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Abstract

A systematic study has been undertaken to determine how local distortions affect

the overall (molecular) magnetic anisotropies in binuclear complexes. For this pur-

pose we have applied a series of distortions to two binuclear Ni(II) model complexes

and extracted the magnetic anisotropy parameters of multispin and giant-spin model

Hamiltonians. Furthermore local and molecular magnetic axes frames have been de-

termined. It is shown that certain combinations of local distortions can lead to con-

structive interference of the local anisotropies and that the largest contribution to the

anisotropic exchange does not arise from the second-rank tensor normally included in

the multispin Hamiltonian, but rather from a fourth-rank tensor. From the compari-

son of the extracted parameters, simple rules are obtained to maximize the molecular

anisotropy by controlling the local magnetic anisotropy, which opens the way to tune

the anisotropy in binuclear or polynuclear complexes.
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1 Introduction

Magnetic anisotropy is the origin of the single molecule magnet (SMM) behavior1–5 which consists

in a slow relaxation of the magnetization, and a blocking of the magnetization for low enough

temperatures. Since this bistable behavior may lead to technological applications in the domain of

data storage6 and quantum computing,7–9 the understanding of the microscopic origin of magnetic

anisotropy has received considerable interest during the last two decades. For most of the transition

metal (TM) complexes, the property arises from the loss of degeneracy of the MS components of

the ground spin state S due to relativistic effects, in particular the spin-orbit coupling, combined

with geometrical distortions from the highly symmetric octahedral or tetrahedral situations. This

phenomenon is called the Zero-Field Splitting (ZFS) and is characterized by the axial D and the

rhombic E parameters. Magnetic anisotropy can also be observed in cases where the angular

momentum is not quenched in the pure electronic ground state, due to for instance molecular

orbital (near-)degeneracy in TM complexes, and lanthanide or actinide complexes. In such cases a

pseudo-spin S̃ can be defined which may significantly differ from the true spin state.10

For an even number of unpaired electrons, bistable behavior occurs when the complex has a

uniaxial magnetic anisotropy and the two maximal |MS| components of the ground spin state are

the lowest degenerate states, i.e. when E = 0 and D is large and negative. In case of non-zero rhom-

bic anisotropy (E 6= 0), the Mmin
S and Mmax

S components are coupled and the ground state is a linear

combination of MS components. When D is positive, the lowest |MS| component becomes the

dominant component of the ground state and no bistability can be observed. In the case of an odd

number of unpaired electrons, slow relaxation of the magnetization can a priori be observed even

if the ground Kramers doublet is essentially composed of the lowest |MS| components (correspond-

ing to a positive D value), and even if the rhombic parameter E does not vanish.11 Nevertheless,

such systems are not very common and also for odd-electron systems negative D-values are central

to SMM behavior. The synthesis of new objects with improved anisotropy characteristics rests on

the ability to control the nature (uniaxial or in plane) and the magnitude of the magnetic anisotropy.

Several theoretical works have been devoted in the last years to the understanding of the chemical
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and geometrical factors that govern the magnetic anisotropy in mononuclear species.12–17 While

due to the numerous driving forces (configurations dn, geometries, strength of the ligand field, etc.)

the conclusions of these studies are quite often system-specific, theory allows one to understand

and accurately predict the magnetic anisotropy characteristics of mononuclear species. In polynu-

clear complexes, the situation is more complicated since additional factors are expected to come

into play:

• the different ions in the complex are likely to have different local anisotropies. Indeed,

the relativistic effects, responsible for the loss of degeneracy of the spin components of the

ground spin state Si of each ion i, are essentially local and hence, very sensitive to the local

environment of each ion, which may significantly differ from ion to ion.

• intersite anisotropic interactions (such as the anisotropic exchange) may be present, affecting

the characteristics of the overall magnetic anisotropy of the polynuclear complex, here called

the molecular anisotropy.

