning techniques and
single-problem surrogate-based optimization.

2. Sequential model-based optimization

On today’s large databases, obtaining a validation er-
ror for a given set of hyperparameters requires a train-
ing phase that can typically take hours or days. Se-
quential model-based optimization (SMBO) is a surro-
gate optimization method suitable for such expensive-
to-evaluate target functions. SMBO replaces the tar-
get function f(z) by a cheaper-to-evaluate surrogate
model M, and iteratively 1) tunes the model and 2)
optimizes an auxiliary criterion function S(z; M). The
criterion S(z; M) measures the interest of asking the
target function value at a new point z, given model
M. The optimization paradigm is presented in Fig-
ure 2. The ingredients that the user has to provide
are a model M and a criterion S, for which we now
present two common choices (which we also used in
our experiments).

SMBO(f, M, T, S)
1 O<0
2 fort—1toT
3 ¥ « argmax, S(z; M)
4 Evaluate f(z*) © Eaxpensive step
5 O« 0U(z" f(zY))
6  Fit a new model M to O
7

return O

Figure 2. The pseudo-code of generic sequential model-
based optimization. f is the function to be optimized, M is
an initial surrogate model that is updated when new eval-
uations of f become available. T is the number of steps,
and S is the auxiliary criterion that measures the interest
of asking the target function value at a new point z.

2.1. A model: Gaussian processes

Gaussian processes (GPs; Rasmussen & Williams,
2006) are a convenient way of putting priors over
functions. It is the most common model of choice
for SMBO, mainly since it is closed under sam-
pling. This means that if we put a GP prior on
f, then the posterior distribution of f given a set
O 2 {(zi, f(2)),i = 1,..., N} of observed points is still
a GP. Formally, a GP is defined by its mean function
u(.) and its covariance function k(.,.). The latter is
a positive kernel that encodes the degree of smooth-

ness of the sample functions, while the mean func-
tion encodes a trend shared by these functions. Basi-
cally, writing f ~ GP(u, k) means that marginally, for

any M, we have (f(z1), ...,f(zM))T ~ N(0,Q) with
A . _
Q= (k(z, Zj))lgi,ng' It is common to assume p = 0
after centering the data. If f ~ GP (O, k(. )), then the
posterior of f given O is GP(z, E(, .)), where

a(z) = kIK-If 1)
k(z1,22) = k(zl,ZQ)—kglK_lkZZ,

with K £ (k(zi,zj))1§i7j§N, f2 (f(zi))lgigN and
k, £ (k(v, 2)) 1<i<n- This property allows to analyti-
cally derive the posterior distribution on the value f(z)
of f at any test point z, which is univariate Gaussian
with mean fi(z) and variance k(z,z). To conclude,
note that it is easy to incorporate input-independent
evaluation noise by adding a scalar matrix to K in the
regression equations (1). Note also that kernel func-
tions have their own hyperparameters, which are usu-
ally chosen by maximizing the marginal likelihood of

the data given the hyperparameters (see (Rasmussen
& Williams, 2006) for details).

2.2. A criterion for SMBO: expected
improvement

Armed with this analytical posterior on f(z), we can
design criteria that can predict the quality of a new
point z. Expected improvement (EI; Jones, 2001) is
the most common such criterion, but others also in-
clude the probability of improvement of (Jones, 2001),
minimizing the conditional entropy of the minimizer
(Villemonteix et al., 2006), or, more recently, a cri-
terion based on multi-armed bandits (Srinivas et al.,
2010). We will use here the EI criterion, which we
now describe formally. Assume we want to minimize a
function f on which we put a GP(0, k) prior. Condi-
tioning on the target function evaluated at some train-
ing points O £ {(z,, f(zi)),i =1,...,N}, we obtain a
posterior GP model M as described in Section 2.1, and
the expected improvement at z over the best minimum
found so far is defined by

