
HAL Id: in2p3-00935607
https://hal.in2p3.fr/in2p3-00935607

Submitted on 23 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MDDAG: learning deep decision DAGs in a Markov
decision process setup

D. Benbouzid, Róbert Busa-Fekete, Balázs Kégl

To cite this version:
D. Benbouzid, Róbert Busa-Fekete, Balázs Kégl. MDDAG: learning deep decision DAGs in a Markov
decision process setup. 25th Annual Conference on Neural Information Processing Systems (NIPS
2011), Dec 2011, Granada, Spain. �in2p3-00935607�

https://hal.in2p3.fr/in2p3-00935607
https://hal.archives-ouvertes.fr

MDDAG: learning deep decision DAGs in a Markov

decision process setup

Djalel Benbouzid
Linear Accelerator Laboratory (LAL)

University of Paris-Sud, CNRS
djalel.benbouzid@gmail.com

Róbert Busa-Fekete
Linear Accelerator Laboratory (LAL)

University of Paris-Sud, CNRS
Research Group on Artificial Intelligence

of the Hungarian Academy
of Sciences and University of Szeged

busarobi@gmail.com

Balázs Kégl
Linear Accelerator Laboratory (LAL),
Computer Science Laboratory (LRI)

University of Paris-Sud, CNRS
balazs.kegl@gmail.com

Abstract

In this paper we propose an algorithm that builds sparse decision DAGs (directed
acyclic graphs) out of a list of features or base classifiers. The basic idea is to cast
the DAG design task as a Markov decision process. Each instance can decide to
use or to skip each base classifier, based on the current state of the classifier being
built. The result is a sparse decision DAG where the base classifiers are selected in
a data-dependent way. The development of algorithm was directly motivated by
improving the traditional cascade design in applications where the computational
requirements of classifying a test instance are as important as the performance of
the classifier itself. Beside outperforming classical cascade designs on benchmark
data sets, the algorithm also produces interesting deep structures where similar
input data follows the same path in the DAG, and subpaths of increasing length
represent features of increasing complexity.

1 Introduction

The broad goal of deep learning is to go beyond a flat linear combination in designing predictors.
Mainstream algorithms achieve this by building nested functions in an iterative, layer-wise fashion.
In this paper we propose an alternative approach: we build sparse decision DAGs (directed acyclic
graphs) using a Markov decision process setup. The basic idea is to cast the feature activation prob-
lem into a dynamical setup. The input of the algorithm is a sequence of base classifiers (features).
An agent receives an instance to classify. Facing a base classifier in the sequence, the agent can
decide between 1) evaluating it and adding it to its pool, 2) skipping it, or 3) quitting the procedure
and using its current pool to classify the instance. The decision is based on the output of the current
classifier. At the end of the “game” the agent receives a reward which is a function of the classifica-
tion margin. To make the classifier as “lean” as possible, the agent also receives a penalty for every
active feature. Although the final classifier can still be written as a linear combination of simple
features, the DAG structure means that features are activated in a data-dependent way.

The development of the algorithm was directly motivated by applications where the computational
requirements of classifying a test instance are as important as the performance of the classifier

1

itself (e.g., object detection in images [1], web page ranking [2], or trigger design in high energy
physics [3]). A common solution to these problems is to design cascade classifiers. The basic
reason of sticking to the cascade structure is that it is simple to understand and easy to design semi-
automatically. On the other hand they have numerous disadvantages [4], and once the design is
automatic, there remain no arguments for cascades. Indeed, in a recent submission [5] we showed
that MDDAG outperforms state-of-the-art cascade classifiers [1, 6, 7, 8, 9] everywhere on the Pareto
front of the trade-off defined by classification accuracy and computational cost.

The focus of this paper, however, is not performance but representation. A-priori, we can have
as many different paths as training instances, nevertheless, a-posteriori, we observe clustering in
the “path-space”. Moreover, when we artificially control the clusters within one of the classes,
this observed clustering of paths corresponds to the injected sub-classes, which is an appealing
feature for, e.g., multi-view object detection. Although we have not yet tried the algorithm in an
autoassociative setup, we conjecture that it could also discover interesting structures in the input
data in an unsupervised fashion.

