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Two equivalent ways of looking for mutually unbiased bases are discussed in this note. The passage from the search for d+1 mutually unbiased bases in C d to the search for d(d+1) vectors in C d 2 satisfying constraint relations is clarified. Symmetric informationally complete positive-operatorvalued measures are briefly discussed in a similar vein.

Introduction

The concept of mutually unbiased bases (MUBs) plays an important role in finite-dimensional quantum mechanics and quantum information (for more details, see [START_REF] Vourdas | Quantum systems with finite Hilbert space[END_REF][START_REF] Tolar | Feynman's path integral and mutually unbiased bases[END_REF][START_REF] Kibler | An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, unitary group and Pauli group[END_REF][START_REF] Durt | On mutually unbiased bases[END_REF] and references therein). Let us recall that two orthonormal bases {|aα : α = 0, 1, . . . , d -1} and {|bβ : β = 0, 1, . . . , d-1} in the d-dimensional Hilbert space C d (endowed with an inner product denoted as | ) are said to be unbiased if the modulus of the inner product aα|bβ of any vector |bβ with any vector |aα is equal to 1/ √ d. It is known that the maximum number of MUBs in C d is d + 1 and that this number is reached when d is a power of a prime integer. In the case where d is not a prime integer, it is not known if one can construct d + 1 MUBs (see [START_REF] Durt | On mutually unbiased bases[END_REF] for a review).

In a recent paper [START_REF] Kibler | Equiangular vectors approach to mutually unbiased bases[END_REF], it was discussed how the search for d + 1 mutually unbiased bases in C d can be approached via the search for d(d + 1) vectors in C d 2 satisfying constraint relations. It is the main aim of this note to make the results in [START_REF] Kibler | Equiangular vectors approach to mutually unbiased bases[END_REF] more precise and to show that the two approaches (looking for d + 1 MUBs in C d or for d(d + 1) vectors in C d 2 ) are entirely equivalent. The central results are presented in Sections 2 and 3. In Section 4, parallel developments for the search of a symmetric informationally complete positive-operator-valued measure (SIC POVM) are considered in the framework of similar approaches. Some concluding remarks are given in the last section.

The two approaches

It was shown in [START_REF] Kibler | Equiangular vectors approach to mutually unbiased bases[END_REF] how the problem of finding d + 1 MUBs in C d , i.e., d + 1 bases

B a = {|aα : α = 0, 1, . . . , d -1} (1) 
satisfying

| aα|bβ | = δ α,β δ a,b + 1 √ d (1 -δ a,b ) (2) 
can be transformed in the problem of finding d(d + 1) vectors w(aα) in C d 2 , of components w pq (aα), satisfying

w pq (aα) = w qp (aα), p, q ∈ Z/dZ (3) d-1 p=0 w pp (aα) = 1 (4) 
and

d-1 p=0 d-1 q=0 w pq (aα)w pq (bβ) = δ α,β δ a,b + 1 d (1 -δ a,b ) (5)
with a, b = 0, 1, . . . , d and α, β = 0, 1, . . . , d -1 in (1)-( 5). (In this paper, the bar denotes complex conjugation.) This result was described by Proposition 1 in [START_REF] Kibler | Equiangular vectors approach to mutually unbiased bases[END_REF]. In fact, the equivalence of the two approaches (in C d and C d 2 ) requires that each component w pq (aα) be factorized as

w pq (aα) = ω p (aα)ω q (aα) (6) 
for a = 0, 1, . . . , d and α = 0, 1, . . . , d -1, a condition satisfied by the example given in [START_REF] Kibler | Equiangular vectors approach to mutually unbiased bases[END_REF]. The factorization of w pq (aα) follows from the fact that the operator Π aα defined in [START_REF] Kibler | Equiangular vectors approach to mutually unbiased bases[END_REF] is a projection operator. The introduction of ( 6) in ( 3), ( 4) and ( 5) leads to some simplifications. First, (6) implies the hermiticity condition (3). Second, by introducing ( 6) into ( 4) and ( 5), we obtain

d-1 p=0 |ω p (aα)| 2 = 1 (7) 
and

d-1 p=0 ω p (aα)ω p (bβ) 2 = δ α,β δ a,b + 1 d (1 -δ a,b ) (8)
respectively. It is clear that [START_REF] Appleby | Group theoretic, Lie algebraic and Jordan algebraic formulations of the SIC existence problem[END_REF] follows from ( 8) with a = b and α = β. Therefore, (3) and ( 7) are redundant in view of ( 5) and ( 6). As a consequence, Maurice R. Kibler
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PREPRINT Proposition 1 in [START_REF] Kibler | Equiangular vectors approach to mutually unbiased bases[END_REF] can be precised and reformulated in the following way.

