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Abstract: The participation of the valence orbitals of actinides in bonding has been debated for 
decades.  Recent experimental and computational investigations have demonstrated the 
involvement of 6p, 6d, and/or 5f orbitals in bonding.  However, structural and spectroscopic data, 
as well as theory, indicate a decrease in covalency across the actinide series, and the evidence 
points to highly ionic, lanthanide-like bonding for late actinides.  In this work, we show that 
chemical differentiation between californium and lanthanides can be achieved by using ligands 
that are both highly polarizable and that substantially rearrange upon complexation.  A ligand 
that suits both of the above desired properties is polyborate.  We demonstrate that the 5f, 6d, and 
7p orbitals are all involved in bonding in a Cf(III) borate, and that large crystal field effects are 
present.  Synthetic, structural, and spectroscopic data are complemented by quantum mechanical 
calculations to support these observations.  
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Californium is the heaviest element currently on earth, and is the last member of the 

actinide series that has an isotope long-lived enough for work to be carried out in a standard 

radiologic facility.  Synthetic studies on californium chemistry have typically been restricted to 

microgram scales, and detailed measurements that correlate structure and physico-chemical 

properties are lacking.  The limited examples of californium compounds can be ascribed to 

variety of factors that include the low isotopic availability of this element, the short half-life of 

the longest-lived available isotope (249Cf = 351 yr), and the extreme α and γ emissions (6.194 

MeV and 0.388 MeV, respectively).   

Only five single crystal structures have been determined: Cf(IO3)3,
1 the orthorhombic and 

hexagonal forms of CfCl3,
2 Cf(Cp)3,

3 and [Cf(H2O)9][CF3SO3]3.
4  These compounds have 

isotypic lanthanide analogs.  In the case of the [M(H2O)9][CF3SO3]3 (M = Ln3+ or An3+), the 

bonding is purely ionic, meaning that the valence 5f orbitals of the actinide cations are 

nonbonding, much like the 4f orbitals for lanthanides.5-7  However, there are numerous examples, 

based on structural, spectroscopic evidence, and electronic structure calculations, that indicate 

the involvement of the 6p, 6d, and/or 5f orbitals in bonding with actinides, yielding bonds to 

ligands that are partially covalent.8-10  An additional impediment in finding covalent bonding 

with trivalent actinides is that the degree of covalency decreases with the lowering of the 

oxidation state, and therefore the effects of covalency with trivalent actinides are expected to be 

quite small.8,9  Actinides beyond plutonium are typically trivalent and their structural chemistry, 

much like that of isoelectronic lanthanides, is thought to be determined solely by their ionic radii. 

 We recently demonstrated that highly polarizable ligands, in this case polyborates, are 

able to form covalent bonds with the trivalent actinides Pu(III), Am(III), and Cm(III), and that 

this covalency is associated with the formation of structures that are not paralleled by 

lanthanides.  Moreover, these neighboring actinides do not form an isotypic series with each 

other; each actinide displays unique chemistry.10  To understand how bonding changes across the 

actinide series, we investigated the synthetic, structural, spectroscopic, and quantum chemical 

properties of a Cf(III) borate and found many unanticipated results that are detailed in this report.       
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Results and Discussion     

The reaction of 249CfCl3 with molten boric acid yields pale green microcrystals of 

Cf[B6O8(OH)5] as the only isolated product.  This contrasts sharply with Pu(III), Am(III), and 

Cm(III) that yield Pu[B4O6(OH)2Cl], Pu2[B13O19(OH)5Cl2(H2O)3], Am[B9O13(OH)4]·H2O, and 

Cm2[B14O20(OH)7(H2O)2Cl], respectively.10  These four lighter actinide compounds share many 

similar structural features that include polyborate layers in which the actinides reside.  Bridging 

by borate anions creates three-dimensional framework structures.  The Pu(III), Am(III), and 

Cm(III) metal ions are either nine- or ten-coordinate and adopt highly anisotropic coordination 

environments with either a hula-hoop11 or capped triangular cupola12 geometries.   