MDDAG has several close relatives in the family of supervised methods. It is obviously related to
algorithms from the vast field of sparse methods. The main advantage here is that the MDP setup
allows us to achieve sparsity in a dynamical data-dependent way. This feature relates the technique
to unsupervised sparse coding [10, 11] rather than to sparse classification or regression. On a more
abstract level, MDDAG is also similar to [12]’s approach to “learn where to look”. Their goal is to
find a sequence of two-dimensional features for classifying images in a data-dependent way, whereas
we do a similar search in a one-dimensional ordered sequence of features. Finally, the fact that our
final classifier is a tree (more precisely, a directed acyclic graph) where decisions are made by
accumulating base classifications along the whole path relates our technique to alternating decision
trees (ADT) [13], except that ADTs use the output of the base classifiers directly for navigating in
the tree, whereas in MDDAG the classifications are only indirectly coupled with control decisions.

The closest relatives to MDDAG are arguably [9] and [14]. Both approaches cast the classifier
construction into an MDP framework. The differences are in the details of how the MDPs are
constructed and learned. [9] uses a smaller number of more complex “stages” as base classifiers and
learn the MDP with a direct policy search algorithm. The main difference between [9] and MDDAG
is that they can only decide between quitting and continuing, eliminating thus the possibility of
learning sparse classifiers. The model of [14] represents the other extreme: at each base classifier
the agent can choose to jump to any other base classifier, effectively blowing up the action space.
They use an approximate policy iteration algorithm with rollouts. Because of the huge action space,
they use the algorithm only on small data sets and restrict the features to the small number (maximum
60) of original features of the data sets. In a sense, our algorithm is positioned halfway between [9]
and [14]. Our SKIP action makes it possible to learn sparse DAGs. In theory, our function class is
equivalent to that of [14], but the way we design the MDP makes the learner’s task easier.

The paper is organized as follows. In Section 2 we describe the algorithm, in Section 3 we show
experimental results, and we conclude in Section 4.

2 The MDDAG algorithm

Similarly to SOFTCASCADE [4], we describe MDDAG as a post-processing method that takes the
output of a trained classifier and “sparsifies” it. Formally, we assume that we are given a sequence
of N base classifiers H = (h1, . . . ,hN). Although in most of the cases cascades are built for
binary classification, we describe the method for the more general multi-class case, which means
that hj : X → R

K , where X is the input space and K is the number of classes. The semantics of h

is that, given an observation x ∈ X , it votes for class ℓ if its ℓth element hℓ(x) is positive, and votes
against class ℓ if hℓ(x) is negative. The absolute value |hℓ(x)| can be interpreted as the confidence
of the vote. Although it is not a formal requirement, we will also assume that H is sorted in order
of “importance” or performance of the base classifiers. These assumptions are naturally satisfied by
the output of ADABOOST.MH [15], but in principle any algorithm that builds its final classifier as a
linear combination of simpler functions can be used to provide H. In the case of ADABOOST.MH or
multi-class neural networks, the final (or strong or averaged) classifier defined by the full sequence

H is f(x) =
∑N

j=1 hj(x), and its prediction for the class index of x is ℓ̂ = arg maxℓ fℓ(x). In

binary detection, f is usually used as a scoring function. The observation x is classified as signal if

2

f1(x) = −f2(x) > θ and background otherwise. The threshold θ is a free parameter that can be
tuned to achieve, e.g., a given false positive rate.

The goal of MDDAG is to build a sparse final classifier from H that does not use all the base
classifiers. Moreover, we would like the selection to be data-dependent. For a given observation x

we process the base classifiers in their original order. At each base classifier hj we choose among
three actions: 1) we either EVALuate hj and continue, or 2) we SKIP hj and continue, or 3) we
QUIT and return the classifier built so far. Let

bj(x) = 1 − I {aj = SKIP OR ∃j′ < j : aj′ = QUIT} (1)

be the indicator that hj is evaluated, where aj ∈ {EVAL, SKIP, QUIT} is the action taken at step
j and the indicator function I {A} is 1 if its argument A is true and 0 otherwise. Then the final
classifier built by the procedure is

f
(N)(x) =

N∑

j=1

bj(x)hj(x). (2)