El(z; M) £ E(max(my — f(2),0)|Fn),
where Fp is the o-algebra generated by the previous
fitness evaluations O, and my £ minj<;<n f(2;)-
3. The quality function f and its prior

We will now apply the SMBO framework of Section 2
in the joint space D x H of (dataset, hyperparameters)
pairs. To explain our motivation for designing the
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target “quality” function f and choosing a ranking-
based surrogate method, we start by an example. Fig-
ures 1(a) and 1(b) show the two-dimensional error
surfaces when running ADAB0OOST.MH of Schapire
& Singer (1999) using product weak learners (Kégl
& Busa-Fekete, 2009) with two hyperparameters (the
number of terms m and the number of boosting it-
erations T') on two benchmark datasets (the data se-
lection and the experimental setup will be described
in detail in Section 4). The datasets are similar in
terms of some high-level features (such as the num-
ber of instances, number of classes, or number of
attributes) and the shapes of the error surfaces are
also similar, so it intuitively makes sense to try to
fit a common surrogate function onto the surfaces.
The errors R(ADABOOST(D, (m,T))), however, are
quantitatively different in scale for these two differ-
ent datasets, so direct fitting would fail. To over-
come this problem, we will use a ranking surrogate
SfApABoosT (D, (m, T)) that only defines the relative or-
dering of error values.

3.1. An SMBO algorithm targeting a latent
ranker

Let us fix a learning algorithm A. Let R(A(D7 x)) be
a validation error of algorithm A applied with hyper-
parameters x € H to problem D € D. Define a partial
order < on D x H by

(D,z) < (D,2") & R(A(D,z)) < R(A(D,z')). (2)

We say that a function g preserves rankings iff (D, z) <
(D,2’) implies g(D,z) < g(D,z'). Assume that
we are given a smooth function f : D x H — R
that preserves rankings and whose range does not
vary across datasets. f is a better target for an
SMBO-based tuning algorithm than raw validation er-
ror, since the arbitrary scale factors corresponding to
different datasets would not influence the stochastic
search. Surrogate-based ranking algorithms, such as
SVM™ ¥ of Joachims (2002) or the GP-based rank-
ing algorithm of Chu & Ghahramani (2005), build an
estimate f by trying to preserve as many as possible
of the empirical rankings they are given while keeping
f smooth and flat. Thus, our strategy is to feed such
a surrogate-based ranking algorithm B with all avail-
able rankings defined by (2). The output f will not
estimate f in a classical (e.g., Lo) sense, but it will
be a reasonable approximation of f up to a monotonic
transformation.

Assuming that f(D,x) is smooth in z is quite natural,
and most of the local search and surrogate optimiza-
tion algorithms are designed based on this hypothesis.
In addition, and this is our key assumption, we also

suppose that f(D, z) is smooth in D, which means that
similar problems produce similarly-looking error sur-
faces. How problem similarity is defined is a deep and
generally unanswered question. In Section 4 we pro-
pose two simple setups, but the algorithm described
in the following section is generic in the sense that it
only assumes that there exists a positive semidefinite
kernel representing problem similarity.

We can now describe an SMBO algorithm that approx-
imately optimizes f up to a monotonic transforma-
tion. Let us start with a collection O = ((Di, T, RZ))Z
of (dataset, hyperparameter, validation error) triplets.
Note that in Figures 3 and 4, we also abusively denote
O = (D,x,R) to be able to underline the separate
roles of each triplet component. Consider the repeti-
tion of the following steps. First compute all pairwise
rankings P among pairs (D;, z;) in O according to (2).
Then apply a surrogate-based ranking algorithm B to
rankings P, outputting f. Evaluate f on all points
(D;, x;) in O to yield f, and perform GP regression on
fusing f as input. Pick the next point to add to O
by maximizing EI, as described in Section 2.

The procedure described above yields a first Bayesian
optimization algorithm presented in Figure 3, named
ST for surrogate-based tuning. What makes it a par-
ticularly unusual Bayesian optimization algorithm is
that the regressed function is different at each time
step because f depends on the rankings P and the
size of P is increasing in each iteration.