The structure of Cf[B6O8(OH)5], reported in this work, bears no similarities with the 

previously reported trivalent actinide borates.  First, the polyborate scaffolding forms one-

dimensional chains fashioned from a new fundamental building unit for f-elements as shown in 

Figure 1a.  This unit consists of four corner-shared BO4 tetrahedra and two BO3 triangles.  Three 

chains wrap around each Cf(III) center creating an eight-coordinate square antiprismatic 

coordination environment as shown in Figure 1b (see also Supplementary Fig. 3).  Note that 

although the eight Cf−O distances are quite similar, the geometry is far from being a perfect 

square antiprism (large angular distortions are observed in this first coordination sphere).  The 

bridging of the chains by the Cf(III) centers creates sheets and the overall structure is layered 

(Figure 1c).  All earlier members of the actinides series contain polyborate layers that are linked 

together into three-dimensional frameworks. 

The Cf(III) ion resides on a twofold site (exhibiting C2 symmetry), and the Cf−O bond 

distances range from 2.411(5) to 2.463(5) Å.  Thus, the smaller-sized Cf(III) cation yields both a 

lower coordination number and a more isotropic coordination environment than was previouly 

found with lighter actinide borates.    Furthermore, while lanthanide borates containing smaller 

Ln(III) cations (Ln = Gd – Lu) also form hexaborates, the polyborate forms sheets instead of 

chains, and the Ln(III) cations are nine-coordinate tricapped trigonal prisms.13  Therefore, the 

reported Cf(III) borate structure was not predictable from the previously reported structures 

involving any other f-element.   

Magnetic susceptibility data were collected on a polycrystalline sample of 

Cf[B6O8(OH)5] under an applied field of 0.1 T. No evidence of long-range ordering was 
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observed in the temperature range of 1.8-380 K (Figure 2; see also Supplementary Fig. 4).  The 

data are fit over the entire temperature range with a modified Curie-Weiss law  = C/(T-) + 0, 

where C is the Curie constant from which the effective moment (eff) is obtained,  is the Weiss 

constant (a term meant to account for short-range magnetic correlations or the influence of low-

lying crystal-field states), and 0 represents the temperature-independent paramagnetism. The 

best fit, shown as a solid line through the data in Figure 2, yields values of eff = 6.7(4) B,  = 

0.5(2) K, and 0 = 4.44(4) x 10-2 emu/mol. The overall goodness-of-fit, together with the small 

Weiss constant, confirms that there are no significant interactions between Cf magnetic 

moments, a result consistent with expectations based on structural information.  The shortest 

Cf···Cf distance is 4.625 Å, too long for direct interactions, whereas a magnetic superexchange 

pathway would involve an interaction through a bridging borate anion, which is not expected to 

result in a significant effective coupling.  Within the single-ion regime, the fitted effective 

moment, eff, is significantly smaller than the free-ion expectation value of 10.65 B, determined 

assuming a Hund’s rule ground term (6H15/2) obtained from a 5f9 configuration with Russell-

Saunders coupling.  Other studies dealing with U(III) suggest that a significant degree of 

covalency can reduce the observed magnetic moment.14  Lacking magnetic studies on Cf(III), a 

comparison with published studies on Dy(III), the 4f9 congener of Cf(III), reveals effective 

moments generally consistent with the full free-ion values, with reports of slightly decreased 

moments attributed to crystal-field effects.15,16  In these cases, the crystal field effects play only a 

minor role in the moment reduction.15,16 Thus, we postulate that significant covalency between 

the Cf(III) ion and the borate network may be responsible for the relatively low observed 

magnetic moment. 

