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Abstract

The multi-armed bandit problem has
attracted remarkable attention in the
machine learning community and many
efficient algorithms have been proposed
to handle the so-called exploitation-
exploration dilemma in various bandit
setups. At the same time, significantly
less effort has been devoted to adapting
bandit algorithms to particular architec-
tures, such as sensor networks, multi-core
machines, or peer-to-peer (P2P) environ-
ments, which could potentially speed up
their convergence. Our goal is to adapt
stochastic bandit algorithms to P2P net-
works. In our setup, the same set of arms
is available in each peer. In every iteration
each peer can pull one arm independently
of the other peers, and then some limited
communication is possible with a few
random other peers. As our main result,
we show that our adaptation achieves a
linear speedup in terms of the number of
peers participating in the network. More
precisely, we show that the probability
of playing a suboptimal arm at a peer in
iteration t = Ω(log N) is proportional to
1/(Nt) where N denotes the number of
peers. The theoretical results are sup-
ported by simulation experiments showing
that our algorithm scales gracefully with
the size of network.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

1. Introduction

The recent appearance of large scale, unreliable,
and fully decentralized computational architectures
provides a strong motivation for adapting machine
learning algorithms to these new computational ar-
chitectures. One traditional approach in this area
is to use gossip-based algorithms, which are typi-
cally simple, scalable, and efficient. Besides the sim-
plest applications, such as computing the average of
a set of numbers (Kempe et al., 2003; Jelasity et al.,
2005; Xiao et al., 2007), this approach can be used to
compute global models of fully distributed data. To
name a few, Expectation-Maximization for Gaussian
Mixture learning (Kowalczyk & Vlassis, 2005), lin-
ear Support Vector Machines (Ormándi et al., 2012),
and boosting (Hegedűs et al., 2012) were adapted to
this architecture. The goal of this paper is to pro-
pose a gossip-based stochastic multi-armed bandit
algorithm.

1.1. Multi-armed bandits

Multi-armed bandits tackle an iterative decision
making problem where an agent chooses one of the
K previously fixed arms in each round t, and then
it receives a random reward that depends on the
chosen arm. The goal of the agent is to optimize
some evaluation metric such as the error rate (the
expected percentage of playing a suboptimal arm)
or the cumulative regret (the expected difference of
the sum of the obtained rewards and the sum of
the rewards that could have been obtained by se-
lecting the best arm in each round). In the stochas-
tic multi-armed bandit setup, the distributions can
vary with the arms but do not change with time. To
achieve the desired goal, the agent has to trade off
using arms found to be good based on earlier plays



(exploitation) and trying arms that have not been
tested enough times (exploration) (Auer et al., 2002;
Cesa-Bianchi & Lugosi, 2006; Lai & Robbins, 1985).
According to a result by Lai & Robbins (1985), no al-
gorithm can have an error rate o(1/t). One can thus
consider policies with error rate O(1/t) to be asymp-
totically optimal. An example of such a method is
the �-greedy algorithm of Auer et al. (2002).

Multi-armed bandit algorithms have generated sig-
nificant theoretical interest, and they have been ap-
plied to many real applications. Some of these de-
cision problems are clearly relevant in a distributed
context. Consider, for example, a fully decentralized
recommendation system, where we wish to recom-
mend content based on user feedback without run-
ning through a central server (e.g., for privacy rea-
sons). Another example is real-time traffic planning
using a decentralized sensor network in which agents
try to optimize a route in a common environment.
Our algorithm is probably not applicable per se to
these settings (in the first example, contextual ban-
dits (Langford & Zhang, 2007) are arguably more
adequate, and in the second example the environ-
ment is non-stationary and the agents might be ad-
versarial (Cesa-Bianchi & Lugosi, 2006)), but it is a
first step in developing theoretically sound and prac-
tically feasible solutions to problems of this kind.

1.2. P2P networks

A P2P network consists of a large collection of nodes
(peers) that communicate with each other directly
without any central control. We assume that each
node has a unique address. The communication is
based on message passing. Each node can send mes-
sages to any other node assuming that the address
of the target node is available locally. This “knows
about” relation defines an overlay network that is
used for communication.