The main aim of the present study is to advance in the understanding of synergistic effects be-

tween local anisotropies. We consider model binuclear complexes constituted of two Ni(II) ions

adopting various geometries for which both the nature and the magnitude of the local anisotropies

may or may not be different. In all the cases considered, the parameters characterizing the lo-

cal anisotropies are determined and confronted to those of the molecular magnetic anisotropy of

the complex. Two types of anisotropic spin Hamiltonians can be used to characterize the ZFS of

polynuclear complexes:

• The giant-spin Hamiltonian reproduces the energy levels of a single spin state, usually the

ground spin state. Nevertheless several giant-spin Hamiltonians can be extracted to describe

the energy levels of all the different spin states of a complex. When the molecular system

contains four unpaired electrons or more (S≥2), and in particular in the weak-exchange limit,

i.e. when the mixing between the ground and the excited spin states is non-negligible, this

model Hamiltonian contains spin operators of higher order than two.
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• The multispin Hamiltonian reproduces the energy of the MS components of all spin states

arising from the coupling between the local spin states of the paramagnetic ions. This Hamil-

tonian is spanned in the uncoupled |Sa,MSa
,Sb,MSb

〉 basis and accounts for the spin mixing.

In recent studies, the physical content of these two Hamiltonians has been confronted to ab initio

calculations based on the all-electron Hamiltonian.18,19 It was shown that the usual approximations

made in these models are not suitable to reproduce the interactions resulting from the ab initio cal-

culations of a binuclear Ni(II) complex in the weak-exchange limit. In the case of the giant-spin

Hamiltonian, simple additional operators were sufficient to consistently introduce the spin-mixing

effect on the effective splitting and mixing of the MS components of the ground spin state, and

all non-negligible interactions could be extracted.19 Concerning the multispin Hamiltonian, it was

shown that a biquadratic operator and a four-rank tensor should be introduced to reproduce ac-

curately all the effective non-negligible interactions arising from the all-electron Hamiltonian.18

Unfortunately, the number of these interactions was too large and a full extraction could not be

performed. Owing to recent advances in our extraction procedure, such an extraction is now pos-

sible and an important issue of the present paper is to determine all non-negligible anisotropic

interactions. Quite surprisingly, it will be shown that the fourth-rank tensor actually brings the

main contributions to the exchange anisotropy.

It should be stressed that relations between the parameters of the local and molecular anisotropy

tensors already exist,20–23 and that it is actually possible to determine the molecular magnetic

anisotropy tensors by combining the local ones if two hypotheses are made, (i) the anisotropy axes

on both magnetic centers are parallel, and (ii) the anisotropic intersite interactions of the two cen-

ters are negligible. The present paper quantifies and discusses the various anisotropic interactions

including those of the fourth-rank symmetric tensor from ab initio calculations, allowing us to de-

termine the local and molecular anisotropies without the necessity of the mentioned assumptions.

The next section briefly presents the procedure of extraction of the model interactions from the

effective Hamiltonian theory and provides the computational information. Section III recalls the

physics of the two considered spin Hamiltonians and presents a method for the determination of the
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molecular and local magnetic axes frames. Section IV discusses the magnitude and nature of the

extracted local and molecular anisotropic interactions and analyses interference effects between

local anisotropies on the molecular anisotropy.

2 Method of extraction and computational information

As shown in previous studies,24–27 it is possible to establish the relevance of any model Hamil-

tonian and to extract its constitutive interactions by using the effective Hamiltonian theory. In

combination with correlated ab initio calculations performed using the all-electron Hamiltonian,

the effective Hamiltonian theory enables one to numerically evaluate all the matrix elements of a

model Hamiltonian. This method has successfully been applied to mono- and bi-nuclear systems

to determine anisotropic interactions of the giant-spin and multispin Hamiltonians.13,18,19,28–31

The effective Hamiltonian theory32,33 enables one to extract from accurate ab initio calcu-

lations the most rigorous effective Hamiltonian working in the same model space as the model

Hamiltonian. This effective Hamiltonian is then compared to the model one. In the des Cloizeaux

formalism,33 the general expression of the effective Hamiltonian is:

Ĥeff = ∑
k

|Ψ̃k〉Ek〈Ψ̃k| (1)

where Ψ̃k are the symmetrically orthogonalized and normalized projections onto the model space

of the all-electron Hamiltonian eigenvectors Ψk, and Ek are the corresponding eigenvalues. This

formulation ensures that the eigenvalues of the effective Hamiltonian are the energies of the all-

electron Hamiltonian, while the eigenvectors of the effective Hamiltonian are the projections onto

the model space of the all-electron Hamiltonian eigenvectors, such that:

Ĥeff |Ψ̃k〉= Ek|Ψ̃k〉 (2)
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Since it is possible to calculate all the matrix elements of the effective Hamiltonian as:

〈i|Ĥeff | j〉= 〈i|∑
k

|Ψ̃k〉Ek〈Ψ̃k| j〉 (3)

the method provides more information than the low energy spectrum. Values of the interactions

of the model Hamiltonian can be assigned by confronting these numerical matrix elements to their

analytical expression in the model Hamiltonian.