The electronic spectroscopy of Cf[B6O8(OH)5] is rich, and the assigned solid-state 

absorption spectrum taken from a cluster of crystals is shown in Figure 3.17  The f-f transitions 

shown are broader than are typically found even at 79 K and show features attributed to vibronic 

coupling.  When a sample of Cf[B6O8(OH)5] is irradiated with 365 or 420 nm light, emission 

occurs in the green centered at 525 nm (Figure 4).  Much weaker luminescence is found in the 

NIR at 1020 nm when 546 nm light is used.  The emission at 525 nm is very broad and has the 

signature of strong vibronic coupling.  Vibronic coupling has been found in the electronic spectra 

of several lanthanide compounds,18,19 and is therefore not necessarily indicative of coupling 
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between ligand vibrations and metal orbitals that one finds with transition metals.  However, the 

effects of vibronic coupling in lanthanide compounds are very small and typically only spread 

the original electronic transition out by a few nanometers.18,19  Although such coupling is known 

to be larger in actinide compounds, the electron-phonon coupling strength is typically only two 

or three times larger than found in lanthanides.18  In contrast, at 79 K the J = 5/2 excited state 

transition to the J = 15/2 ground state is expected to be a few nanometers wide at most, but 

instead it is approximately 140 nm wide.  The broadening observed is much more similar to that 

observed in d-block elements, where considerable covalency is at play.  Inhomogeneous line 

broadening due to crystalline defects or distortions is present so that individual peaks (zero 

phonon lines and vibronic lines) are not resolved. The crystal field levels of the ground multiplet 

(J=15/2) induce an expected broadening on the order of a several hundred of wavenumbers, and 

are, therefore, not likely to explain the range of the observed transitions, here attributed to 

vibronic coupling. 

Photoluminescence lifetime measurements were made in two regions of the emission 

centered at 525 nm and yielded decay time constants of 1.2  0.3 s and 20  2 s (inset of 

Figure 4).  The shorter time constant originated primarily from high-energy emission (500 nm); 

the longer time constant was attributed to the low-energy peak (600 nm). These assignments 

were made based on data obtained using optical band-pass filters, which allowed emission from 

the two bands to be separated.  Because of the spread of vibronic bands, the decay measured at 

600 nm is expected to have contributions from the band originating at 525 nm.  However, the 

decay measured at 525 nm should not be affected by the band originated at 600 nm.  These 

decays are associated with both the luminescence of Cf(III) itself and energy transfer to the 

daughter of 249Cf α decay, 245Cm, which decays with a longer life-time than 249Cf.  The Cm(III) 

is also excited by the 365 or 420 nm light.  Cooling the sample to 79 K results in clear resolution 

of the two features with the Cf(III) emission centered at 525 nm and the Cm(III) emission 

centered at 600 nm.   

The Cf(III) J=5/2 (mainly 4P5/2) level lies ~20,000 cm-1 above the ground state, which 

corresponds to ~500 nm.  The next lower energy state is about 2000 cm-1 below this.  Thus, 

J=5/2 is an emitting state even at room temperature.  Cf(III) does not have any excited states that 

could explain an emission near 600 nm.  The long life-time of the 600 nm emission band 
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matches with the first excited state of Cm(III), and is also consistent with a large energy gap 

since there are no low-lying excited states to quench the J=7/2 emission.  Additionally, 

nonradiative relaxation is negligible.  Furthermore, the intensity of the variation in the two bands 

as a function of temperature also confirms this assignment.  The Cm(III) band does not 

significantly depend on temperature; whereas the Cf(III) band at 525 nm is highly temperature 

sensitive because the energy gap below this emitting level is small.  At higher temperature, 

radiative relaxation is quenched by thermal (phonon) relaxation.  Much of the increase in the 

Cm(III) emission intensity is due to energy transfer from Cf(III).  Temperature has little 

influence on the multi-phonon progressions of vibronic transitions, which appear in both 

emission and absorption spectra.  Low temperature only eliminates the hot bands arising from 

the occupied states above the ground state or the emitting states.  Perhaps the most important 

feature of this is that when Cm(III) is placed in a coordination environment created by Cf(III), 

strong vibronic coupling is observed.  The electronic spectroscopy of 

Cm2[B14O20(OH)7(H2O)2Cl], where Cm(III) is in a very different coordination environment than 

when it is doped into Cf[B6O8(OH)5], lacks these attributes.10 

Prior electronic structure calculations on Pu(III), Am(III), and Cm(III) borates revealed 

overlap between the 6p and 6d orbitals of Pu(III), Am(III), and Cm(III) with the 2p orbitals of 

the coordinated borate oxygen atoms.10  The overlap only occurs at the base sites of the metal 

coordination environments and is exclusively to oxygen atoms of BO4 units, not BO3.  All sites 

around the Cf(III) center in Cf[B6O8(OH)5] are occupied by either BO4, or at two sites by both 