ST(D,T,0,A,B)
1 fort—0toT -1
2 Compute pairwise rankings P from O as in (2)

3 T < evaluation on (D, x) of the surrogate f
built by B with rankings P

4 M « posterior GP on f knowing ((D,x),/f')

5 a* «— argmax,cy EI(D,z; M)

6 R"«— R(A(D, x*)) > Run learning algorithm

7

8

O« 00U (D,z*,R")

return O

Figure 3. The pseudo-code of the surrogate-based tuning
algorithm. Input B denotes a surrogate-based ranking
algorithm. O = ((Ds,zs, Ri)), £ (D,x,R) summarizes
available data. The input O comes from results from past
experiments with the same algorithm, and O is then up-

dated along the algorithm. See text for details.
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3.2. Collaborative tuning

Since ST is now independent of the scale of valida-
tion error R(-), we can apply it to several problems
Dy, ...,Dy; at the same time. Instead of repeatedly
applying ST (Figure 3), we propose here to tune all
problems simultaneously by spending one iteration on
each problem in turn, thus making use of all informa-
tion gained so far on all problems. This gives birth
to the SCOT algorithm, for surrogate-based collabo-
rative tuning, presented in Figure 4. In Section 5, we
come back on other collaborative strategies.

SCoT((Ds,...,Dum),T,0,A,B)

1 fort—0toT -1

2 fori—1toM

3 Compute pairwise rankings P from O as in (2)
4

f « evaluation on (D, x) of the surrogate f
built by B with rankings P

5 M « posterior GP on ]?knowing ((D, x),a
6 z* «— argmax,.y EI(D; x;M)

7  R*«— R(A(D;,z*)) > Run learning algorithm
8 O« 0U(D;z* R

9

return O

Figure 4. The pseudo-code of the surrogate-based collabo-
rative tuning algorithm. See the caption of Figure 3 for
notations, the only difference being the simultaneous tun-
ing on several datasets D1,..., Da. See text for details.

3.3. On the choice of a surrogate-based
ranking algorithm

The method of choice for Algorithm B in Figure 4 is
the Gaussian process-based ranking algorithm of Chu
& Ghahramani (2005) since it provides a way of si-
multaneously estimating the values of a hidden f and
tuning the GP hyperparameters in a double optimiza-
tion loop. This method, applied with a squared expo-
nential kernel with automatic relevance determination
(SE-ARD; Rasmussen & Williams, 2006, pp. 83 and
106), would avoid the need for Step 5 of SCOT and
provide an easier interpretation for f However, both
our implementation and the one available on the web
proved to be too slow in the regime presented in Sec-
tion 4 to be realistically incorporated in the for loop of
SCOT. We thus chose to limit ourselves in Step 4 to an
isotropic squared exponential kernel, and used the effi-
cient optimization routines available for the SVM®*™
of Joachims (2002), while Step 5 is carried out with
an SE-ARD kernel. Note that SVM"*"* requires that
all hyperparameter vectors x € H be comparable when

applied to the same problem, which is the case here by
definition of < in (2).

4. Experiments

To assess the performance of SCOT as a practical hy-
perparameter tuning algorithm, we now present two
experiments of tuning classification algorithms. In the
first experiment we apply multi-class ADABoosT.MH
with two hyperparameters to a large number of het-
erogeneous UCI problems. In the 2-dimensional hy-
perparameter space we can pre-compute the valida-
tion errors on a finite grid, and we can perform a
meta-cross-validation over datasets to assess whether
a model tuned on a set of training problems can aid
the hyperparameter optimization on a hold-out set of
test problems. In the second experiment we tune five
hyperparameters of single-hidden-layer neural nets on
binary classification problems. In this case precomput-
ing the errors on a grid is impossible. Furthermore,
to make the point that problem similarity can help
collaborative tuning, we use 20 datasets obtained by
perturbing the same five datasets, four times each.