The ab initio calculations were performed using the Spin-Orbit State-Interaction (SO-SI) method34,35

implemented in the MOLCAS package.36,37 The method performs a variational treatment of the

spin-orbit couplings between the lowest selected states. The preliminary spin-orbit free calcula-

tions account for non-dynamic correlation effects through the complete active space self-consistent

field (CASSCF) method. The active space contains the 16 d electrons in the 10 d orbitals for the

calculation of the magnetic anisotropy of the Ni(II) binuclear species, i.e. CAS(16,10)SCF. To

compute the local anisotropy tensors, the orbitals of each center were considered active alterna-

tively while the orbitals of the other center were kept inactive, i.e. CAS(8,5)SCF calculations were

carried out. Extended basis sets of ANO type38,39 have been used with the following contractions:

6s5p4d2f for Ni, 6s5p2d for Cl, 4s3p1d for O and N, 3s2p for C and 2s for H.

3 Model Hamiltonians and the magnetic axes frame

3.1 Giant-Spin Hamiltonians and Molecular Anisotropy Tensors

The simplest description of magnetic anisotropy in polynuclear systems is provided by the giant-

spin approximation.40–43 The use of this Hamiltonian is physically justified when the spin ground

state of the molecule is sufficiently separated in energy from the other spin multiplets such that the

magnetic properties can be described using a single spin ground state. Simultaneously, the ZFS of

other spin multiplets can be independently described, which leads to a block-spin Hamiltonian if

all the coupled spin states and the isotropic couplings are considered. In this work, we will focus
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in particular on the D and E parameters of the triplet and quintet states, referred to as D1, E1, D2

and E2, respectively.

The giant-spin Hamiltonian can be expressed in terms the standard Stevens equivalent oper-

ators44 and additional operators which were shown to be necessary when S=2 in the case of a

binuclear complex in the weak-exchange limit.19 Nevertheless, in case of a strong exchange cou-

pling between the magnetic ions,13 it can be reduced to its simple form:

ĤGSH = ŜDŜ (4)

where Ŝ is the spin operator of the state under consideration which in our case will be either the

triplet (S = 1) or the quintet (S = 2) state for which the second-rank associated tensors will be

denoted D1 and D2, respectively.

Higher than second order terms become particularly significant when couplings between the

different spin states (i.e. spin-mixing) are important, but are small in the here-considered cases

since the isotropic magnetic coupling is relatively large (around 40 cm−1), i.e. we are in a situation

close to the strong-exchange limit. The values of these interactions are not reported here since the

largest value obtained is 0.09 cm−1, affecting the 〈2,±2|Ĥeff |2,∓2〉 matrix elements by not more

than ∼1 cm−1. The determination of the magnetic axes frame could therefore safely be performed

using only the second-order tensors S ·D2 · S for the quintet state and S ·D1 · S for the triplet state

(i.e. only the B0
2 and B2

2 D2, E2 and D1, E1 parameters for both spin blocks are extracted). For

this purpose, we have artificially removed the couplings between the singlet, triplet and quintet MS

components to extract the block spin anisotropy tensors and consequently diagonalize them to find

the anisotropy axes, as proposed in a previous work.19

3.2 Multispin Hamiltonian

For a binuclear complex constituted of sites a and b, the multispin Hamiltonian works on the basis

of the uncoupled |MSa
,MSb

〉 functions. It is designed to reproduce the energy of all the states
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resulting from the coupling between the ground spin states of each magnetic site. In the present

study, the Hamiltonian describes the energy of all MS components of the singlet, triplet and quintet

states after transformation to the coupled |S,MS〉 basis. As recently shown in a binuclear complex

of Ni(II) in the weak-exchange limit, it involves biquadratic operators and a fourth-rank tensor