In this paper two types of overlay networks are con-
sidered. In the theoretical analysis (Sections 2 and
3) we will use the PerfectOverlay protocol in
which each node is connected to exactly two dis-
tinct neighbors, which means that the communica-
tion graph is the union of disjunct circles. Within
this class, the neighbor assignment is uniform ran-
dom, and it changes in each communication round.
This protocol has no known practical decentralized
implementation, so in our experiments (Section 5)
we use the practically feasible Newscast protocol
of Jelasity et al. (2007). In this protocol each node
sends messages to two distinct nodes selected ran-
domly in each round. The main difference between
the two protocols is that in PerfectOverlay each

node receives exactly two messages in each round
whereas in Newscast the number of received mes-
sages by any node follows a Poisson distribution with
parameter 2 (when N is large).

1.3. P2P stochastic bandits and our results

In our P2P bandit setup, we assume that each of
the N peers has access to the same set of K arms
(with the same unknown distributions that does not
change with time—hence the setting is stochastic),
and in every round each peer pulls one arm inde-
pendently. We also assume that on each peer, an
individual instance of the same bandit algorithm is
run. The peers can communicate with each other by
sending messages in each round exclusively along the
links of the applied overlay network. In this paper
we adapt the stochastic �-greedy bandit algorithm1

of Auer et al. (2002) to such an architecture.

Our main theoretical goal is to assess the achiev-
able speedup as a function of N . First, note that
after T rounds of arm-pulling and communicating,
the number of total plays is NT so (recalling the
bound by Lai & Robbins 1985) the order of mag-
nitude of the best possible error rate is 1/(NT ).
In Section 3, we show that our algorithm achieves
error rate O(1/(d2Nt)) for a number of rounds
T = Ω(log N), where d is a lower bound on the gap
between the expected reward on i∗ and any sub-
optimal arm. Consequently, the regret is also of
the order O

�
log(NT )/d2 + N min(t, log N)

�
, where

N min(t, log N) is essentially the cost of spreading
the information in the network. 2 The simulation
experiments (Section 5) also show that our algorithm
scales gracefully with the size of the network, giving
further support to our theoretical results.

1.4. Related research

Gelly et al. (2008) addresses the exploration-
exploitation dilemma within a distributed set-
ting. They introduce a heuristic for a multi-core
parallelization of the UCT algorithm (Kocsis &
Szepesvári, 2006). Note, however, that multi-core
parallelization is simpler than tackling fully dis-
tributed environments. The reason is that in the
multi-core architectures, the individual computa-
tional units have access to a shared memory making

1See Section E in the Supplementary for a more de-
tailed discussion about our choice, and why applying al-
gorithms like UCB (Auer et al., 2002) directly would be
suboptimal in this setup.

2If, in each round, each peer communicates with a
constant number of peers, it takes Ω(log N) time for a
peer to spread information to at least a linear portion of
the rest of the peers. See a more detailed discussion in
Section E in the supplementary material.

2



information exchange cheap, quick, and easy. The
large data flow generated by a potentially complete
information exchange in a fully distributed environ-
ment is clearly not feasible in real-life applications.

Awerbuch & Kleinberg (2008) consider a problem
where a network of individuals face a sequential de-
cision problem: in each round they have to choose an
action (for example, a restaurant for dinner), then
they receive a reward based on their choice (how
much they liked the place). The individuals can also
communicate with each other, making it possible to
reduce the regret by sharing their opinions. This dis-
tributed recommendation system can be interpreted
as a multi-armed bandit problem in a distributed
network, just like ours, but with three significant
differences. The first is that they consider the ad-
versarial setting (that is, in contrast to our stochas-
tic setting, the distributions of the arms can change
with time). The second is that their bound on the
regret is O((1 + K/N)(log N)T 2/3 log T ) per indi-
vidual, and thus the total regret over the whole net-
work of individuals is O((N +K)(log N)T 2/3 log T ).
This is linear in the number of peers, contrary to
our logarithmic dependence. Finally, they allow for
a communication phase of log N rounds between the
consecutive arm pulling, which makes the problem
much easier than in our setup.