BO3 and BO4 via 3-oxygen atoms.  Given the very large charge density of the [BO4]
5− anions, 

the coordination environment is providing considerable electron density to the Cf(III) center 

creating electronic behavior that has not been observed before for Cf(III) and is quite unusual for 

f-elements in general.  

In order to better understand the bonding, quantum chemical calculations were performed 

using density functional theory (DFT) on a finite cluster, with the PBE,20 PBE0,21 B3LYP, and 

PW91 exchange-correlation functionals.  The cluster was designed to describe accurately the 

first and second coordination sphere of the Cf(III) ions, resulting in an accurate description of the 

Cf−O bonds.  As indicated by the calculated charges, both Mulliken and Natural Bond Orbitals 

(NBO), provided in Supplementary Table 3, the effective charge on the Cf ions is far from the 
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formal +III at the DFT level.  The Mulliken charges range from 1.5 to 1.85 e, and the NBO 

charges range from 1.70 to 1.85 e.  Clearly, the charges are not +3 as expected for a fully ionic 

structure and do not strongly depend on whether a pure generalize gradient approximation 

(GGA) or hybrid functional is used.  Further analysis of the electron populations shows that 

much of the additional charge resides in the 6d orbitals with ~ 0.7 e.  There is about 0.3 e in the 

7p and ~0.1 to ~0.25 e additional population in the 5f orbitals.   

Given the number of interacting oxygens (8) in the first shell of the ligands, there is not 

much of an interaction for a given oxygen atom with the 5f orbitals as shown in Supplementary 

Fig. 5.  The NBO population for the 7s (0.08 e) is somewhat less than the Mulliken population 

on the 7s.  As a check of the potential for issues with spin contamination with the 5f9 Cf(III) 

complex, we performed the same calculations with the high-spin 5f7 Cm(III), which will not have 

this issue.  The results, as shown in the Supplementary Information, are essentially the same 

between Cf and Cm demonstrating that this is not an issue.  We also checked to see if the 

removal of protons to create a more negative ligand about the Cf (and Cm) changed the effective 

orbital interactions at the actinide, and they did not.  Overall, the predicted charges show that 

there is a substantial charge donation from the borate oxygen ligands to the Cf, with about half of 

this extra charge into the 6d. 

The topological analysis of the electron localization function (ELF) 22,23 shows electron-

donation from the eight coordinated O atoms to the Cf.  About 1 to 4 bonding electrons can be 

found between the Cf atom and each of the coordinated O atoms (see Supplementary Table 5), 

consistent with the charge results.  As several molecular orbitals can contribute to the same 

covalent basin, the analogy between the ELF approach and the notion of bonding in terms of 

molecular orbitals is not direct.  

In order to better understand the electronic structure of Cf, the crystal-field splitting of 

the ground free-ion term (6H) has been predicted with complete active space self-consistent field 

(CASSCF) calculations, including either all the high-spin 5f9 states (21 sextets) or the states 

belonging to the 6H of the free-ion (11 states). Supplementary Tables 7 and 8 show that both sets 

of calculations predict similar results.  The lowest 11 states are not degenerate, as expected from 

symmetry arguments (the cluster belongs to the C2 symmetry point group).  The total splitting of 

this term (between the lowest and the highest root) is about 230 meV (~1850 cm-1).  We 
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conclude that unusually significant crystal-field splitting is present in this system.  Thus, the 

crystal field can also participate in the broadening observed in absorption and emission spectra, 

and the reduction in the magnetic moment.  Due to the high computational cost, the CASSCF 

calculations do not include basis functions to describe the critical 6d and 7p levels, so the 

CASSCF cannot be used to examine the amount of covalency.  However, the CASSCF 

calculations do show that there is at least 0.16 e transferred to the 5f orbitals from the ligands 

consistent with the larger basis set DFT results. 

