The vacuum system of the GANIL beam lines

C. Ricaud, G. Rommel

To cite this version:

C. Ricaud, G. Rommel. The vacuum system of the GANIL beam lines. Tenth International Conference on Cyclotrons and their Applications, Apr 1984, East Lansing, United States. pp.147-149. in2p300996420

HAL Id: in2p3-00996420
https://hal.in2p3.fr/in2p3-00996420
Submitted on 24 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE VACUUM SYSTEM OF THE GANIL BEAM LINES
C. RICAUD, G. ROMIEL

GRAND ACCELERATEUR NATIONAL D'IONS LOURDS BP 502714021 CAEN CEDEX (FRANCE)

GANIL. A84.06

the vacudh systeh of the canil benm lines

C. RICAUD, G. ROMHEL

GRAND accelerateur national d'ions lourds BP 502714021 CaEN CEDEX (France)

ABSTRACT

The GANIL beam lines are 400 m . long and the average diameter of the pipes is 60 mm . Every fifth meter a beam, diagnontic with a high desorption rate is installed. A pressura lower than 10^{-5} pascal is required. The method of vacuum calculation, the reasons for the choice of our pumps (turbo molecular and cryogenic) and the results are givan.

The GANIL accelerator is composed of three cyclotrons in cascade. The bean is tranaported from a cyclotron to the next one and to the Experimental Areas through different lines.

In order to achieve maximus transmission efficiency, pressiure in the lines has to be low enough. The pressure value is dependent on the Ion type, on its charge state and energy. Hence the pressure is not the same all along the lines.

So we tried to realize pumping in the lines at the lowest cost taking care of staying below the pressure limits.

1. BRIEF DESCRIPTION AND PRESSURE VALUES

The total length of the beam lines (ste Fig. 1) is 400 m . Table 1 gives for each beam-line the average preasure, required to reach a 95 Z transmigsion for Uranium ', the heaviest Ion at the lovest energy that GANIL is able to accelerate.
 of the beam-lines

Lines	${ }^{\prime}$ Ion	$W_{\text {Mc }}$ I	${ }^{\text {pa }}$	$L_{\text {m }}(\mathrm{a})$
L I	u^{6+}	0.0156	1×10^{-5}	38
L 2	U^{6+}	0.25	1×10^{-4}	14
L'2	u^{24+}	0.25	3×10^{-5}	24
L 3	U^{24+}	4.	8×10^{-5}	48
14	U^{24+}	4.	5×10^{-5}	70

- Table 1 -
(a) Deam pachlength.

2. IMPOSED CONDIT IS

At the beginning of the project and in order to obtain the desired performances, we had to fulfill the following conditions :

- No diffusion Pump within 20 m . of the SSC and of ail apparatus including high voltage elements, in order to eliminate every oil contamination risk.
- Use only metallic seals and membranes.
- Eliminate rotating or linear shaft feedthroughs.
- Minimize the number of Pump types.
- Obtain the required pressure 50 hours after the beginning of the pumping starting at the atmospheric pressure.
- Divide the beam-linea in sections separated by valves in order to work at atmospheric pressure (when necesuary) on limited portions only.

3. EQUIPMENTS USED IN THE BEAM-LINES

The pipe is made of stainless steel (304 L or 316 L) chemically cleaned and does not present any particular problem for the yacuum. On the other hand the different diagnostics necessary to control the beam have a high desorption flux. All along the lines there are : 100 profile monitors, 7 Faraday cups, 27 slits, 8 central phase monitors, 3 phase extensipn ones and 20 beam stops.

The beam profile monitors made us very anxious because of their eechnology. The different materials constituting such a monitor are shown on Fig. 2. The desorption rate of the different monitors is given on Fig. 3.

It can be verified that even when choosing the materials carefully the beam profile monitor presents a desorption rate from three to ten times higher than the other diagnostics. This involves a supplementary condition for placing the pumps. In fact if a pump is placed one meter from a beam profile monitor and if the tube diameter is 72 mm . the drop of pressure for
tone meter long tube is : AP $=2.5 \times 10^{-5}$ Pa after 50 hours. Hence, except for the Li 3 line, this ΔP exceeds the requited mean pressure. So a pump witt be placed very close to each beam profile monitor.

1. Golden tungsten captor wiras diameter 20 m 30 efightened.
2. Teflon + glass (DICLAD) printed circuit supports.
3. Alumina printed circuit connectors.
4. Connexion wires insulated with irradiated ration (TETZEL).
5. Feadthrough connectors with 52 staifiless stall pins embedded in glass and mounted on a covinstainless teal flange.