For the sake of clarity, we henceforth call instance a
point to be classified, and we call attribute one of the
elements of the input vector. The term feature is re-
served to numerical descriptors of the whole classifi-
cation problem, that is, a point in D is described by
a vector of features. Finally note that all GP hyper-
parameters were tuned maximizing the marginal like-

lihood (Rasmussen & Williams, 2006).

4.1. A case study on AdaBoost

We describe here a setup that mimics an experienced
ADABOOST user facing multi-class classification prob-
lems. We used the implementation of AbABoosT.MH
available at multiboost.org (Benbouzid et al., 2012).

3k y =0.17*x + 0.94 4

4
log (n/d)

Figure 5. Optimal number of product terms versus the
problem feature log(n/d).
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4.1.1. SETUP

We downloaded 29 multi-class classification problems
from WEKA. We converted nominal attributes to
numerical (binary) values using a one-hot encoding.
We split each set 80-20% into training and validation
sets. We ran ADAB0OST.MH with decision products
as weak learners (Kégl & Busa-Fekete, 2009), so
the two hyperparameters to tune were the number
of iterations 7' and the number of product terms
m. Our target measure R(ADABOOST(D, (m,T)))
was the classical multi-class 0-1 error. In this
setup, because H has dimension 2, we decided to
precompute all validation errors on a 12 x 9 grid
with values m € {2,3,4,5,7,10,15,20,30} and T €
{2, 5,10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000},
giving us 108 trained models for each dataset. The
inputs of the GP kernel were the logarithms of the
hyperparameters, rescaled to belong to [0, 1]. Figure 1
shows two example error surfaces and a smooth latent
ranker learned by the GP.

To embed the problems into a Euclidean space D in
which a GP can be used with a classical squared expo-
nential kernel, we first extracted three simple measures
from each dataset, the number of training instances n,
the number of classes K, and the number of attributes
d, and defined three features K, logd, and log(n/d)
that we found indicative about the value of the best
hyperparameters. For example, Figure 4.1 shows that
log(n/d) is correlated to the optimal number of prod-
uct terms m. This makes sense: the more instances we
have compared to the number of attributes, the more
complex the optimal classifier can be.

In order to describe some statistical properties of each

feature min 1Ist q¢ med 3rdq. max
K 2 2 5 10 26

log d 1.61 2.3 294 401 549
log(n/d) 1 3.03 4.04 457 7.05
p 0.14 05 067 0.75 0.86

Table 1. Minimum value, first quartiles, medians, third
quartiles and maximum value of the features of the prob-
lems.

dataset, a fourth feature p was derived through PCA:
we extracted the first d’ principal components that ex-
plained 95% of the variance of each dataset, and di-
vided d’ by the number of attributes d to obtain p.
Table 1 summarizes the statistics of the features, and
Figure 6 visualizes the datasets in the feature space
projected onto the first two principal components. The
first two components explain 73.5% of the variance,
which means that the four-dimensional distribution is
not degenerate but not completely uniform either. Fi-
nally, the features were also rescaled to belong to [0, 1].

4.1.2. DIFFERENT TUNING STRATEGIES

We designed five experiments, each one mimicking a
different user behavior. In all experiments, we used
a b-fold cross-validation over the 29 datasets. To
avoid confusion with training and testing in each prob-
lem, we call meta-train and meta-test, respectively, the
train and test sets made out of problems.

Global default This experiment mimics the tuning
strategy of a non-expert in machine learning who
chooses the same hyperparameter vector for every
problem. Although this sounds unreasonable, a
typical WEKA user often runs classification algo-
rithms using the default hyperparameters. Here
we assume that the designer of the classification
algorithm is an expert, so he sets the default hy-
perparameters to those that perform the best on
average. Formally, we select the hyperparameter
vector that minimizes the average error over the
problems in the meta-train sets.

