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Abstract
The first measurement of the effective lifetime of the B? meson in the decay BY —
Dy DY is reported using a proton-proton collision dataset, corresponding to an
integrated luminosity of 3fb~!, collected by the LHCb experiment. The measured
value of the BY — D7 D effective lifetime is 1.379 + 0.026 4+ 0.017 ps, where the
uncertainties are statistical and systematic, respectively. This lifetime translates
into a measurement of the decay width of the light B? mass eigenstate of I'y, =
0.725+0.014+0.009 ps—!. The BY lifetime is also measured using the flavor-specific
BY — D™D} decay to be 1.52 & 0.15 4 0.01 ps.
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A central goal in quark-flavor physics is to test whether the Cabibbo-Kobayashi-
Maskawa (CKM) mechanism [1,2] can fully describe all relevant weak decay observables,
or if physics beyond the Standard Model (SM) is needed. In the neutral B meson sector,
the mass eigenstates do not coincide with the flavor eigenstates as a result of BB mixing.
In addition to measurable mass splittings between the mass eigenstates [3], the By system
also exhibits a sizeable difference in the decay widths I't, and 'y, where the subscripts L
and H refer to the light and heavy mass eigenstates, respectively. This difference is due
to the large decay width to final states accessible to both B? and BY. In the absence of
CP violation, the mass eigenstates are also eigenstates of CP. The summed decay rate of
BY and B? to the CP-even D D7 final state can be written as [4]

F§2—>D;Dj' (t) + FBQ—>D;“DS_ (t) o< (14 cos ¢g)e "t + (1 — cos ¢, )e HE, (1)

where ¢, is the (CP-violating) relative weak phase between the B? mixing and b — ces
decay amplitudes.

The untagged decay rate in Eq. [1| provides a probe of ¢4, I', and I'y in a way that
is complementary to direct determinations using CP violating asymmetries [5]. Approxi-
mating Eq. [I| by a single exponential
7t/TCH

Ugo,p;f (t) + U'pop+p: (t) occe = BEmpiDT (2)

defines the B? — D7 D effective lifetime, which can be written as Tl%f(f)ﬁ p-p+ = TEo(l —
ys cos ¢s + O(y2)) [4,6], assuming no direct CP violation in the B® — D7 D decay. Here
ys = AT, /(2T), ATy =T, —Tyand 'y = Ty + 1) /2 = 1/7'58, where 75, is the flavor-
specific BY lifetime. Using the measured value of ¢, = 0.01 4 0.07 + 0.01 rad [5], which

is in good agreement with the SM expectation of —0.036373991% rad [7], it follows that

i ~T-1
T%g%D;D;* - FL )

The most precise measurement to date of the effective lifetime in a CP-even final state

used B? — K*K~ [8] decays, and yielded a value 7<% = 1.455 + 0.046 (stat) +

BO—K+K~
0.006 (syst) ps. Loop contributions, both within, and possibly beyond the SM, are ex-
pected to be significantly larger in B — K+ K~ than in B? — D;D}. These contri-
butions give rise to direct CP violation in the B? — K*K~ decay [9], which lead to
differences between 7% in these two CP final state decays,making a comparison of their
effective lifetimes interesting. Measurements have also been made in CP-odd modes, such
as BY — J/ £5(980) [10,11] and B — JAp K2 [12]. The most precise value is from the

former, yielding T%fé—u/zpfo(gso) = 1.700 % 0.040 (stat) &+ 0.026 (syst) ps [10]. Constraints

from these measurements on the (Al'y, ¢5) parameter space are given in Refs. [4][13].
Improved precision on the effective lifetimes will enable more stringent tests of the consis-
tency between the direct measurements of Al'y and ¢,, and those inferred using effective
lifetimes.

In this Letter, the BY — DD} time-dependent decay rate is normalized to the
corresponding rate in the B~ — DD decay, which has similar final state topology and
kinematic properties, and a precisely measured lifetime of 75- = 1.641£0.008 ps [14]. As

1



a result, many of the systematic uncertainties cancel in the measured ratio. The relative
rate is then given by

U prpr () +Upoprp ()
xe ¢ s (3)
Py pop; () + e popy (1)

_ eff o : eff
where ag, = 1/ B0 pr DY 1/75-. A measurement of oy, therefore determines T3 D D

The BY meson lifetime is also measured using the flavor-specific, Cabibbo-suppressed
BY — D™D7 decay. Its time-dependent rate is normalized to that of the B® — D~ D}
decay. In what follows, the symbol B without a flavor designation refers to either a B~, B°
or BY meson, and D refers to either a D°, D+ or D} meson. Unless otherwise indicated,
charge conjugate final states are included.