Inspired by WALDBOOST [7] and the method of [9], the decision on action aj will be made based
on the index of the base classifier j and the output vector of the classifier

f
(j)(x) =

j∑

j′=1

bj′(x)hj′(x). (3)

built up to step j.1 Formally, aj = π
(
(sj(x)

)
, where

sj(x) =
(
f

(j−1)
1 (x), . . . , f

(j−1)
K (x), j − 1

)
∈ R

K × N
+ (4)

is the state where we are before visiting hj , and π is a policy that determines the action in state sj .
The initial state s1 is the zero vector with K + 1 elements.

This setup formally defines a Markov decision process (MDP). An MDP is a 4-tuple M =
(S,A,P,R), where S is the (possibly infinite) state space and A is the countable set of actions.
P : S × S × A → [0, 1] is the transition probability kernel which defines the random transitions

s
(t+1) ∼ P(·|s(t), a(t)) from a state s

(t) applying the action a(t), and R : R × S × A → [0, 1]
defines the distribution R(·|s(t), a(t)) of the immediate reward r(t) for each state-action pair. A
deterministic policy π assigns an action to each state π : S → A. We will only use undiscounted
and episodic MDPs where the policy π is evaluated using the expected sum of rewards

̺ = E

{
T∑

t=1

r(t)

}
(5)

with a finite horizon T . In the episodic setup we also have an initial state (s1 in our case) and a
terminal state s∞ which is impossible to leave.

In our setup, the state s
(t) is equivalent to sj(x) (4) with j = t. The action QUIT brings the process

to the terminal state s∞. Figure 1 illustrates the MDP designed to learn the sparse stageless DAG.

To define the rewards, our primary goal is to achieve high accuracy, so we penalize the error of f
(t)

when the action a(t) = QUIT is applied. For the formal definition, we suppose that, at training time,
the observations x arrive with the index ℓ ∈ {1, . . . ,K} of their class. The multi-class margin is

defined as ρ(t)(x, ℓ) = f
(t)
ℓ (x) − maxℓ′ 6=ℓ f

(t)
ℓ′ (x). With these notations, the classical (0–1) multi-

class reward for the QUIT action is

r
(t)
I

(x, ℓ) = I

{
ρ(t)(x, ℓ) > 0

}
. (6)

For well-known reasons we also use the convex upper bound

r
(t)
EXP(x, ℓ) = exp

(
ρ(t)(x, ℓ)

)
. (7)

1When using ADABOOST.MH, the base classifiers are binary hj(x) = {±αj}
K , and we normalize the

output (3) by
PN

j=1
αj , but since this factor is constant, the only reason to do it is to make the range of the state

space uniform across experiments.

3

Figure 1: The schematic overview of the process. The input is an instance x to be classified. During
the process the policy decides which base classifier will be evaluated by choosing one of the three

available actions in each state. The output is the score vector provided by the classifier f
(N)(x) (2).

In principle, any of the usual convex upper bounds (e.g., logistic, hinge, quadratic) could be used
in the MDP framework. The exponential reward is inspired by the setup of ADABOOST [16, 15].
The rewards can easily be adapted to cost-sensitive classification when the misclassification cost
is different for the classes, although we did not explore this issue in this paper. Note also that in
the binary case, rI and rEXP recover the classical binary notions. From now on we will refer to our
algorithm as MDDAG.I when we use the indicator reward rI and MDDAG.EXP when we use the
exponential reward rEXP.

For encouraging sparsity, we will also penalize each evaluated base classifier h by a uniform fixed
negative reward

R(r|s, EVAL) = δ(−β − r), (8)

where δ is the Dirac delta and β is a hyperparameter that represents the accuracy/speed trade-off.

The goal of reinforcement learning (RL) in our case is to learn a policy which maximizes the ex-
pected sum of rewards (5). Since in our setup the transition P is deterministic given the observation
x, the expectation in (5) is taken with respect to the random input point (x, ℓ). This means that the
global goal of the MDP is to maximize

̺ = E(x,ℓ)∼D

r(x, ℓ) − β

N∑

j=1

bj(x)

 (9)

where r(x, ℓ) is one of our margin-based rewards and D is the distribution that generates the in-
stances.