Both the fact that peers act in parallel, and that
we introduce a delay between pulling the arms re-
lates our approach to setups with delayed feedback
(Joulani, 2012). (Similar, but not bandit problem is
considered by (Langford et al., 2009)) In this model,
in round t, for each arm i a random value τi,t is
drawn, and the reward for pulling arm i is received
in round t + τi,t. However, the regret bounds in
Joulani (2012) grow linearly in the length of the ex-
pected delay, which is unusable in our setup where
the delay grows exponentially with T .

Our algorithm shows some superficial resemblance
with the Epoch-greedy algorithm introduced by
Langford & Zhang (2007). Epoch-greedy is also
based on the �-greedy algorithm and, just like ours,
it updates the arm selection rule based on new in-
formation only at the end of the epochs. However,
besides these similarities the two algorithms are
very different, and provide solutions to completely
different problems. In epoch-greedy the original
epsilon-greedy algorithm is modified in several cru-
cial points, of which the most important is that they
decouple the exploration and exploitation steps: ex-
ploration is only done in the last round of the epochs.
This is favorable in that specific contextual bandit

setting they work with, but would be harmful in our
setup, since it would generate too large regret.

Finally, it should be stressed that our main contri-
bution is the general approach to adapt �-greedy to
decentralized architectures with limited communica-
tion, such as P2P networks. It is not clear though
how to do this with other algorithms.

2. P2P-�-greedy: a peer-to-peer

�-greedy stochastic bandit

algorithm

In this section, we present our algorithm. Let
N,K ∈ N

+ denote the number of peers and the num-
ber of arms, respectively. For the easier analysis we
assume that N is a power of 2, that is N = 2m for
some m ∈ N. Throughout the description of our al-
gorithm and its analysis, we use the PerfectOver-

lay protocol which means that each peer sends mes-
sages to two other peers and receives messages from
the same two peers in each round.

Arms, peers, and rounds will be indexed by i =
1, . . . ,K, j, j� = 1, . . . , N , and t, t� = 1, . . . , T , re-
spectively. µi denotes the mean of the reward dis-
tribution for arm i. The indicator I

i
j,t is 1 if peer

j pulls arm i in round t, and 0 otherwise. The
immediate reward observed by peer j in round t
is ξj,t. In the standard setup, if all rewards were
communicated immediately to all peers, µi would
be estimated in round t by µ̂i

t = si
t/ni

t where

si
t =

�t
t�=1

�N
j�=1 I

i
j�,t�ξj�,t� is the sum of rewards

and ni
t =

�t
t�=1

�N
j�=1 I

i
j�,t� is the number of times

arm i was pulled. Using the PerfectOverlay

protocol, each peer j sends its s and n estimates
to its two neighbors, peer j1 and j2,

3 then peer j
updates its estimates by averaging the estimates of
its neighbors. Formally, in each round t, the esti-
mates at each peer j can be expressed as weighted

sums si
j,t =

�t
t�=1

�N
j�=1 wj�,t�

j,t I
i
j�,t�ξj�,t� and ni

j,t =
�t

t�=1

�N
j�=1 wj�,t�

j,t I
i
j�,t� , where the weights are de-

fined recursively as

wj�,t�

j,t =







0 if t < t� ∨ (t = t� ∧ j �= j�)

N if t = t� ∧ j = j�

1
2

�
wj�,t�

j1,t−1 + wj�,t�

j2,t−1

�
if t > t�.