The measurements presented use a proton-proton (pp) collision data sample corre-
sponding to 3 fb™! of integrated luminosity, 1fb~! recorded at a center-of-mass energy of
7TeV and 2fb~" at 8 TeV, collected by the LHCb experiment. The LHCb detector [15] is
a single-arm forward spectrometer covering the pseudorapidity range 2 < n < 5, designed
for the study of particles containing b or ¢ quarks. The detector includes a high-precision
tracking system consisting of a silicon-strip vertex detector surrounding the pp interac-
tion region, a large-area silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift
tubes placed downstream. The combined tracking system provides a momentum measure-
ment with relative uncertainty that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/¢, and
impact parameter (IP) resolution of 20 um for tracks with large transverse momentum
(pr). Ring-imaging Cherenkov detectors [16] are used to distinguish charged hadrons,
and photon, electron and hadron candidates are identified by a calorimeter system con-
sisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system composed of alternating layers of
iron and multiwire proportional chambers [17].

The trigger [18] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies a full event reconstruc-
tion [18,/19]. No specific requirement is made on the hardware trigger decision. Of the
B meson candidates considered in this analysis, about 60% are triggered at the hardware
level by one or more of the final state particles in the signal B decay. The remaining 40%
are triggered due to other activity in the event. The software trigger requires a two-, three-
or four-track secondary vertex with a large sum of the transverse momentum of the tracks
and a significant displacement from the primary pp interaction vertices (PVs). At least
one track should have pr > 1.7 GeV/c and % with respect to any primary interaction
greater than 16, where x% is defined as the difference in x? of a given PV reconstructed
with and without the considered particle included. The signal candidates used in this
analysis are required to pass a multivariate software trigger selection algorithm [19].

Proton-proton collisions are simulated using PyTHIA [20] with a specific LHCb config-
uration [21]. Decays of hadronic particles are described by EVTGEN [22], in which final
state radiation is generated using PHOTOS [23]. The interaction of the generated parti-



cles with the detector and its response are implemented using the GEANT4 toolkit [24]
as described in Ref. [25].

Signal B? — D7D} candidates are reconstructed using four final states: (i)
Df - K*K—=n*, D; - K K'n~, (i) Df —» KK n", D; — n ntzn, (iii)
Df - K"K n",D; — K ntn~, and (iv) D} — #nfn 7", D; — 7 ntx~. In the
normalization mode, B~ — D°D_, only the final state D° — K~ D; — K- K'n~
is used. For the BY — D~ D7 decay and the corresponding B° normalization mode, the
D~ — Ktn 7, Df — K"K 7" final state is used. Loose particle identification (PID)
requirements are imposed on kaon and pion candidates, with efficiencies typically in ex-
cess of 95%. The D candidates are required to have masses within 25MeV/c? of their
known values [14] and to have vertex separation from the B vertex satisfying x3q > 2.
Here x%g is the increase in x? of the parent (B) vertex fit when the (D meson) decay
products are constrained to come from the parent vertex, relative to the nominal fit. To
suppress the large background from BY — D¥w~ 77~ decays, D; — 7 777~ candidates
are required to have x4 > 6. As the signatures of b-hadron decays to double-charm final
states are similar, vetoes are employed to suppress the cross-feed resulting from parti-
cle misidentification, following Ref. [26]. For the DI — K*n 7" decay, an additional
veto to suppress cross-feed from Dt — K- 7"7" with double-misidentification is em-
ployed, which renders this background negligible. Potential background to D} decays
from D** — D7t with D — KtK~, 77~ is also removed by requiring the mass
difference, M (D°x ") — M (D°) > 150 MeV/c?. The production point of each B candidate
is taken as the PV with the smallest x% value. All B candidates are refit taking both D
mass and vertex constraints into account [27].

The efficiencies of the PID and veto requirements are evaluated using dedicated D** —
D7t DY — K-zt calibration samples collected at the same time as the data. The
kinematic distributions of kaons and pions from the calibration sample are reweighted
using simulation to match those of the B decays under study. The combined PID and
veto efficiencies are 91.4% for B~ — D°D7, 88.0% for (B?, B°) — D~Df, and 86.5%,
90.8%, 86.6%, and 95.9% for the B? — D; D7 final states (i)—(iv), respectively.

To further improve the signal-to-background ratio, a boosted decision tree (BDT) [28,
29] algorithm using seventeen input variables is employed. Five variables from the B
candidate are used, including x%, the vertex fit x2, (with D mass, and vertex constraints),
the PV x%q, pr, and a pr asymmetry variable [30]. For each D daughter, x?5, the flight
distance from the B vertex normalized by its uncertainty, and the maximum distance
between the trajectories of any pair of particles in the D decay, are used. Lastly, for each D
candidate, the minimum pr, and both the smallest and largest 7, among the D daughter
particles are used. The BDT uses simulated decays to emulate the signal and wrong-
charge final states from data with masses larger than 5.2 GeV/c? for the background. Here,
wrong-charge refers to DD, DE*D* and D°D} combinations, where in the latter case
we remove candidates within 30 MeV/c? of the BT mass [14], to remove the small doubly-
Cabibbo-suppressed decay contribution to this final state. The selection requirement on
the BDT output is chosen to maximize the expected B — D D7 signal significance,
corresponding to signal and background efficiencies of about 97% and 33%, respectively.
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Figure 1: Ratio of selection efficiencies for B~ — DYD; relative to BY — Dy D} decays as a
function of decay time. The uncertainties shown are due to finite simulated sample sizes.