Note that, strictly speaking, the rewards (6) and (7) are not stationary given the state s
(t): it is

possible that two different policies bring two different subsets of X with different label distributions
into the same state, so the rewards depends on external factor not summarized in the state. This
problem could be tackled in an adversarial setup, recently analyzed by [17]. However, the results
of [17] are rather theoretical, and we found that, similarly to [9] whose method also suffers from
non-Markovianness, classical MDP algorithms work well for solving our problem.

2.1 Learning the policy

There are several efficient algorithms to learn the policy π using an iid sample D =(
(x1, ℓ1), . . . , (xn, ℓn)

)
drawn from D [18]. When P and R are unknown, model-free methods

are commonly used for learning the policy π. These methods directly learn a value function, (the
expected reward in a state or for a state-action pair), and derive a policy from it. Among model-free
RL algorithms, temporal-difference (TD) learning algorithms are the most commonly used. They
can be divided into two groups: off-policy and on-policy methods. In the case of off-policy methods
the policy search method learns about one policy while following another, whereas in the on-policy
case the policy search algorithm tries to improve the current policy by maintaining sufficient explo-
ration. On-policy methods have an appealing practical advantage: they usually converge faster to
the optimal policy than the off-policy methods.

We use the SARSA(λ) algorithm [19] with replacing traces to learn the policy π. For more details
we refer the reader to [20]. SARSA(λ) is an on-policy method, so, to make sure that all policies

4

can be visited with nonzero probability, we use an ǫ-greedy exploration strategy. Concretely, we
apply SARSA in an episodic setup: we use a random training instance x from D per episode.
The instance follows the current policy with probability 1 − ǫ and chooses a random action with
probability ǫ. The instance observes the immediate rewards (6), (7), or (8) after each action. The
policy is updated during the episode according to SARSA(λ). In preliminary experiments we also
tested Q-LEARNING [21], one of the most popular off-policy methods, but SARSA(λ) slightly but
consistently outperformed Q-LEARNING.

In all experiments we used ADABOOST.MH to obtain a pool of weak classifiers H. We ran AD-
ABOOST.MH for N = 1000 iterations, and then trained SARSA(λ) on the same training set. The
hyperparameters of SARSA(λ) were fixed across the experiments. We set λ to 0.95. In principle,
the learning rate should decrease to 0, but we found that this setting forced the algorithm to converge
too fast to suboptimal solutions. Instead we set the learning rate to a constant 0.2, we evaluated the
current policy after every 10000 episodes, and we selected the best policy based on their perfor-
mance also on the training set (overfitting the MDP was a no-issue). The exploration term ǫ was
decreased gradually as 0.3 × 1/⌈ 10000

τ
⌉ where τ is the number of training episodes. We trained

SARSA(λ) for 106 episodes.

In binary classification problems discretizing the state space and representing the value function as
a table works well (Figure 2(a)). When the number of classes K (so the number of dimensions of
the state space) grows, discretization becomes inefficient. In this case we decided to represent the
value functions with radial basis function networks (RBFs – mixtures of Gaussians, Figure 2(b)),
and learn the weights using gradient descent [18]. In general, the average value of the actions at a
given output f(x) is lower when |f(x)| is small. The EVAL action dominates the region around zero
whereas QUIT becomes worthy when |f(x)| is large. This behavior is quite intuitive since |f(x)| is
generally related to the confidence of the classification.

-0
.1

4

-0
.1

2

-0
.1

-0
.0

8

-0
.0

6

-0
.0

4

-0
.0

2

0
.0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

f(x)

0.0

0.2

0.4

0.6

0.8

1.0

Q
 v

a
lu

e

Q-function | WeakLearner = 5

Actions

skip
eval
quit

(a) Value functions in discretized state space

-0.2 0.0 0.2
f(x)

0.0

0.2

0.4

0.6

0.8

1.0

Q
 v

a
lu

e

Q-value | WeakLearner = 13

Actions

skip
eval
quit

(b) Continuous value functions

Figure 2: Value functions Q(s, a).