Proposition 1. For d ≥ 2, finding d + 1 MUBs in C d (if they exist) is equivalent to finding d(d + 1) vectors w(aα) in C d 2 , of components w pq (aα) such that d-1 p=0 d-1 q=0 w pq (aα)w pq (bβ) = δ α,β δ a,b + 1 d (1 -δ a,b ) (9)
and w pq (aα) = ω p (aα)ω q (aα), p, q ∈ Z/dZ [START_REF] Brierley | Constructing mutually unbiased bases in dimension six[END_REF] where a, b = 0, 1, . . . , d and α, β = 0, 1, . . 

(M aα ) pq = ω p (aα)ω q (aα), p, q ∈ Z/dZ (11)
and satisfying the trace relations

Tr (M aα M bβ ) = δ α,β δ a,b + 1 d (1 -δ a,b ) (12)
where a, b = 0, 1, . . . , d and α, β = 0, 1, . . . , d -1.

Equivalence

Suppose that we have a complete set {B a : a = 0, 1, . . . , d} of d + 1 MUBs in C d , i.e., d(d + 1) vectors |aα satisfying (2), then we can find d(d + 1) vectors w(aα) in C d 2 , of components w pq (aα), satisfying [START_REF] Butterley | Numerical evidence for the maximum number of mutually unbiased bases in dimension six[END_REF] and [START_REF] Brierley | Constructing mutually unbiased bases in dimension six[END_REF]. This can be achieved by introducing the projection operators

Π aα = |aα aα| ( 13 
)
where a = 0, 1, . . . , d and α = 0, 1, . . . , d -1. In fact, it is sufficient to develop Π aα in terms of the E pq generators of the GL(d, C) complex Lie group; the coefficients of the development are nothing but the w pq (aα) complex numbers satisfying ( 9) and [START_REF] Brierley | Constructing mutually unbiased bases in dimension six[END_REF], see [START_REF] Kibler | Equiangular vectors approach to mutually unbiased bases[END_REF] for more precisions.

Reciprocally, should we find d(d + 1) vectors w(aα) in C d 2 , of components w pq (aα), satisfying ( 9) and ( 10), then we could construct d(d + 1) vectors |aα satisfying (2). This can be done by means of a diagonalization procedure of the matrices

M aα = d-1 p=0 d-1 q=0 w pq (aα)E pq ( 14 
)
where a = 0, 1, . . . , d and α = 0, 1, . . . , d -1. An alternative and more simple way to obtain the |aα vectors from the w(aα) vectors is as follows. Equation (8) leads to

d-1 p=0 ω p (aα)ω p (bβ) = δ α,β δ a,b + 1 √ d (1 -δ a,b ) (15)
to be compared with [START_REF] Tolar | Feynman's path integral and mutually unbiased bases[END_REF]. Then, the |aα vectors can be constructed once the w(aα) vectors are known. The solution, in matrix form, is

|aα =      ω 0 (aα) ω 1 (aα) . . . ω d-1 (aα)      (16) a = 0, 1, . . . , d α = 0, 1, . . . , d -1 (17) 
Therefore, we can construct a complete set {B a : a = 0, 1, . . . , d} of d+1 MUBs from the knowledge of d(d+ 1) vectors w(aα). Note that, for fixed a and α, the |aα vector is an eigenvector of the M aα matrix with the eigenvalue 1. This establishes a link with the above-mentioned diagonalization procedure.