More than one candidate per event is allowed, but after all selections the fraction of events
with multiple candidates is below 0.25% for all modes.

For the lifetime analysis, we consider only B candidates with reconstructed decay
time less than 9 ps. Signal efficiencies as functions of decay time are determined using
simulated decays after all selections, except those that involve PID, as described above.
The resulting B~ to BY relative efficiency as a function of decay time is shown in Fig. ,
where six decay time bins with widths ranging between 1 and 3 ps are used. For the
BY — D7 DY decay, the efficiency used in the ratio is the weighted average of the DF D7
final states (i)—(iv), where the weights are obtained from the observed yields in data.
The efficiency accounts for the migration between bins, which is small since the resolution
on the reconstructed time of ~50 fs is much less than the bin width. Moreover, the time
resolution is nearly identical for the signal and normalization modes, and is independent
of the reconstructed lifetime. The relative efficiency is consistent with being independent
of decay time, however, the computed bin-by-bin efficiencies are used to correct the data.

The mass distributions for the signal, summed over the four final states, and the
normalization modes are shown in Fig. 2| along with the results of binned maximum
likelihood fits. The B signal shapes are each modeled using the sum of two Crystal Ball
(CB) functions [31] with a common mean. The shape parameters are fixed from fits to
simulated signal decays, with the exception of the resolution parameter, which is found
to be about 15% larger in data than simulation. The shape of the low-mass background
from partially reconstructed decays, where either a photon or pion is missing, is obtained
from simulated decays, as are the cross-feed background shapes from B® — D~ D{ and
A) — AFD; decays (BY — D; D} channel only). An additional peaking background
due to B — DK~ K*7~ decays is also included in the fit. Its shape is obtained from
simulation and the yield is fixed to be 1% of the signal yield from a fit to the D mass
sidebands. The combinatorial background shape is described by an exponential function
with the shape parameter fixed to the value obtained from a fit to the mass spectrum
of wrong-charge candidates. All yields, except that of the B — DK~ K*tn~, are freely
varied in the fit to the full data sample.
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Figure 2: Mass distributions and fits to the full data sample for (left) B? — D; D} and (right)
B~ — DYD; candidates. The points are the data and the curves and shaded regions show the
fit components.

In total, we observe 3499465 B? — D7D} and 19,432 +£140 B~ — D°D; decays.
The data are split into the time bins shown in Fig. |1, and each mass distribution is fitted
with the CB widths fixed to the values obtained from the full fit. The independence
of the signal shape parameters on decay time is validated using simulated decays. The
ratios of yields are then computed, and corrected by the relative efficiencies shown in
Fig. [ Figure [3] shows the efficiency-corrected yield ratios as a function of decay time.
The data points are placed at the average time within each bin assuming an exponential
form e~*/(15P%)  Fitting an exponential function to the data yields the result oy, =
0.1156 4= 0.0139 ps—t. The uncertainty in the fitted slope due to using the value of 1.5 ps

to get the average time in each bin is negligible. Using the known B~ lifetime, 7¢f

TEg—m;D;
is determined to be 1.379 4 0.026 (stat) ps.

As a cross-check, the full analysis is applied to the B~ — D°D; and B — D™D}
decays, treating the former as the signal mode and the latter as the normalization mode.
The fitted value for o = 1/70 —1/75- is 0.0500+0.0076 ps~!, in excellent agreement with
the expected value of 0.0489 + 0.0042 [14]. This check indicates that the relative lifetime
measurements are insensitive to small differences in the number of charged particles or
lifetimes of the D mesons in the final state. The B® — D™D mode could have also been
used as a normalization mode for the B® — D7 D time-dependent rate measurement, but
due to limited simulated sample sizes it would have led to a larger systematic uncertainty.