As a final remark, note that maximizing (9) over the data set D is equivalent to minimizing a margin-
based loss with an L0 constraint. If rI (6) is used as a reward, the loss is also non-convex, but
minimizing a loss with an L0 constraint is NP-hard even if the loss is convex [22]. So, what we are
aiming for is an MDP-based heuristics to solve an NP-hard problem, something that is not without
precedent [23]. This equivalence implies that even though the algorithm would converge in the
ideal case (decreasing learning rate, proper Markovian rewards), in principle, convergence can be
exponentially slow in n. In practice, however, we had no problem finding good policies in reasonable
training time.

3 Experiments

Since our focus in this paper is on representation, we show two toy examples to illustrate how
MDDAG can discover structure in the input data. In Section 3.1 we first verify the sparsity and
heterogeneity hypotheses on a synthetic example. In Section 3.2 we use an MNIST subproblem
show “path-wise” clustering.

5

3.1 Synthetic data

The goal of this experiment was to verify whether MDDAG can learn the subset of “useful” base
classifiers in a data-dependent way. We created a two-dimensional binary dataset with real-valued
features where the positive class is composed of two well-separable clusters (Figure 3(a)). This is a
typical case where ADABOOST or a traditional cascade is suboptimal since they both have to use all
the base classifiers for all the positive instances [4].

−2 0 2 4 6
−2

0

2

4

6
(a)

(b)

−2 0 2 4 6
−2

0

2

4

6

4 6 8 10

0 10 20 30
0

200

400

600

800

1000

N
um

be
r

of
 e

va
lu

at
io

ns

Index of weak classifiers

(c)

Figure 3: Experiments with synthetic data. (a) The positive class is composed of the blue and red
clusters, and the negative class is the green cluster. (b) The number of base classifiers used for
each individual positive instance as a function of the two-dimensional feature coordinates. (c) The
number of positive instances from the blue/red clusters on which a given base classifier was applied
according to the policy learned by MDDAG.I. Lower panel: the decision DAG for the positive
class. Colors represent sub-class probabilities (proportions) and the node sizes and arrow widths
represent the number of instances in the states and following the actions, respectively.

We ran MDDAG.I with β = 0.01 on the 1000 decision stumps learned by ADABOOST.MH. In
Figure 3(b) we plot the number of base classifiers used for each individual positive instance as a
function of the two-dimensional instance itself. As expected, the “easier” the instance, the less base
classifiers it needs for classification. Figure 3(c) confirms our second hypothesis: base classifiers are
used selectively, depending on whether the positive instance is in the blue or red cluster. Figure 3(d)
shows the actual DAG learned for the positive class. We follow each training instance and “summa-
rize” sequences of SKIP actions into single transitions. Empirical class probabilities are color coded
in each node and on each transition. The structure of the DAG also confirms our intuition: the bulk
of the two sub-classes are separated early and follow different paths. It is also remarkable that even
though the number of possible paths is exponentially large, the number of the realized subpaths is
very small. Some “noisy” points along the main diagonal (border between the subclasses) generate
rare subpaths, but the bulk of the data basically follows two paths.

3.2 MNIST example

We ran MDDAG.I with β = 0.0001 on the 300 Haar stumps [1] trained on 2s and 4s against 6s
and 9s. Figure 4 shows the trained decision DAG of the 2-4 class. As in the previous section,
we color-code the nodes and the arrows to show how MDDAG automatically separates subclasses
without knowing their labels. In Table 1 we enumerate all the paths followed by at least 6 training
instances and the pixelwise averages of the corresponding instances. First note that the number
of actual paths is tiny compared to the exponentially many possible paths. This mens that even
though the nominal complexity of the class of classifiers represented by all the DAGs is huge, the
algorithm can successfully control the effective complexity. Second, the average images indicate that

6

MDDAG finds sub-classes even within the 2s and 4s. Finally, although our goal with this example
is to illustrate the structure-learning capabilities of MDDAG, on the performance side MDDAG
outperforms AdaBoost by 10%: the decision DAG uses 6.03 base classifiers on average and achieves
91.6% accuracy whereas AdaBoost achieves 80.7% after 6 iterations.