Daabb. In the considered case, its expression is:

ĤMS = JŜa · Ŝb + ŜaDaŜa + ŜbDbŜb + ŜaDabŜb +dabŜa × Ŝb +
(

Ŝa ⊗ Ŝa

)

Daabb

(

Ŝb ⊗ Ŝb

)

(5)

where J is the isotropic magnetic exchange, Da and Db are local tensors, Dab is the symmet-

ric anisotropic exchange tensor and dab is the antisymmetric anisotropic term,20–23 known as the

Dzyaloshinskii Moriya pseudo-vector. The components of these two tensors read:

Dab + dab

=













Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz













+













0 dxy −dxz

−dxy 0 dyz

dxz −dyz 0













(6)

Note that the analytical Hamiltonian matrix is given in Ref. 18 for centrosymmetric cases.

To compare the nature of the local and molecular anisotropies, the magnetic anisotropy axes

have been determined for each Ni(II) ions of the binuclear system in its triplet and quintet coupled

spin states. For this purpose, the parameters of the various tensors of both Hamiltonians giant-spin

and multispin were extracted from the effective Hamiltonian theory, such that the model Hamilto-

nian matrix calculated using the extracted values of the parameters reproduces at best the numerical

effective Hamiltonian matrix calculated using equation 3.

Because the proper magnetic axes of each tensor may be different, all tensors are computed

in a single axes frame and rotations (P = Rz(φ) ·Rx(θ) ·Rz(ψ) where Rx and Rz stand for rotation

around x and z respectively and φ ,θ ,ψ are the Euler angles) between the proper axes frame of

each tensor and the axes frame of the calculation are introduced, enabling one to determine the
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axial and rhombic parameters of all magnetic anisotropy tensors. Tables 1 and 2 give the number

and nature of the non-zero parameters depending on the symmetry point group for the second-rank

tensor Dab, the Dzyaloshinski Moriya vector and the fourth-rank tensor. κ = ±1 indicates the

absence/presence of a symmetry element that interchanges the two magnetic centers. In order to

simplify the extraction, we have imposed the following relation:

Dxxxx +Dyyyy +Dzzzz +2Dxxyy +2Dxxzz +2Dyyzz = 0 (7)

which has no other effect than ensuring that the anisotropic part of the Hamiltonian is traceless.

To further reduce the number of independent variables, we make use of the fact that several ma-

trix elements in the numerical effective Hamiltonian are (nearly) zero, whereas the corresponding

elements of the model Hamiltonian is a (sum of) parameter(s). This introduces the following addi-

tional relations:

Dxxxx = Dyyyy = 0 (8)

Dxxyy =
1
2
(Dxxxx −Dxyxy) (9)

Dxzxz −Dyzyz = −Dxx
ab +D

yy
ab (10)

Dxxzz −Dyyzz = 2Dxx
ab −2D

yy
ab (11)

For all cases studied here, there exists an appropriate axes frame for which the fourth-rank tensor

reduces to at most nine independent components when these relations are imposed instead of the

81 possible a priori.

4 Results and discussion

Geometrical deformations have been applied to the model complexes O[Ni(NCH)4CN]2 (M1,

cases 1, 10, 11, 13 see figure 1) and O[Ni(NCH)4Cl]2 (M2, cases 2–9, and 12 see figure 2) to

10



Table 1: Non-zero symmetric and antisymmetric components of the second-rank exchange tensor.45

Point groupa κb Symmetric Antisymmetric Number of independent
components components components

C1 +1 xx,yy,zz,xy,xz,yz xy,xz,yz 9
Ci -1 xx,yy,zz,xy,xz,yz 6

Cs
c -1

xx,yy,zz,xy
xz,yz 6

+1 xy 5

C2
-1

xx,yy,zz,xy
xz,yz 6

+1 xy 5
D2 -1 xx,yy,zz xy 4

C2v
d -1

xx,yy,zz
xz 4

+1 3
C2h -1 xx,yy,zz,xy 4
D2h -1 xx,yy,zz 3
D2d -1 xx=yy,zz 2
Cn +1 xx=yy,zz xy 3
Dn -1 xx=yy,zz xy 3
Cnv +1 xx=yy,zz 2
Sn,Cnh, -1 xx=yy,zz 2
Dnh,Dnd
a The z-axis is the highest-order rotation axis
b κ =−1 if the magnetic centers are exchanged by a symmetry operation and κ =+1 otherwise.
c The σh plane is the xy plane
d The two magnetic centers are in the xz plane

Table 2: Non-zero symmetric components of the fourth-rank Daabb tensor.