(1)

It is then obvious that for t > 1, si
j,1 = I

i
j,1ξj,1 and

si
j,t = 1

2 (si
j1,t−1 + si

j2,t−1) . (2)

Once we have an estimate µ̂i
j,t = si

j,t/ni
j,t, the stan-

3j1 and j2 can change in every round, so we should
write j1,j,t and j2,j,t. We use j1 and j2 to ease notation.
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dard �-greedy policy of Auer et al. (2002) is to
choose the optimal arm (arm i for which µ̂i

j,t is max-
imal) with probability 1−�t, and a random arm with
probability �t, with �t converging to 0 at a speed of
1/t. The problem with this strategy in the P2P en-
vironment is that rewards received in recent rounds
do not have time to spread, making the standard
si

j,t/ni
j,t biased. To control this bias, we do not

use rewards ξj,t immediately after time t, rather we
collect them in auxiliary variables and work them
into the estimates only after a delay that grows
exponentially with time. For the formal descrip-

tion, let si
j,t(t1, t2) =

�t2
t�=t1

�N
j�=1 wj�,t�

j,t I
i
j�,t�ξj�,t�

and ni
j,t(t1, t2) =

�t2
t�=t1

�N
j�=1 wj�,t�

j,t I
i
j�,t� , and let

T (t) = 2�log(t−1)� the “log2 floor” (the largest inte-
ger power of 2 which is less then of t). With this
notation, the reward estimate of P2P-�-greedy is

µ̂i
j,t = ci

j,t/di
j,t, (3)

where ci
j,t = si

j,t

�
1, T (t/2) − 1

�
and di

j,t =

ni
j,t

�
1, T (t/2) − 1

�
. The simple naive implemen-

tation of the algorithm would be to communicate

the weight matrix
�
wj�,t�

j,t

�t�=1,...,t

j�=1,...,j
between neigh-

bors in each round t, and to compute µ̂i
j,t accord-

ing to (3) and (1). This would, however, imply
a linear communication cost in terms of the num-
ber of rounds t. It turns out that it is sufficient to
send six vectors of size K to each neighbor to com-
pute (3). Indeed, the quantities ai

j,t = si
j,t

�
T (t), t

�
,

bi
j,t = ni

j,t

�
T (t), t

�
, ri

j,t = si
j,t

�
T (t/2), T (t) − 1

�
,

qi
j,t = ni

j,t

�
T (t/2), T (t) − 1

�
, ci

j,t, and di
j,t can be

updated by

ci
j,t = ci

j,t + ri
j,t, di

j,t = di
j,t + qi

j,t

ri
j,t = ai

j,t, qi
j,t = bi

j,t (4)

ai
j,t = 0, bi

j,t = 0

each time when t is an integer power of 2, and by

ai
j,t+1 = ai

j,t +NI
i
j,tξj,t and bi

j,t+1 = bi
j,t +NI

i
j,t (5)

in every round t. In addition, in each iteration t, pre-
ceeding (5) and (4), all the six vectors are updated
by aggregating the neighbors, similarly to (2).

The intuitive rationale of the procedure is the fol-
lowing. A run is divided into epochs: the �-th epoch
starts in round t = 2� and ends in round t = 2�+1−1.
During the �th epoch, the rewards ξj,t are collected
in the vector aj,t = [ai

j,t]i=1,...,K and counted in b.
At the end of the epoch, they are copied into r and
q respectively. The rewards and the counts are fi-
nally copied into c and d, respectively, at the end of

epoch (� + 1). In other words, a reward obtained in
iteration t will not be used to estimate the expected
reward until the iteration 2 · 2log�t−1�. This proce-
dure allows the rewards to “spread” in the network
for a certain time before being used to estimate te
expected reward, which makes is possible to formally
control the bias of the estimates.

The pseudocode of P2P-�-greedy is summarized
in Algorithm 1. Formally, a model M is a 6-tuple
(c,d, r,q,a,b) where each component is a vector in
R

K . Peer j requests models Mj1,t and Mj2,t from
its two neighbors j1 and j2 (Line 1), aggregates them
into a new model Mj,t (Line 3), chooses an arm ij,t
based on Mj,t (Lines 7–8), and then updates Mj,t

based on the obtained reward (Line 10). When j is
asked for send a model, it sends its updated Mj,t+1.

3. Analysis

Before stating the main theorem, we introduce some
additional notations. The index of the unique op-
timal arm is denoted i∗ = arg max1≤i≤K µi. Let
∆i = µi∗ − µi. We assume (as Auer et al. 2002)
that there exist a lower bound d on the difference
between µ∗

i and the expected reward of the second
best arm, that is, ∃d : 0 < d ≤ mini �=i∗ ∆i. Our
main result is the following.