As the method for determining T%fg_) - p+ relies on ratios of yields and efficiencies,

many systematic uncertainties cancel. The robustness of the relative acceptance is tested
by subdividing the sample into mutually exclusive subsamples based on (i) center of
mass energy, (ii) D, D final states, and (iii) hardware trigger decision, and searching for
deviations larger than those expected from the finite sizes of the samples. The results from
all checks were found to be within one standard deviation of the average. Based on the
largest deviation, we assign a 0.010 ps systematic uncertainty due to the modeling of the
relative acceptance. The statistical precision on the relative acceptance, as obtained from
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Figure 3: Efficiency corrected yield ratio of BY — D D} relative to B~ — DD as a function
of decay time, along with the exponential fit. The uncertainties are statistical only.

simulation, contributes an uncertainty of 0.011 ps. Using a different signal shape to fit the
data leads to 0.003 ps uncertainty. If the combinatorial background shape parameter is
allowed to freely vary in each time bin fit, we find a deviation of 0.001 ps from the nominal
value of T%%_} Ds D which is assigned as a systematic uncertainty. Due to the presence of
a non-trivial acceptance function, the result of fitting a single exponential to the untagged
BY decay time distribution does not coincide precisely with the formal definition of the
effective lifetime [32]. The deviation between ng% p-p+ and the single exponential fit
is at most 0.001 ps [32], which is assigned as a Ssystematic uncertainty. The precision
on the B~ lifetime leads to 0.008 ps uncertainty on the value of T%%_} DD Summing
these deviations in quadrature, we obtain a total systematic uncertaisnty of 0.017 ps. In
converting to a measurement of I'y, an additional uncertainty due to a small CP-odd
component of expected size 1 — cos ¢, = (0.1 & 3.2) x 1073 [5] leads to a bias no larger
than —0.001 ps—!. This is included in the '}, systematic uncertainty.

The value of 7'}%1:(5_> D= DF and the corresponding decay width of the light BY mass eigen-

state are determined to be
T bt = 1.37940.026 £ 0.017 ps,
I', = 0.725 4+ 0.014 £ 0.009 ps™*,

where the first uncertainty is statistical and the second is systematic. These are the first
such measurements using the B® — D D} decay. The measured effective lifetime rep-
resents the most precise measurement of the width of the light BY mass eigenstate, and
is about one standard deviation lower than the value obtained using B — K+ K~ de-
cays [8]. Compared to the B — D D} decay, which is dominated by tree-level processes,
the BY — K*K~ decay is expected to have larger relative contributions from SM-loop
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amplitudes ,, and therefore one should not naively average the effective lifetimes
from these two decays. Moreover, if non-SM particles contribute additional amplitudes,
their effect is likely to be larger in B? — K*K~ than in B — D; D7 decays [35).

The value of I', obtained in this analysis may be compared to the value inferred
from the time-dependent analyses of J/i K™K~ and J/intn~ decays. Using the values
Iy, = 0.661 & 0.004 & 0.006 ps~! and AI'; = 0.106 £ 0.011 & 0.007 ps~* , we find
I, = 0.714 £ 0.010 ps—*, in good agreement with the value obtained from T%%_}DS_D:.

The effective lifetime of the flavor-specific B — D~ D7 decay is also measured, using
the B — D~ D7 decay for normalization. The technique is identical to that described
above, with the simplification that the relative efficiency equals one, since the final states
are identical. Effects due to the mass difference between the BY and BY mesons are negli-
gible. A tighter BDT selection is imposed to optimize the expected signal-to-background
ratio, which results in signal and background efficiencies of 87% and 11%, respectively.
The mass spectrum and the corresponding fit are shown in Fig. 4] where the fitted com-
ponents are analogous to those described previously. A total of 230+£18 B? — D~ D7 and
21,195+ 147 BY — D~ D7 decays are obtained. The time bins are the same as above, ex-
cept the 6—9 ps bin is dropped, since the yield in the signal mode beyond 6 ps is negligible.
The relative decay rate is fitted to an exponential form Ce™?*, where C is a normalization
constant. The fitted value of 3 is 0.000 £ 0.068 ps~. The systematic uncertainty due
to the signal shape is 0.007 ps, obtained by using a different signal shape function. The
exponential background shape is fixed in the nominal fit using D*DF candidates, and
a systematic uncertainty of 0.010 ps is determined by allowing its shape parameter to
vary freely in the fit. In determining the effective lifetime, an uncertainty of 0.007 ps due
to the limited precision of the B lifetime is also included. The resulting effective



lifetime in the B — D™D} mode is

Top-p+ = 1.52£0.15£0.01 ps.
This is the first measurement of the BY lifetime using the BY — D~ D7 decay. Its value
is consistent with previous direct and indirect measurements of the BY lifetime in other
flavor-specific decays.

In summary, we report the first measurement of the BY — D7 D effective lifetime and
present the most precise direct measurement of the width of the light B mass eigenstate.
Their values are T%%HD;D: = 1.37940.026+0.017 ps and I';, = 0.72540.0144-0.009 ps—*.
The T'y, result is consistent with the value obtained from previously measured values of
AT, and Ty [5]. We also determine the average B? lifetime to be 1.52 4= 0.15 4+ 0.01 ps

using the B — D~ D7 decay, which is consistent with other measurements.
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