Point groupa Symmetric Number of
components parametersb

C2,Cs,C2h
xxxx,yyyy,zzzz,xxyy,xxzz,yyzz

14
& xyxy,xzxz,yyzz,xxxy,yyxy,zzxy

D2,C2v,D2h
xxxx,yyyy,zzzz,xxyy,xxzz,yyzz

9
& xyxy,xzxz,yyzz

Cn,Cnv,Cnh,Dn,Dnd,Dnh
xxxx=yyyy, zzzz, xxyy, xxzz=yyzz

6
& xyxy, xzxz=yzyz

a The z-axis is the highest-order rotation axis
b Subject to reduction by additional relations (see text)
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NC Nia

NayCH

NaxCH

NayCH

NaxCH

O Nib

NbyCH

NbxCH

NbyCH

NbxCH

CN

Figure 1: Scheme of the molecular model 1 (M1).
Geometrical parameters : distances lax =Nia−Nax, lay =Nia−Nay, lbx =Nib−Nbx, lby =Nib−Nby, angles θa = (Nax,Nia,O), θb = (Nbx,Nib,O)
dihedral angles Φx = (Nax,Nia,Nib,Nbx), Φy = (Nay,Nia,Nib,Nby), Φxy = (Nax,Nia,Nib,Nby)

Cl Nia

NayCH

NaxCH

NayCH

NaxCH

O Nib

NbyCH

NbxCH

NbyCH

NbxCH

Cl

Figure 2: Scheme of the molecular model 2 (M2).
Geometrical parameters : distances lax =Nia−Nax, lay =Nia−Nay, lbx =Nib−Nbx, lby =Nib−Nby, dihedral angles Φx = (Nax,Nia,Nib,Nbx), Φy =
(Nay,Nia,Nib,Nby), Φxy = (Nax,Nia,Nib,Nby)
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Figure 3: Conventions used to schematize the nature of the magnetic anisotropy and to show the
magnetic axes frame of the D-tensors. A prolate ellipsoid indicates an axial anisotropy while an
oblate ellipsoid refers to a planar anisotropy. Hard axes and hard planes are represented in black
while easy axes and easy planes are in red. In absence of rhombicity only one axis is represented.

Figure 4: Ellipsoids representing the axial or planar anisotropy and magnetic anisotropy axes of
the various local and molecular anisotropy tensors for different geometries in which local axial
anisotropies have been imposed. The compound number and the model compound (either M1 or
M2) are indicated in the left column.
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Figure 5: Ellipsoids representing the axial or planar anisotropy and magnetic anisotropy axes of
the various local and molecular anisotropy tensors for different geometries in which local planar
anisotropies have been imposed. The compound number and the model compound (either M1 or
M2) are indicated in the left column.
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Figure 6: Ellipsoids representing the axial or planar anisotropy and magnetic anisotropy axes of the
various local and molecular anisotropy tensors for different geometries in which both an axial and
a planar local anisotropies have been imposed. The compound number and the model compound
(either M1 or M2) are indicated in the left column.

tune the characteristics of the local and molecular anisotropies (see figures 3, 4, 5 and table 4). The

stronger field exerted by the CN− ligand makes it possible to study some extra combinations of

local anisotropies that are not easily realized in the other complex, as specified below. Both model

complexes show strong antiferromagnetic isotropic coupling and have an S = 0 ground state.

For each structure, the parameters of three different models were extracted: (i) The local ZFS

parameters Dloc
a ,E loc

a ,Dloc
b ,E loc

b ; (ii) the giant-spin Hamiltonian parameters D2,E2 for the quintet

and D1,E1 for the triplet spin manifolds; and (iii) all the parameters of the multispin Hamiltonian.