Theorem 1. Consider a P2P network of N peers
with a PerfectOverlay protocol. Assume that the
same K arms are available at each peer and that
the rewards come from [0, 1]. Then, for any c > 0,
the probability of selecting a suboptimal arm i �= i∗

at any peer by P2P-�-greedy after t ≥ cK/(d2N)
iterations is at most

c
d2tN + 2

�
c
d ln Ntd2e1/2

cK

� �
cK

Ntd2e1/2

� c
3d +

+ 4e
d2

�
cK

Ntd2e1/2

� c
2 + 4608

∆2

i
N32−t/2 . (6)

The first three terms of (6) correspond to the bound
given by Auer et al. (2002) for their version of the �-
greedy algorithm. The last term corresponds to the
P2P overhead: it results from the imperfect informa-
tion of a peer about the rewards received throughout
the network. This last term decays exponentially
and it becomes insignificant after O(log N) rounds.

The following corollary is a reformulation of The-
orem 1 in terms of the regret. Stochastic bandit
algorithms are usually evaluated in terms of the ex-
pected regret Rt =

�

i �=i∗ ∆i

�t
t�=1 P [it� = i], where

�t
t�=1 P [it� = i] is the expected number of times arm

i is pulled up to round t. In our P2P setup, an arm
is pulled in each round t and at each peer j, so we
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Algorithm 1 P2P-�-greedy at peer j in iteration t

1: Receive Mj1,t and Mj2,t from the two current neighbors
2: Let �t = min

�
1, cK

d2tN

�
� c > 0 is a real-valued parameter controlling the exploration

3: Mj,t = AGGREGATE(Mj1,t,Mj2,t)
4: if t = 1 then
5: Let ij,t = j mod K � Initial (arbitrary) arm-selection
6: else
7: With probability 1 − �t let ij,t = arg max{ci

j,t/di
j,t : 1 ≤ i ≤ K, di

j,t > 0} � exploitation step
8: and with probability �t let ij,t be the index of a random arm � exploration step

9: Pull arm ij,t and receive reward ξj,t

10: The model to be sent is Mj,t+1 = UPDATE(Mj,t, ξj,t, ij,t, t)

11: function AGGREGATE(M� = (c�,d�, r�,q�,a�,b�) ,M�� = (c��,d��, r��,q��,a��,b��))
12: c = (1/2)(c� + c��), d = (1/2)(d� + d��) � Elementwise vector operators
13: r = (1/2)(r� + r��), q = (1/2)(q� + q��)
14: a = (1/2)(a� + a��), b = (1/2)(b� + b��)
15: return M = (c,d, r,q,a,b)

16: function UPDATE(M = (c,d, r,q,a,b) , ξ, i, t)
17: if t is an integer power of 2 then
18: c = c + r, d = d + q, r = a, q = b, a = b = 0

19: ai = ai + Nξ, bi = bi + N
20: return M

are interested in upper bounding the sum of the ex-
pected regrets incurred at each peer

Rt =
�

i �=i∗

∆i

t�

t�=1

N�

j�=1

P [ij�,t� = i] , (7)

where P [ij,t = i] = P

�
I
i
j,t = 1

�
is the probability

that peer j pulls arm i in round t. Since the last term
of (6) becomes close to 0 only after O(log N) rounds,
we will not bound the total regret starting at round
zero, rather starting at round t̃(N) = O(log N).
This implies that the total regret will be increased
by a O(N log N) term, as explained in Section 1.3.

Corollary 2. Let Rt (7) denote the expected re-
gret for the whole network after t iterations in the
P2P-�-greedy algorithm. Then Rt − Rt̃(N) =
O

�
log(Nt)/d2

�
for some t̃(N) = O(log N).