 

Conclusions 

It is important to note that while Pu(III), Am(III), and Cm(III) also form covalent bonds 

with borate, this bonding does not result in substantial changes in electronic properties with 

respect to the corresponding free ions, e.g. by having a large crystal-field splitting of the ground 

free-ion term.  These effects have not yet been observed with other trivalent actinides, and thus 

are so far considered specific to this Cf(III) compound.  In a previously reported Pu(III) 

structure, the delocalization of the electron density between the trivalent actinide and the borate 

was quite weak, and the orbital overlap with Pu(III) did not significantly change the electronic 

properties of Pu(III); i.e. the f-f transitions were not broadened and vibronic coupling was absent.  

Similarly, the significant overlap between the 6d orbital and oxygen 2p orbitals from borate did 

not alter the 5f electron behavior of Am(III).  On the other hand, Cm(III) shows the signatures of 

vibronic coupling in the emission spectrum when placed in the same coordination environment 

as Cf(III), demonstrating that the coordination environment can play an important role in the 

properties of trivalent actinide ions. Quantum mechanical calculations support significant 

donation of ligand oxygen electron density (from the O 2p) to valence orbitals of Cf(III), notably 

the 6d followed by the 5f and 7p, suggesting the presence of some covalent character in the Cf−O 

bonds.  Owing to the number of ligands (8) in the first coordination shell, there is about 0.15 e 

donated to the Cf from each ligand.  In conclusion, with judicious choice of ligands capable of 

partial covalent bonding with late actinides, we have obtained a unique Cf(III) material that is 

unprecedented in the f-block.   
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Methods 

Experimental:  

 Caution! 249Cf (t1/2 = 351 y; specific activity = 4.1 Ci/g), represent a serious health risk 

owing to its α (6.194 MeV) and more importantly its γ (0.388 MeV) emission, and the emission of 

its daughters.  249Cf decays to 245Cm (t1/2 = 8,500  y) which is a potent α-emitter and undergoes 

spontaneous fission releasing a large flux of neutrons.  All studies with californium were 

conducted in a laboratory dedicated to studies on transuranium elements.  This laboratory is 

equipped with HEPA filtered hoods and negative pressure glove boxes that are ported directly 

into the hoods.  A series of counters continually monitor radiation levels in the laboratory.  The 

laboratory is licensed by the Nuclear Regulatory Commission and the State of Florida.  All 

experiments were carried out with approved safety operating procedures.  All free-flowing solids 

are worked with in glove boxes, and products are only examined when coated with either water 

or Krytox oil and water.   

 All work was conducted within a negative pressure glovebox and whenever possible the 

samples were shielded with lead.  The sample used produces 1.7 R/hr at 40 mm and therefore 

represents a serious external hazard that required the experiments to be carefully choreographed 

to minimize exposure times. 

Synthesis: 

 Cf[B6O8(OH)5] was synthesized using 249CfCl3 that was used as received from Oak Ridge 

National Laboratory.  5 mg (0.01 mmol) of 249CfCl3 was dissolved in Millipore water (30 μL) 

and then transferred to a PTFE-lined Parr 4749 autoclave with a 10 mL internal volume.  63 mg 

(1.0 mmol) of boric acid was added to the droplet containing the dissolved Cf(III).  The mixture 

was then sealed and heated at 240 ºC for seven days followed by slow cooling to room 

temperature over a three day period (3 ºC/hr).  The furnace for heating the autoclave was also 

inside the glovebox and surrounded by thick lead sheets.  The resulting product was washed with 

warm water to remove the excess boric acid flux and consisted of pale green microcrystalline 

clusters (see Supplementary Fig. 1). 
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Crystallographic Studies: 