The values are listed in table 3. The proper magnetic axes of all the tensors have been extracted and

are represented in figures 4 (both centers with axial local anisotropy), 5 (both centers with planar

local anisotropy) and 6 (for axial and planar local anisotropies). These figures report pictures of

the applied deformations and of the resulting anisotropy ellipsoids that provide a visualization of

the nature of the magnetic anisotropies (both local and molecular for the quintet and triplet states);

the direction of the Dzyaloshinskii Moriya vector is also indicated when it is not zero. Note that

the conventions used to represent the anisotropy in figures 4, 5 and 6 are given in figure 3.
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Compression, stretching and angular distortion generate local anisotropies with peculiar and

different features. The D4h geometry (5) of O[Ni(NCH)4Cl]2 is such that Z is a hard axis of

magnetization for both centers and they do not exhibit any local rhombicity. In the D2h structures

(6 and 2) the bonds have been stretched or compressed in a single direction to generate either two

parallel easy planes (table 5) or two collinear easy axes (table 4) of magnetization. In the D2d

structures (7 and 3), the deformations are applied to different axes (X and Y) such that the easy

planes or the easy axes are orthogonal. Angular distortions (of 10 degrees on each sites) have

been applied to both D2h geometries to generate the D2 structure in which the local easy planes (8)

are no longer parallel. The C2v (9) geometry illustrates the cases of two local planar anisotropies,

where only one of them is rhombic. In the C2v (12) geometry, one center has a planar anisotropy

while the other has an axial anisotropy and the easy axis is parallel to the easy plane. Finally, in

the C1 structure (4) the two local anisotropies are axial; one of the easy axes is in the (XY) plane

and the other in the (XZ) plane.

The ligand CN− produces a stronger ligand field which permits to study other combinations of

local anisotropies. In the D4h structure (1) of O[Ni(NCH)4CN]2, the local axial anisotropies share

the same easy axis Z. The C4v structure (11) has one axial local anisotropy with the easy axis Z

and a local planar anisotropy with the easy plane (XY). In the C2v structure (13), one center has an

axial anisotropy with the easy axis Z while the other has a planar anisotropy with the easy plane

(YZ).

From the comparison of the values of the different local and molecular anisotropy parameters,

a series of conclusions can be extracted, which will be discussed below in a point-by-point fashion.

• The magnetic axes frames and local anisotropy parameters extracted from the calculations

performed with one or two active magnetic centers are very similar, showing the transferabil-

ity of these parameters from the “embedded" monomer to the dimer. The small discrepancies

are due to the bias introduced in the calculations of the local tensors by the arbitrarily im-

posed closed-shell character of the inactive Ni(II) center. The values of the local anisotropy

parameters that should be considered as the most precise are those extracted from the calcu-
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Table 3: Values of extracted parameters in cm−1. The values of the local tensors components
marked with a superindex “loc" have been extracted from calculations performed with a single
magnetic active center. Note that ‘0’ is used for terms that are strictly zero for symmetry reasons,
while ‘0.0’ indicates that the extracted value of the parameter is smaller than 0.05 cm−1.

Cases 1 2 3 4 5 6 7 8 9 10 11 12 13

SPG D4h D2h D2d C1 D4h D2h D2d D2 C2v D2d C4v C2v C2v

Dloc
a -3.1 -21.9 -19.4 -22.5 10.0 9.9 10.0 8.5 9.9 15.0 -4.3 2.2 -3.8

Dloc
b -3.1 -21.9 -19.4 -24.4 10.0 9.9 10.0 8.5 9.6 15.0 2.1 -21.7 5.4

E loc
a 0 3.7 2.8 0.6 0 1.6 1.5 1.8 1.5 1.3 0 0.1 1.1

E loc
b 0 3.7 2.8 0.1 0 1.6 1.5 1.8 0.0 1.3 0 2.6 0.0

D2 -2.4 -6.7 2.5 -6.6 2.5 2.5 2.5 1.6 2.5 -2.2 -1.5 -3.6 -2.5
E2 0 0.7 0 0.6 0 0.5 0 0.2 0.2 0 0 0.2 0.3
D1 7.6 19.2 -6.9 18.6 -6.6 -6.7 -6.6 -3.7 -6.7 9.7 5.2 8.6 8.0
E1 0 2.3 0 2.4 0 1.4 0 0.5 0.7 0 0 1.4 0.9
J 38.9 50.3 49.7 49.8 40.9 41.1 41.1 41.0 41.8 30.6 40.3 38.6 37.2