A parallel problem

The present work takes its origin in [START_REF] Albouy | A unified approach to SIC-POVMs and MUBs[END_REF] where some similar developments were achieved for the search of a SIC POVM. Symmetric informationally complete positive-operator-valued measures play an important role in quantum information. Their existence in arbitrary dimension is still the object of numerous studies (see for instance [START_REF] Appleby | Group theoretic, Lie algebraic and Jordan algebraic formulations of the SIC existence problem[END_REF]). A SIC POVM in dimension d can be defined as a set of d 2 nonnegative operators P x = |Φ x Φ x | acting on C d and satisfying 1 d

d 2 x=1 P x = I (18)
and

Tr (P x P y ) = dδ x,y + 1 d + 1 ( 19 
)
where I is the identity operator. The search for such a SIC POVM amounts to find

d 2 vectors |Φ x in C d satisfying 1 d d 2 x=1 |Φ x Φ x | = I (20)
and

| Φ x |Φ y | = dδ x,y + 1 d + 1 (21) 
with x, y = 1, 2, . . . , d 2 . The P x operator can be developed as

P x = d-1 p=0 d-1 q=0 v pq (x)E pq (22)
so that the determination of d 2 operators P x (or

d 2 vectors |Φ x ) is equivalent to the determination of d 2 vectors v(x), of components v pq (x), in C d 2 .
In the spirit of the preceding sections, we have the following result.
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Proposition 3. For d ≥ 2, finding a SIC POVM in C d (if it exists) is equivalent to finding d 2 vectors v(x) in C d 2 , of components v pq (x) such that 1 d d 2 x=1 v pq (x) = δ p,q , p, q ∈ Z/dZ (23) d-1 p=0 d-1 q=0 v pq (x)v pq (y) = dδ x,y + 1 d + 1 ( 24 
)
and v pq (x) = ν p (x)ν q (x), p, q ∈ Z/dZ (25)

where x, y = 1, 2, . . . , d 2 .

Concluding remarks

The equivalence discussed in this work of the two ways of looking at MUBs amounts in some sense to the equivalence between the search for equiangular lines in C d and for equiangular vectors in C d 2 (cf. [START_REF] Godsil | Equiangular lines, mutually unbiased bases, and spin models[END_REF]). Equiangular lines in C d correspond to Observe that the modulus disappears and the 1/ √ d factor is replaced by 1/d when passing from (26) to (27). It was questioned in [START_REF] Kibler | Equiangular vectors approach to mutually unbiased bases[END_REF] if the equiangular vectors approach can shed light on the still unsolved question to know if one can find d+1 MUBs when d is not a (strictly positive) power of a prime integer. In the case where d is not a power of a prime, the impossibility of finding d(d + 1) vectors w(aα) or d(d + 1) matrices M aα satisfying the conditions in Propositions 1 and 2 would mean that d + 1 MUBs do not exist in C d . However, it is hard to know if one approach is better than the other. It is the hope of the author that the equiangular vectors approach be tested in the d = 6 case for which one knows only three MUBs instead of d + 1 = 7 in spite of numerous numerical studies (see [START_REF] Butterley | Numerical evidence for the maximum number of mutually unbiased bases in dimension six[END_REF][START_REF] Brierley | Constructing mutually unbiased bases in dimension six[END_REF][START_REF] Mcnulty | On the impossibility to extend triples of mutually unbiased product bases in dimension six[END_REF] and references therein for an extensive list of related works).

| aα|bβ | = 1 √ d for a = b ( 26 
Similar remarks apply to SIC POVMs. The existence problem of SIC POVMs in arbitrary dimension is still unsolved although SIC POVMs have been constructed in every dimension d ≤ 67 (see [START_REF] Appleby | Group theoretic, Lie algebraic and Jordan algebraic formulations of the SIC existence problem[END_REF] The parallel between MUBs and SIC POVM characterized by the couples of equations ( 26)-( 29), ( 27)-( 30) and ( 28)-(31) should be noted. These matters shall be the subject of a future work.

w

  ) while equiangular vectors in C d 2 correspond to w(aα) • w(bβ) = 1 d for a = b (27)where the w(aα) • w(bβ) inner product in C d 2 is depq (aα)w pq (bβ) (28)

  and references therein). For SIC POVMs, the equiangular lines in C d correspond to| Φ x |Φ y | = 1 √ d + 1 for x = y (29)and the equiangular vectors inC d 2 to v(x) • v(y) = 1 d + 1 for x = y (30)where the v(x) • v(y) inner product in C d 2 is defined asv(x) • v(y) =

  . , d -1. This result can be transcribed in matrix form. Therefore, we have the following proposition. Proposition 2. For d ≥ 2, finding d + 1 MUBs in C d (if they exist) is equivalent to finding d(d + 1) matrices M aα of dimension d, with elements
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