4. YACUUM PUNPING SYSTEM

4.1. Yacuum_pumping_tate calculation:

The accelerator has three beam lines $L 1, L 2$ and L which are divided in sections named E!, E.2, E.3.... for each line (see Fig. 4). For example ${ }^{2}$, we make the ge calculations on the L ABl section which is located between the injector exit and the first vacuum valve. The position of each equipment can be seen on Figure 5

The pump 1 absorbs the sum of the gas Flux ($\Sigma \phi$) desorbed by the pipe between the injector II and the point h (half distance between the two wire detectors) the faraday cup and the wire detector.

The pressure Po above the pump in equal to $\Sigma \phi / S$ (S is the real pumping rate of the pump).

The average pressure between the pump I and the point A is:

$$
P_{i v}=P_{0}+\frac{\phi}{3 C}
$$

$\$$ gas flux desorbed by the pipe in qa. $\mathrm{m}^{3} \cdot 0^{-1}$
C pipe conductance between the pump I and A.

EC : Faraday Cup
PH s Profile Monitor

$\$ 1$: distributed desorption

- 2 : localized desorption.

Figure 5

- -

0 = AmI atalniess-steel 3 - Faraday cup
1 - Profile monitor
Phase central monitor Phase extension monitor

$$
\text { . } 4 \text { - Barn stop }
$$

The conductance between 11 and the Beam-line is vary lou, so the 11 pumping system does not contribute to the line vacuum. Then two phenomena act together : the dirtributed desorption and the localized one. The last one gives a linear pressure distribution (aee Fig. 5). The average pressure between pump 1 and FC, and the one between FC and II have to be aeparate. so the average pressure between II and A is given by :

$$
P_{a v}=\frac{\Sigma P_{a v} \cdot \ell_{i}}{\Sigma \ell_{i}}
$$

where $p_{a v}$: avorage prosiure of asch part
and t_{i} : leagth of each part
$\begin{aligned} & p_{a v}(I, A)=\frac{p_{a v(l)} \cdot l 1+p_{a v(x)} \cdot x+p_{a v\left(l_{2}-x\right)} \cdot\left(l_{2}-x\right)}{l_{1}+l_{2}} \\ & \therefore\end{aligned}$

4.2. Pumpy choica

Conoddering the results of the calculation, we relected nome $400 \mathrm{l} / \mathrm{s}$ turbomolecular pumpa and 500 or $15001 / \mathrm{E}$ CRYOGENIC ones, the two last onas being lese expenive than the ionic pumps at the date of the choice.

5. RESULTS AND REMARKS -

Table 2 comparas the required valuea, the calculsted ones, the experiaental ones obtained after - 48 hour puaping, starting from atmonpheric pressure and the valued at the and of the run.

He can observe that :

- we generslly obtain some prensures lower than the required oazs.
- the preseure at the end of the run is not lower than the pressure after a 48 hour pumping. This is due to the fact that the profile monitors desorption rate is conatant after 50 houra,

It thould be added that, today in April 84, we never had any tranamission problens due to the pressure, but the heaviest accelerated Ion was $\mathrm{Kr}\left(7^{+}+26^{+}\right)$at 35 MeV/A.

Lines Sectione	Pressure (1)			
	Required	Calculated	Measured	
			A(4)	B(5)
L1 11	1.	0.4	0.88	0.7
L1 E3	1.	0.55	0.78	0.74
L1 E4	1.	0.4	0.1	0.13
L1 E5(2)	1.	0.9	0.24	0.75 (6)
L1 E6	1.	0.1	0.4	0.64
L1 E7	1.	1.5	0.3	0.46
L2 E1	10.	2.4	11.	4.6
L2 E2(3)	3.	4.0	0.67	0.51
L2 E3	3.	1.3	0.78	0.51
L2 ES	3.	0.7	0.28	0.13
L2 E6	3.	5.0	0.54	0.64
L3 E1	8.	3.0	3.1	3.8
L3 E2	8.	0.9	1.0	1.5
2.383	8.	1.5	0.5	2.0(7)

Table 2
(1) The pressure is in 10^{-5} Pascal.
(2) RE - Buncher
(3) Stripper
(4) A : after 48 hours, starting at atmospheric preasure
(5) B : at the end of the run
(6) With only one cryopuap
(7) With one Turbomolecular pump off.

REFERENCES

I. E. Baron, Calcul des pressions dans les conduites d faisceaux du Ganil. Internal Note, GANIL 76/77, Novembre 1976,
2. C. Tribouillard, Pompage des lignes de transfert. Internal Note, GANIL 79N/126/VI/27 de Juillet 1979.