Da -2.2 -21.1 -21.9 -20.7 10.9 12.0 12.1 9.3 12.0 16.6 -3.6 4.6 -2.1
Db -2.2 -21.1 -21.9 -21.3 10.9 12.0 12.1 9.3 12.0 16.6 1.1 -20.3 4.2
Ea 0 0.4 0.3 0.6 0 1.4 1.4 1.4 1.4 3.1 0 0.0 0.0
Eb 0 0.4 0.3 0.1 0 1.4 1.4 1.4 0.0 3.1 0 0.9 0.5
Dab 0.3 0.3 0.3 0.3 0.4 5.2 0.4 0.4 5.1 -4.7 0.3 0.3 -4.7
Eab 0 0.0 0 0.0 0 0.9 0 0.0 0.5 0 0 0.0 0.6

Dzzzz -4.9 -4.0 -5.4 -3.6 -3.8 -4.8 -4.9 -4.9 -4.9 5.5 -3.6 -3.0 -5.4
Dxxzz 0 0 0 0 0 -1.3 0 0 -2.2 3.3 0 0 2.2
Dyyzz 0 0 0 0 0 -5.0 0 0 -4.1 3.3 0 0 4.7
Dxxyy 2.5 2.0 2.7 1.8 1.9 8.7 2.4 2.4 8.7 -9.4 1.8 1.5 -4.2
Dxyxy -1.2 -1.0 -1.4 -0.9 -0.9 -4.4 -1.2 -1.2 4.4 4.7 -0.9 -0.7 2.1
Dxzxz -1.3 -1.1 -1.4 -1.3 0 -0.6 -1.2 -1.3 -0.1 -0.3 -0.9 -0.8 -2.4
Dyzyz -1.3 -1.0 -1.4 -1.3 0 1.3 -1.2 -1.3 0.8 -0.3 -0.9 -0.8 -3.6
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lations in which the two magnetic centers are active.

• The values of Dab and Eab (anisotropic exchange parameters) are very small and slightly

more important when the local anisotropy is planar than for axial local anisotropy. The

anisotropy of the interaction between the two anisotropic centers originates essentially in the

fourth-rank tensor components. The planar nature of the anisotropy caused by Dab appears

to be almost unaffected by the distortions in the considered systems, except for cases 10 and

13.

• The giant-spin second-rank tensors D1 and D2 exhibit opposite anisotropic characteristics,

the axes and planes of easy and hard magnetization are systematically opposite. For sim-

plicity, only the values and features of D2 will be commented in the subsequent points. One

may also note that the absolute values of the anisotropy parameters are larger in the triplet

(D1) than in the quintet (D2), as already explained by Boča.22 Due to the presence of the

fourth-rank tensor in the model Hamiltonian considered in this work, and in some cases due

to the mismatch between the local tensor anisotropy axes, the relations between the tensors

found in this study are different than those proposed earlier.22

• As expected, stretching and compression induce opposite local anisotropy behavior with

planar and axial anisotropy, respectively. This results in positive and negative D2 values.

• The Dzyaloshinskii-Moriya vector is either very small or strictly zero by symmetry. Among

the considered cases, non-zero values were only found for the C2v and C1 symmetry point

groups. Since the obtained values were lower than 0.05 cm−1, they have not been reported

here.

• When both local anisotropies are axial (see figure 4), the nature of the anisotropy of the

quintet is usually axial except when the two local axes are orthogonal (case 3). The easy axis

always bisects the two local easy axes (and is therefore parallel or collinear –i.e. parallel

and having a common point– with the local axes when these ones are already parallel or
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collinear). One should note that the values of the molecular anisotropy parameters are usu-

ally drastically reduced in comparison to the local ones. The most interesting situation (case

1) occurs when the local axes are collinear, as expected. One should note that in such a case

the absence of local rhombicity is maintained in the molecular magnetic anisotropy of the

complex and that there is a (small) synergistic effect: the overall magnetic axial parameter

value for the high-spin block is -2.4 cm−1 while the local ones are -2.2 cm−1.