2 3

4

∞

5

6

7

8

9

10

11

12

13

14 15

16

17
18

19

23

24

20

25

28

29

31 33

Figure 4: The decision DAG for the 2-4 class. Colors represent sub-class probabilities (blue is 2
and red is 4) and the node sizes and arrow widths represent the number of instances in the states and
following the actions, respectively.

path average number of
image test instances

2-3 835
2-3-4-6-7-9-10 18
2-3-4-6-7-9-10-11-12 28
2-3-4-6-7-9-10-11-12-13-14-15 26
2-3-4-6-7-9-10-11-12-13-14-15-16-17-18 10
2-3-4-6-7-9-10-11-12-13-14-15-17-18-24-25-29 19
2-3-4-6-7-9-10-11-12-13-14-15-17-18-24-28-29 18
2-3-4-6-7-9-10-11-12-13-14-15-17-18-24-28-31-33 44
2-3-4-6-7-9-10-11-12-13-15-16-17-18-19 9
2-3-4-6-7-9-10-11-12-13-15-16-17-18-19-20 12
2-3-4-6-7-9-10-12-13-15-16-17-18 6
2-3-4-6-7-10 18
2-3-4-6-7-10-11 10
2-3-4-6-8-9-11-12-13-14-15-16-17-18 11
2-3-4-6-8-9-11-12-13-14-15-17-18-24-28-31-33 11
2-3-4-6-8-9-11-12-13-15-16-17-18 7
2-3-4-6-8-10-11-12-13-14-15-16-17-18-24 6
2-3-4-6-8-10-11-12-13-15-16-17-18 21
2-3-4-6-8-10-11-12-13-15-17-18-24-25-29 7
2-3-4-6-8-10-11-12-13-15-17-18-24-28-31-33 11
2-3-4-6-8-10-12 699
2-3-4-6-8-10-12-13-15-16-17-18 38
2-3-4-6-8-10-12-13-15-16-17-18-19 9
2-3-4-6-8-10-12-13-15-16-17-18-19-20 12

Table 1: The paths followed by more than 6 test instances, the corresponding average images, and
the number of instances.

4 Conclusions

In this paper we introduced an MDP-based design of decision DAGs. The output of the algorithm is
a data-dependent sparse classifier which means that every instance “chooses” the base classifiers or
features that it needs for predicting its class index. The algorithm is competitive to state-of-the-art

7

cascade detectors on object detection benchmarks, and it is also directly applicable to test-time-
constrained problems involving multi-class classification (e.g., web page ranking). In our view,
however, the main advantage of the algorithm is not necessarily its performance but its simplicity
and versatility. First, MDDAG is basically a turn-key procedure: it comes with one user-provided
hyperparameter with a clear semantics of directly determining the accuracy/speed trade-off. Second,
MDDAG can be easily extended to problems different from classification by redefining the rewards
on the QUIT and EVAL actions. For example, one can easily design regression or cost-sensitive
classification DAGs by using an appropriate reward in (6), or add a weighting to (8) if the features
have different evaluation costs.

The success of this simple algorithm opens the door to a vast field of new designs and extensions.
First the current MDP setup is quite simplistic: it assumes that the features are ordered into a se-
quence and that their computational costs are equal. In a typical physics trigger [3] the base classi-
fiers are small decision trees that use a subset of the raw observables, and the most costly operation
at test time is not the evaluation of the tree but the construction of the features. In this case the cost of
a base classifier (so its penalty in the MDP) depends on the raw features it uses and the features that
have already been constructed in previously evaluated trees. This requires the revisiting of the state
definition. Another similar example is when features are embedded in a metric space (for example,
filters in object classification in images). In this case the three-action setup may be replaced by a
richer configuration where the agent can decide “where to look” next [12, 14]. All these extensions
will lead to more complex MDPs, so we will also need to explore the space of RL algorithms to
match the specificities of the problem with the strengths of the different RL methods: this is going
to be a balancing act between richness of the representation and learnability of the MDP design.