Collaborative default This experiment mimics the
tuning strategy of a more experienced user, who
builds a model according to his or her experience
with the meta-train set, but runs out of time before
the conference deadline. She thus uses the surro-
gate model to predict one vector of hyperparame-
ters for each problem, but does no tuning on the
problems. In practice, this strategy is similar to
a single iteration of the outer loop of SCoT (Fig-
ure 4) and consists in (i) taking the surrogate out-
put by SVM™™ (ii) regressing it with a GP and
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(iii) taking the hyperparameter with the best pos-
terior mean on each meta-test problem.

Separate surrogate tuning This experiment mim-
ics a user who has time for a sequential algorithm,
but does not learn either from the meta-train set
or from the knowledge acquired in tuning on other
meta-test problems simultaneously. State-of-the-
art surrogate tuning methods are of this kind. This
experiment consists in running a different SMBO
algorithm on each meta-test problem, thus using
an independent two-dimensional GP for each meta-
test problem. To avoid numerical problems, we
start by four iterations picking random hyperpa-
rameters.

SCoT (surrogate collaborative tuning) This ex-
periment mimics an expert user, who tries to learn
a relation between features, hyperparameters, and
quality from the meta-train problems he encoun-
tered in the past. Here we combine the static model
and the surrogate technique, and we add collabora-
tive tuning as described in Section 3 and Figure 4.

Random search This is the baseline experiment
that samples points from predefined independent
priors on each hyperparameter (uniform in Sec-
tion 4.1, defined in Table 2 for Section 4.2). This
is probably the most common strategy when ex-
haustive grid search is out of computational reach.
Bergstra & Bengio (2012) demonstrated that ran-
dom search is competitive in hyperparameter tun-
ing for deep belief networks.

Note that the three last strategies were used without
replacement. For surrogate-based methods, when EI is
maximized at a point that has already been evaluated
in the past, we replace it by the unevaluated point in
the grid with the highest EI. In practice, all strate-
gies should then converge to the best point when the
number of evaluations reaches the size of the grid.

4.1.3. RESULTS

We present results in terms of average generalization
error in the supplementary material, obtained through
a b-fold cross validation on the set of datasets. Com-
paring the methods in terms of average generalization
error is however questionable for the exact same reason
that made us use a ranking-based surrogate: the clas-
sification datasets may not be commensurable in terms
of test error rate (Demsar, 2006; Lacoste et al., 2012).
Hence we computed an average rank score as follows:
in each iteration and for each problem, the results of
the different strategies were ranked with the so-called
fractional ranking (“1 2.5 2.5 4”7 ranking), ties being

4.0r

350 global default 1
i collaborative default
° random search
g’ 3.0/ separate tuning ]
2 SCoT

N
ul

number of trials

Figure 7. The average rank of the different methods as a
function of the number of trials. Collaborative methods
start from the value 2.62 and all non-collaborative methods
start from 3.26, the first four iterations of separate tuning
are the same as random search, see text for details.

rewarded by the average of their ordinal rankings. The
ranking points of all meta-test problems were then av-
eraged to get the final score. The average rank of each
strategy can then be plotted against the number of
trials. Note that the average rank of a single method
depends on the results of the others, which means that
the score of non-tuning methods (global and collabo-
rative defaults) will increase while their quality values
remain constant. Also, note that the lower the average
rank score, the better is the method.

Figure 7 shows the results in terms of ranking. The
first observation is that the collaborative default
achieves a better score than the global default, vali-
dating therefore our hypothesis that past experience
can help to find better hyperparameters. Secondly,
separate tuning beats random search, confirming the
results of Bergstra et al. (2011). Finally, SCOT seems
to robustly outperform all methods, which means that
combining surrogate optimization and collaborative
tuning gets the best of both worlds. Note that as
the number of iterations grow, all three tuning meth-
ods start to saturate the search space, so their average
rank converges to the same value.