• When both local anisotropies are planar (see figure 5), the molecular magnetic anisotropy is

usually planar and here again the values of the anisotropic parameters are smaller than the

local ones. Introducing local rhombicity may actually be interesting for tuning the nature of

the overall anisotropy of the complex. Indeed, if the local planes are parallel and the local

easy axes are perpendicular, the overall magnetic anisotropy does not exhibit any rhombicity

(case 7). When the local easy axes have an angle, the resulting easy axis bisects the two local

ones (cases 6 and 8). The most interesting situation occurs when the local easy planes are

orthogonal and the local easy axes are collinear, since it is possible to generate a purely axial

anisotropy (negative axial parameter and no rhombicity).

• When the nature of the local anisotropies is different (one axial and one planar, cases 11-13

see figure 6), it is possible to generate an axial molecular magnetic anisotropy independent of

the orientation of the local easy axis and plane (cases 11 and 12). Two interesting situations

should be noted, i) the absence of local rhombicities (case 11) leads to the absence of rhombic

molecular magnetic anisotropy, and ii) a synergistic effect occurs when the local easy axes

are collinear as in case 13, where the local axial parameter Da is -2.1 cm−1 while the overall

axial parameter D2 is -2.5 cm−1.

5 Summary and perspectives

This work is a follow-up of previous theoretical studies in which it was shown that both the com-

monly applied giant-spin and multispin Hamiltonians are not appropriate for the description of
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the anisotropy of binuclear complexes, in particular in the weak-exchange limit.18,19 Because the

values of the numerous parameters of the multispin Hamiltonian involving the fourth-rank ten-

sor components could not be extracted up to now,18 a method of extraction that makes use of

the effective Hamiltonian theory has been implemented here and successfully applied to com-

plexes exhibiting different local anisotropies. Rules to predict vanishing values of symmetric and

antisymmetric second-rank exchange tensors and symmetric fourth-rank symmetric tensors were

presented, illustrated (see figures 4, 5 and 6) and tested on model molecules.

Several conclusions can be drawn from this work. Among the most important ones, one should

mention that the anisotropy of the interactions between the two magnetic centers is essentially

caused by the symmetric fourth-rank tensor while the second-rank exchange tensor components are

almost always negligible. As a consequence, the relations between the molecular anisotropy of the

complex and the local ones are no more quantitatively valid. Nevertheless, from a qualitative point

of view the nature of the overall magnetic anisotropy can be anticipated from the local anisotropy,

except when the complex belongs to the weak-exchange regime. One should also note that the

Dzyaloshinskii-Moriya term is very small in the considered cases and that non zero values were

only obtained for symmetry point groups lower than C2v. Obtaining larger antisymmetric terms

would require other deformations, such as changing the (Nia,O,Nib) angle away from 180◦.

Combinations of local anisotropies were found to show synergistic effects (increased axiality

of the molecular magnetic anisotropy in comparison to the local ones) in three cases. The first

one occurs when two local axial anisotropies with collinear local easy axes are combined. The

molecular axial anisotropy is larger than the sum of the local anisotropies. This is in line with the

results of experimentalists working in the domain of polynuclear single molecule or single chain

magnets for instance.46 The second case of synergy is observed when two local planar, rhombic

anisotropies are combined, leading to a purely axial (no rhombicity) molecular anisotropy when

the local easy axes are collinear and the local easy planes are perpendicular. Finally, axial and

planar local anisotropies may lead to an axial molecular anisotropy and a synergy occurs when the

local easy axis of one center is in the local easy plane of the other center.
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To the best of our knowledge, values of the multispin parameters are extremely difficult to

extract from experiment. In this respect, a theoretical approach that provides both qualitative and

quantitative information concerning magnetic anisotropy appears as an interesting mean to help

synthetic chemists to control and improve this property. Forthcoming papers will be devoted to the

application of the here-presented method of extraction to existing, synthesized compounds.
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Synopsis:

The role of local distortions on the molecular magnetic anisotropies of model binuclear Ni(II) com-

plexes is assessed with wave function based methods. The anisotropy parameters of the multispin

and giant-spin model Hamiltonians are unambiguously extracted with the effective Hamiltonian

theory. It is shown that the combination of some local distortions can lead to constructive or

destructive interactions between the local anisotropies, which can be used to tune the magnetic

anisotropy in polynuclear complexes.
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