We start the analysis by investigating cj,t in a par-
ticular peer j. For any arm 1 ≤ i ≤ K and any peer
1 ≤ j ≤ N , each component of cj,t can be rewritten
as the weighted sum of individual rewards received
up to iteration T (t/2)− 1, and then decomposed as

ci
j,t =si

j,t

�
1, T (t/2) − 1

�
=

T (t/2)−1
�

t�=1

N�

j�=1

wj�,t�

j,t I
i
j�,t�ξj�,t�

=

T (t/2)−1
�

t�=1

N�

j�=1

(wj�,t�

j,t − 1)Ii
j�,t�ξj�,t�

� �� �

zi
j,t, corresponds to (A) in the proof

+

T (t/2)−1
�

t�=1

N�

j�=1

I
i
j�,t�ξj�,t�

� �� �

recovered sum ((B) in the proof)

(8)

The following lemma states some important proper-
ties of the weights.

Lemma 3. For any rounds t� and t ≥ t�, and any
peer j�, the weights of the reward ξj�,t� in round t

sum up to N :
�N

j=1 wj�,t�

j,t = N . Furthermore, for

any t > t�, the weight wj�,t�

j,t is a random variable, it
is independent of j and ξj�,t� , and the distribution of

wj�,t�

j,t is identical at each peer j.

Proof. The first statement follows trivially from the
definition of the weights (1). The independence of
the weights of the peer indices and of the rewards is
true since the random assignments of neighbors of
the PerfectOverlay protocol is independent of
the bandit game.

The following lemma can be thought of as bound-
ing the “horizontal variance”: focusing on just one
specific reward ξj�,t� , it bounds the variance of its

5



weights wj�,t�

j,t throughout the network j = 1, . . . , N
in a given iteration t.

Lemma 4. For any t� ≥ 1, t > t�, and 1 ≤ j� ≤ N ,

we have E

�
�N

j=1(w
j�,t�

j,t − 1)2
�

≤ N2/2t−t� . Fur-

thermore, Ej

�

(wj�,t�

j,t − 1)2
�

≤ N/2t−t� .

Proof. The proof of the first statement follows
Kempe et al. (2003) and Jelasity et al. (2005) and
it is included in the supplementary material. The

last claim is true because the distributions of wj�,t�

j,t ,
j = 1, . . . , N , are identical (Lemma 3).

Using Lemma 4 we can now bound the variance of
the first term on the right hand side in (8), and the
variance of the first term of a similar decomposition
of di

j,t. We start with the latter.

Lemma 5. For any t ≥ 1, any 1 ≤ j ≤ N ,
and any 1 ≤ i ≤ K, the random variable yi

j,t =
�T (t/2)−1

t�=1

�N
j�=1(1 − wj�,t�

j,t )Ii
j�,t� has zero mean and

variance of at most 12N32−t/2.

Proof. The zero mean is a consequence of Lemma 3.
For the variance, we have

Var
�
yi

j,t

�
=

T (t/2)−1
�

t�,t��=1

N�

j�,j��=1

E

�

I
i
j�,t�I

i
j��,t��

�

1 − wj�,t�

j,t

�

×
�

1 − wj��,t��

j,t

� �

≤ N

T (t/2)−1
�

t�,t��=1

�
1

2t−t�

�
1

2t−t�� (9)

≤ N32−t/2
�

1
1−1/

√
2

�2

≤ 12N32−t/2 ,

where (9) follows from Lemma 4 and the Cauchy-
Schwarz inequality.

Lemma 6. For any t ≥ 1, any 1 ≤ j ≤ N ,
and any 1 ≤ i ≤ K, the random variable zi

j,t =
�T (t/2)−1

t�=1

�N
j�=1(1 − wj�,t�

j,t )Ii
j�,t�ξj�,t� has zero mean

and variance of at most Var
�
zi
j,t

�
≤ 12N32−t/2.

Proof. The first step is to exploit the fact that ξj,t ∈
[0, 1]. Then the proof is analogous to the proof of
Lemma 5.

Proof. of Theorem 1 (sketch) We first control the
first term (A) in (8) by analyzing a version of �-
greedy where N independent plays are allowed

per iteration. We follow closely the analysis of �-
greedy of Auer et al. (2002) with some trivial mod-
ifications. Then in (B) we relate this to P2P-�-
greedy and show that the difference is negligible.