4.2. A controlled experiment with MLPs

In this experiment we tested SCOT on tuning five hy-
perparameters of multi-layer perceptrons (MLPs) with
a single hidden layer. The hyperparameters and their
prior distributions are summarized in Table 2. The
goal of the experiment was to test SCOT on a setup
where exhaustive grid search is not possible at all due
to the higher number of hyperparameters. This exper-
iment also underlines the cotuning abilities of SCOT.
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Hyperparameter Distribution

learning rate log U (1073, 10)

{1 penalty logU(1077,107%)

{5 penalty logU(1077,107%)

batch size uniform on {1,...,30}
number of hidden units  uniform on {10,...,100}

Table 2. Hyperparameters of a single-layer MLP. The dis-
tributions used in the random strategy are given in the
second column.

4.2.1. SETUP

MLPs are widely used in practice, however, tuning the
larger number of hyperparameters is a more important
issue than in boosting and SVM, so automatic tun-
ing methods can have a greater practical impact. To
demonstrate that SCOT learns a latent structure when
such a structure exists, we picked five different binary
classification problems out of the collection presented
in Section 4.1, and perturbed them in three different
ways: (i) we suppressed one attribute, (i7) we halved
the number of samples, and (4ii) both. In total, we
tuned MLPs simultaneously on 20 datasets.

The dataset space D was built as follows. Since all clas-
sification problems were binary, the number of classes
K was not relevant here. Besides the three features
logd, log(n/d), and p described in Section 4.1.1, we
used two more statistical descriptors: the skewness
and the kurtosis of each dataset projected onto its first
principal component. In the end, H x D has ten di-
mensions. In the supplementary material, we provide
an illustration of a PCA in D of our 20 datasets.

Unlike in the case study on ADABOOST of Section 4.1,
we did not perform meta-cross-validation, rather, we
acted as if we used SCOT to tune neural networks
simultaneously on these 20 datasets. Methods that
build models (collaborative default, separate tuning,
and collaborative tuning in Section 4.1.2) started only
after the first 10 random points were evaluated on each
dataset. The global default strategy was taken here to
be the constant choice of the best hyperparameters on
average among these first 10 points.

4.2.2. RESULTS

As in Section 4.1.3, results based on generalization er-
ror are deferred to the supplementary material. Fig-
ure 8 depicts the results in terms of average ranking,
as in Section 4.1. Soon after the initial 10 training
points, SCOT clearly outperforms all other methods.
Separate tuning comes second, but sharing informa-
tion among problems obviously helps SMBO on this
controlled benchmark.
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Figure 8. Results on the MLP benchmark in terms of the
average “fractional” rankings (see Section 4.1.3).

5. Conclusion

We presented SCOT, a surrogate-based optimization
algorithm for hyperparameter tuning. It builds on pre-
vious approaches but adds a memory of past experi-
ments and a collaborative tuning ability. Developing
these two points led to the combination of surrogate-
based optimization and ranking, resulting in a novel
Bayesian optimization algorithm whose target is mov-
ing with the iteration number. We demonstrated
SCOT in two experiments on ADAB0OOST and MLPs:
it outperformed a variety of common tuning strategies,
including vanilla surrogate-based optimization.

In order to eventually yield an automatic hyperpa-
rameter tuner, some methodological and theoretical
efforts are needed. On the methodological side, a
comprehensive database of learning problems should
be compiled, progressively closing the gap between
benchmark problems and real-world applications. On
the theoretical side, some efforts of feature construc-
tion are needed to define for instance compound pa-
rameters, more amenable to build the surrogate qual-
ity model. Such augmentations of the training set
of SCOT will require careful choices in the methods,
maybe leading to lighten the computational burden
with cheaper models such as approximate GPs. Fi-
nally, we feel that there is room for improvement in
designing asynchronous strategies for the collaborative
tuning of SCOT, which currently tunes problems in a
synchronous way, spending one point on each problem
in turn, while it should intuitively spend more evalua-
tions on difficult problems.
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