Single crystals of Cf[B6O8(OH)5] were glued to cryoloops with epoxy and optically 

aligned on a Bruker D8 Quest X-ray diffractometer using a digital camera.  Initial intensity 

measurements were performed using a IμS X-ray source (MoKα, λ =0.71073 Å) with high-

brilliance and high-performance focusing multilayer optics. Standard software was used for 

determination of the unit cells and data collection control. The intensities of reflections of a 

sphere were collected by a combination of multiple sets of exposures (frames).  Each set had a 

different φ angle for the crystal and each exposure covered a range of 0.5° in ω.  A total of 2716 

frames were collected with an exposure time of 120 s.  The SAINT software was used for data 

integration including Lorentz and polarization corrections.  The structure was solved by direct 

methods and refined on F2 by full-matrix least squares techniques using the program suite 

SHELX. Parameters for Cf are not present in the SHELX software and have to be inputted 

manually.  Solutions were checked for missed symmetry using PLATON.24 

UV-vis-NIR and Photoluminescence Spectroscopy:  

 UV-vis-NIR and photoluminescence data were acquired from a cluster of microcrystals 

using a Craic Technologies microspectrophotometer.  Crystals were placed on quartz slides 

under Krytox oil, and the absorption data were collected from 400 to 800 nm.  The exposure time 

was auto-optimized by the Craic software.  Photoluminescence data were acquired using the 

same microspectrophotometer with excitation wavelengths of 280, 365, 420, or 546 nm, an 

exposure of 5 s, and an aperture size of 103 x 103 μm (Figure 4).  Temperature control was 

achieved by using a Linkam temperature control stage.  Raman measurements were also 

attempted, but these were impeded by the self-luminescence.   

Life-time Measurements: 

 Time-correlated single-photon counting (TCSPC) photoluminescence measurements 

were carried out using a femtosecond laser system.  A Spectra-Physics Tsunami titanium 

sapphire oscillator produced pulses that were amplified by a 1-kHz Spitfire regenerative 

amplifier, producing 800-nm pulses with a temporal duration of 100 fs. This fundamental output 

was frequency doubled, producing 400-nm light that was attenuated to sub-microjoule pulse 

energies for TCSPC measurements. Visible photoluminescence was isolated from laser light 

using several dichroic beam splitters. The isolated photoluminescence was directed to an 
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avalanche photodiode (id Quantique, id-100-20—ULN), and TCSPC data was acquired using a 

16-channel photon correlator (Becker Hickl). The high- and low-energy regions of PL were 

separated using band-pass filters.  The temporal dynamic range of the time-domain 

measurements extended from sub-picosecond to millisecond time scales. Photoluminescence 

lifetimes were fit using in-house software.  

Magnetic Measurements: 

 Magnetic measurements were performed on a polycrystalline sample containing 750 μg 

of 249Cf that was placed in a tightly closed PTFE sample holder, with a Quantum Design SQUID 

magnetometer MPMS-XL. DC magnetic susceptibility measurements were carried out in an 

applied field of 0.100 T in the 1.8–380 K temperature range. Field-dependent magnetization was 

recorded at 1.8 K in the magnetic field varying from 0 to 7 T. The data were corrected for the 

diamagnetic contribution from the sample holder and constituent elements. 

Computations: 

While the position of the Cf, O and B atoms of the cluster was taken from the 

crystallographic structure, the position of the H atoms (initially present in the crystallographic 

structure or added to ―neutralize‖ the cluster) were optimized with the Perdew-Burke-Ernzerhof 

(PBE) functional23, using the TURBOMOLE program package.25  During this optimization, a C2 

symmetry point group was imposed.  One should note that the C2 symmetry arises from the first, 

second and third coordination spheres, and hence that the imposed symmetry constraint only 

affects the added protons.  All-electron def-TZVP basis sets26 were used for all the atoms, except 

the Cf atom, which was treated using a 60-electron core quasi-relativistic pseudopotential.27  A 

sextet spin state was considered for the optimization of the H atoms.  The cluster employed in 

our calculations is illustrated in Supplementary Figs. 2, 3, and 5.  A single point unrestricted 

DFT calculation was then performed at this geometry with the PBE0 functional.28  Test 

calculations showed that the lowest energy quartet and doublet spin configurations lie about 30 

and 50 kcal/mol above the lowest sextet spin state, respectively, and thus only the electronic 

structure of the ground sextet state is considered in the subsequent population analysis. 