Assume that t ≥ cK/(d2N), let �j = cK/(d2jN),

and let x0 = N
2K

�t
j=1 �j . The probability of choos-

ing some arm i in round t at peer j is

P [ij,t = i] ≤ �t

K + (1 − �t) P

�

ci
j,t/di

j,t ≥ ci∗

j,t/di∗

j,t

�

,

where i∗ = arg max1≤i≤K µi. The second term can
be decomposed as

P

�

ci
j,t/di

j,t ≥ ci∗

j,t/di∗

j,t

�

≤ P

�
ci

j,t

di
j,t

≥ µi + ∆i

2

�

+ P

�
ci∗

j,t

di∗
j,t

≤ µi∗ − ∆i

2

�

. (10)

Now let Ci
t =

�T (t/2)−1
t�=1

�N
j� ξj�,t�I

i
j�,t� ((B) in (8))

and Di
t =

�T (t/2)−1
t�=1

�N
j� I

i
j�,t� . Using the union

bound, we bound the first term of (10) by

P

�
ci

j,t

di
j,t

≥ µi + ∆i

2

�

≤P

�
Ci

t − µiD
i
t ≥

∆i

8 Di
t

�

+ P

�
ci
j,t − Ci

t ≥
∆i

8 Di
t

�

+ P

�
µi

�
Di

t − di
j,t

�
≥ ∆i

8 Di
t

�

+ P

�
∆i

2

�
Di

t − di
j,t

�
≥ ∆i

8 Di
t

�

= T1 + T2 + T3 + T4

We can upper bound T1 following Auer et al. (2002).
To upper bound T2 recall that, by Lemma 6,

ci
j,t − Ci

t =

T (t/2)−1
�

t�=1

N�

j�=1

(1 − wj�,t�

j,t )Ii
j�,t�ξj�,t� = zi

j,t

has expected value E

�
zi
j,t

�
= 0 and variance

Var
�
zi
j,t

�
≤ 12 · N32−t/2. Now apply Chebyshev’s

inequality for zi
j,t to get

T2 ≤ P

��
�zi

j,t

�
� ≥ ∆i

8

�
≤ 768

∆2

i
N32−t/2.

T3 and T4 can be upper bounded the same way using
Lemma 5, so T2 + T3 + T4 ≤ 2304

∆2

i
N32−t/2, and the

second term of (10) can be upper bounded following
the same steps. The proof can then be completed
by a slight modification of the original proof of Auer
et al. (2002) (see the supplementary material).

4. P2P-�-greedy.slim: a practical

algorithm

In P2P-�-greedy, each peer sends its model to two
other peers, inducing a network-wise communication
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Figure 1. Comparison of �-greedy and P2P-�-greedy in terms of regret (upper panels) and accuracy (lower panels).
We used the PerfectOverlay protocol in 1(a) and 1(c) and the Newscast protocol in 1(b) and 1(d).

cost of O(NK). This is impractical when K is large
(e.g., K ≈ N). In this section we present a practi-
cal algorithm with O(N) communication cost. The
main idea is that each peer sends and receives mod-
els about only one arm in each round. We have
no formal proof about the convergence of the algo-
rithm, but in experiments (Section 5) we found that
it worked almost as well as P2P-�-greedy.

In P2P-�-greedy.slim, the model becomes M =
(i, c, d, r, q, a, b), where i ∈ {0, . . . ,K} is the index of
the arm M stores information about, and c, d, r, q, a
and b are scalar values corresponding to the vector
variables in P2P-�-greedy. In each iteration, peer
j has its current model M corresponding to arm i,
and it receives two models M1 and M2 correspond-
ing to arms i1 and i2. Then it proceeds as follows.
(For complete pseudocode see Section D.)

1. If i1 �= i2, then let M� = M1 if c1/d1 > c2/d2,
and M� = M2 otherwise. Go to Step 3.

2. If i1 = i2, then let M� the result of the aggre-
gation of M1 and M2. Go to Step 3.

3. If i� = i, then let M = M� (replace the current
model with the incoming model). Go to Step 5.

4. If i� �= i, then let M be the better (with the
larger c/d) of M and M� with probability 1−�,
and the worse of the two models with probabil-
ity �. Go to Step 5.