Second, at this point the algorithm is designed for post-processing a fixed output of another learning
method. Beside trying it on the output of different methods (e.g., for filtering support vectors), we
will also explore if the filtering mechanism could be used within the learning loop. Our ultimate goal
is to couple feature construction with designing the DAG in a standalone learning method, either by
incorporating the DAG design into the boosting framework or by letting the state and action spaces
grow in the RL framework. Finally, it is an open question at this point whether the RL algorithm
converges under the condition of our specific non-Markovian rewards; proving convergence is an
interesting challenge.

References

[1] P. Viola and M. Jones. Robust real-time face detection. International Journal of Computer
Vision, 57:137–154, 2004.

[2] Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In Yahoo Learn-
ing to Rank Challenge (JMLR W&CP), volume 14, pages 1–24, Haifa, Israel, 2010.

[3] V. Gligorov. A single track HLT1 trigger. Technical Report LHCb-PUB-2011-003, CERN,
2011.

[4] L. Bourdev and J. Brandt. Robust object detection via soft cascade. In Conference on Computer
Vision and Pattern Recognition, volume 2, pages 236–243. IEEE Computer Society, 2005.

[5] Same authors. MDDAG: designing sparse decision DAGs using Markov decision processes.
In submitted, 2011.

[6] R. Xiao, L. Zhu, and H. J. Zhang. Boosting chain learning for object detection. In Ninth IEEE
International Conference on Computer Vision, volume 9, pages 709–715, 2003.

[7] J. Sochman and J. Matas. WaldBoost – learning for time constrained sequential detection. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 150–156, 2005.

[8] M. Saberian and N. Vasconcelos. Boosting classifier cascades. In Advances in Neural Infor-
mation Processing Systems 23, pages 2047–2055. MIT Press, 2010.

[9] B. Póczos, Y. Abbasi-Yadkori, Cs. Szepesvári, R. Greiner, and N. Sturtevant. Learning when
to stop thinking and do something! In Proceedings of the 26th International Conference on
Machine Learning, pages 825–832, 2009.

[10] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In Advances in
Neural Information Processing Systems, volume 19, pages 801–808. The MIT Press, 2007.

8

[11] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations
with an energy-based model. In Advances in Neural Information Processing Systems 19, pages
1137–1144. MIT Press, Cambridge, MA, 2007.

[12] H. Larochelle and G. Hinton. Learning to combine foveal glimpses with a third-order Boltz-
mann machine. In Advances in Neural Information Processing Systems 23, pages 1243–1251.
MIT Press, 2010.

[13] Y. Freund and L. Mason. The alternating decision tree learning algorithm. In Proceedings of
the 16th International Conference on Machine Learning, pages 124–133, 1999.

[14] G. Dulac-Arnold, L. Denoyer, P. Preux, and P. Gallinari. Datum-wise classification: A sequen-
tial approach to sparsity. In European Conference on Machine Learning, 2011.

[15] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predic-
tions. Machine Learning, 37(3):297–336, 1999.

[16] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

[17] G. Neu, A. György, and Cs. Szepesvári. The online loop-free stochastic shortest-path problem.
In Proceedings of the 23th Annual Conference on Computational Learning Theory, pages 231–
243, 2010.

[18] R.S. Sutton and A.G. Barto. Reinforcement learning: an introduction. Adaptive computation
and machine learning. MIT Press, 1998.

[19] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Technical
Report CUED/F-INFENG/TR 166, Cambridge University, Engineering Department, 1994.

[20] Cs. Szepesvári. Algorithms for Reinforcement Learning. Morgan and Claypool, 2010.

[21] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.

[22] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Constructive Ap-
proximation, 13(1):57–98, 1997.

[23] V. Ejov, J. Filar, and J. Gondzio. An interior point heuristic for the Hamiltonian cycle problem
via Markov Decision Processes. Journal of Global Optimization, 29(3):315–334, 2004.

9

	Introduction
	The MDDAG algorithm
	Learning the policy

	Experiments
	Synthetic data
	MNIST example

	Conclusions