Restricted open-shell Kohn-Sham (KS) DFT single point calculations were performed with all-

electron def-TZVP basis sets26 on H, B and O atoms and Stuttgart ECP60MWB contracted 
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pseudopotential basis set27,29 on Cf, with both the PBE and PBE0 functionals, using the Gaussian 

09 program package.30  

 Mulliken charge and spin populations were computed and for the B3LYP and PW91 

functionals, Natural Bond Orbital (NBO) populations31,32 were also calculated. An electron 

localization function analysis was performed.23,26 The ELF and electron density values were 

computed on a grid with the DGrid program, v. 4.6.33  The topological analysis of the ELF allows 

discussing the nature of chemical bonds.34  The number of bonding electrons for each Cf−O pair 

is presented in Supplementary Table 6.  Multiconfigurational wave function based calculations 

were performed with the complete active space self-consistent field (CASSCF) method22 with 

the Molcas program.35  The minimal ANO-DK3 basis set36 is used for all atoms.  The Douglass-

Kroll-Hess Hamiltonian37,38 is used to explicitly account for scalar relativistic effects.  
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Figure 1: Graphical representations of the fundamental building block of borate units (a), 
distorted square antiprismatic coordination environment of the Cf(III) (b), and overall two-
dimensional sheet structure viewed parallel to the [ab] plane (c) of Cf[B6O8(OH)5].  The BO3 
triangles are depicted by the dark green polyhedra, BO4 tetrahedra are depicted by light green 
polyhedra, and the CfO8 units are depicted by orange polyhedra. 
 
Figure 2: The magnetic susceptibility obtained from a polycrystalline sample of Cf[B6O8(OH)5] 
(open circles) compared with the fit (solid line) obtained using a modified Curie-Weiss law. The 
field dependent magnetization (M), shown in the inset for data obtained at 1.8 K, saturates at low 
field. The eff = 6.7(4) is significantly less than the expectation value of 10.65 B for the 6H15/2 
ground state based on Russell-Saunders coupling. 
 
Figure 3: Room temperature solid-state absorption spectrum of Cf[B6O8(OH)5] obtained from a 
cluster of crystals showing f-f transitions that are diagnostic for Cf(III).  The f-f transitions are 
broader than what are typically observed for other trivalent actinides and lanthanides.  Vibronic 
features are clearly observed to the right of peak at 475 nm.  Assignments: 1 – 34% 6F9/2, 28% 
6H9/2, 16% 4F9/2, 11% 2G9/2; 2 − 48% 4K17/2, 26% 4L17/2, 14% 2L17/2, 13% 4M17/2; 3 – 56% 6F1/2, 
37%  4D1/2; 4 – 37% 6F5/2,  29% 6H5/2, 13%  4G5/2, 12% 4D5/2; 5 – 53% 6H7/2, 23% 4G7/2; 6 – 32% 
4D3/2, 27% 6F3/2, 17% 2P3/2; 7 – 51% 6H9/2, 21% 6F9/2, 19% 4G9/2.
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Figure 4: Photoluminescence spectra of Cf[B6O8(OH)5] upon excitation with 420 nm light as a 
function of temperature.  The emission from Cf(III) is centered at 525 nm; whereas the emission 
from the Cm(III) daughter occurs at 600 nm.  Both features indicate substantial vibronic 
coupling.  Inset shows the decay life-times of 1.2  0.3 s for Cf(III) and 20  2 s for the 
Cm(III) daughter.  The red and blue traces represent least-squares fits to the decay 
measurements.    
 
 

 

 