5. Pull the arm i corresponding to the new model
M. Observe reward ξ. Add Nξ to a and N
to b. If t is an interger power of 2, update the
model variables analogously to P2P-�-greedy.
Finally, send the updated model to its neighbors
according to the particular protocol.

5. Experiments

In the first experiments, we verified our theoreti-
cal results in experiments on synthetic data. Our
first goal was to verify the main claim of the paper,
namely that the �-greedy algorithm can achieve
logarithmic regret after Ω(log N) iterations in a P2P.
Our second goal was to give empirical support to
our epoch-based technique. We compared the per-
formance of �-greedy, P2P-�-greedy, and a sim-
plified version of the P2P-�-greedy which only ag-
gregates the models in each iteration and works the
rewards into the mean estimates (cj,t/dj,t) immedi-
ately. We will refer to this simplified P2P algorithm
as P2P-�-Gr-merge. Although our regret analy-
sis was carried out by assuming PerfectOverlay

protocol, we also tested the P2P algorithms using
the Newscast protocol. We used P2P networks
with various sizes: N = 10, 100, 1000. We compared
the performances of the algorithms in terms of their
regret and their accuracy (rate of plays on which the
best arm is selected). The test problem consisted of
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Figure 2. Comparison of the P2P-�-greedy and the
P2P-�-greedy.slim algorithms in terms of (a) regret
and (b) accuracy using P2P networks of various sizes.
The Newscast protocol was used in every case.

K = 10 arms with Bernoulli distributions whose pa-
rameters were set to µi = 0.1+0.8(i−1)/(K−1). Ac-
cordingly, we set the parameter d to 0.07 < mini ∆i.
The only hyperparameter of the �-greedy methods
is set to c = 0.1. The performance measures (regret
and accuracy) of the algorithms are plotted against
number of plays in Figure 1. The results show av-
erages over 10 repetitions of the simulation. We
remark that the P2P adaptations of �-greedy algo-
rithm pulls N arms in each iteration, thus the curves
concerning to P2P algorithms start at the Nth play.

The plots show that, first, the performance of P2P-

�-greedy scales gracefully with respect to the num-
ber of peers and its regret grows at the same speed as
that of �-greedy in accordance with our main result
(Corollary 2). Furthermore, their regrets are also
on a par with respect to the number of plays. Sec-
ond, P2P-�-Gr-merge converges slower than P2P-

�-greedy which confirms empirically the need to de-
lay using the rewards in the estimates.4 Third, the
performance of P2P-�-greedy does not deteriorate
significantly with the Newscast protocol, which is

4See more on this in Section E in the Supplementary.

an important experimental results from a practical
point of view. Finally, note that the significant leap
in the regret when N = 1000 is due to the N log N
cost of spreading the information.5

In the second experiment, we compared the perfor-
mance of P2P-�-greedy.slim and P2P-�-greedy

using the same stochastic bandit setup as in the first
experiment. We used Newscast in the test runs.
Both algorithms were run with the same parame-
ters (c = 0.1, d = 0.07) using P2P networks of sizes
N = 10, 100, 1000. Figure 2 shows the regret and ac-
curacy against number of plays. The results are av-
eraged over 10 repetitions of the simulation. P2P-�-
greedy.slim is slightly worse than P2P-�-greedy

but asymptotically it performs comparably for a K
times smaller communication cost.

6. Conclusions and Further work

In this paper, we adapted the �-greedy stochastic
bandit algorithm to P2P architecture. We showed
that P2P.�-greedy preserves the asymptotic be-
havior of its standalone version, that is, the regret
bound is O(tN) for the P2P version if t = Ω(log N),
and thus achieves significant speed-up. Moreover,
we presented a heuristic version of P2P.�-greedy

which has a lower network communication cost. Ex-
periments support our theoretical results. As a fur-
ther work, we plan to investigate how to adapt some
appropriately randomized version of the UCB ban-
dit algorithm(Auer et al., 2002) to P2P environment.
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