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CKM angle γ measurements at LHCb

Alexis Vallier

Laboratoire de l'Accélérateur Linéaire, Université Paris-Sud 11, CNRS/IN2P3, Orsay, France.

E-mail: vallier@lal.in2p3.fr

Abstract. The CKM angle γ remains the least known parameter of the CKM mixing matrix.
The precise measurement of this angle, as a Standard Model benchmark, is a key goal of the
LHCb experiment. We present four recent CP violation studies related to the measurement of
γ, including amplitude analysis of B± → DK± decays, the ADS/GLW analysis of B0 → DK∗0

decays and the time-dependent analysis of B0
s → D∓

s K
± decays.

1. Introduction

The CKM angle γ, de�ned as γ ≡ arg
(
−VudV

∗
ub

VcdV
∗
cb

)
, is the least known CKM parameter. B-factories

and the LHCb experiment measured γ with an uncertainty larger than 10◦ [1, 2, 3]. To compare,
global �ts like CKM�tter [4] and UT�t [5] obtain an estimation of γ with an error about 2◦. This
angle is directly measurable through tree processes, without signi�cant loop contribution. Hence
the extraction of its value is very clean and has a theoretical relative uncertainty lower than
10−7 [6]. Therefore a precise measurement of γ provides an excellent standard candle to check
the consistency of the CKM paradigm in the Standard Model and to probe some new physics.
The present paper summarises four measurements of γ performed by the LHCb collaboration
and presented at the BEACH 2014 conference.

2. Time-integrated measurements of γ
Given its de�nition, γ is approximately the phase di�erence between the quark transitions
b → cūs and b → uc̄s and the interference between these two transitions is sensitive to this
angle. The interference is obtained by reconstructing the D0 and D̄0 mesons produced in these
decays in an identical �nal state (Fig. 1). In the case of a three body D meson decay a Dalitz
plot analysis can be carried out. This method is called GGSZ [7, 8] and two recent LHCb results
are reported in section 2.1. In the case of a two body D meson1 decay a counting analysis is
developed following the so called GLW [9, 10] or ADS [11, 12] methods. A recent ADS/GLW
result from LHCb is presented in section 2.2. All of these methods can be applied to the channels
B± → DK± and B0 → DK∗0. Since these B mesons decays are self-tagged, no time-dependent
analysis is required.

1 in the following D stands for either a D0 or a D̄0 meson.
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Figure 1. Feynman diagrams of b→ cūs (left) and b→ uc̄s (right) decays.

2.1. Measurements with 3-body D meson decays

The B± → D(K0
Sh

+h−)K±decay amplitude � h stands for either a charged pion or a charged
kaon � can be written as

AB±(D) = AD(D) + ei(δB±γ)AD̄(D),

where AD (AD̄) is the D
0 (D̄0) decay amplitude, D represents the D meson phase space, δB is the

strong phase di�erence and γ is the weak phase di�erence between the D0 and D̄0 channels. The
D meson phase space is parameterised by two squared invariant masses, for instance m2(K0

Sπ
+)

and m2(K0
Sπ

−) on a D meson Dalitz plot. The sensitivity to γ arises from large asymmetries
in some region of the Dalitz plot. In order to evaluate γ, the strong phase variation over the
Dalitz plot must be known. This can be done in two di�erent ways: with a model-dependent
(MD) method using BaBar's amplitude model [13], or with a model-independent (MI) method
using CLEO-c measurements as inputs [14]. Both methods involve �tting the D meson Dalitz
plot to extract the polar coordinates (rB± , δB, γ). The parameter rB± is the ratio of the
magnitudes of the suppressed and favoured B decay amplitudes. The polar coordinates are
not estimated directly from the Dalitz �t, but the cartesian coordinates x± = rB± cos(δB ± γ)
and y± = rB± sin(δB ± γ).

2.1.1. Model-dependent analysis This section presents the model-dependent analysis of the
B± → D(K0

Sπ
+π−)K± signal, using a sample of proton-proton collision data at a centre-of-

mass energy of 7 TeV corresponding to an integrated luminosity of 1 fb−1. Full details can
be found in Ref. [15]. The analysis is carried out in two distinct stages. First a �t to the B
meson reconstructed invariant mass is performed on the selected B± → D(K0

Sπ
+π−)K± and

B± → D(K0
Sπ

+π−)π± candidates. This �t determines the signal and background fractions in
the data sample. A total yield of 637 B± → D(K0

Sπ
+π−)K± signal events and 8866 events of

the B± → D(K0
Sπ

+π−)π± control channel are found. Then a �t to the Daliz plot determines the
CP violation observables (x±, y±). The signal and background yields and the parameters of the
B invariant mass probability distribution function are �xed to the values obtained in the �rst
stage. The model used to described the amplitude of the D0 → K0

Sπ
+π− decay over the phase

space is the one determined by the BaBar collaboration in Ref. [13]. Fitting simultaneously
the distributions in the D0 → K0

Sπ
+π− phase space for the B± → D(K0

Sπ
+π−)K± and the

B± → D(K0
Sπ

+π−)π± candidates enables to take into account the variation of e�ciency over
the phase space. The B± → D(K0

Sπ
+π−)π± decay is a good proxy to get the e�ciency variation,

since it has a kinematic topology similar to the signal one and CP violation can be neglected in
this channel. The resulting values of the cartesian coordinates are:

x− = +0.027± 0.044+0.010
−0.008 ± 0.001,

y− = +0.013± 0.048+0.009
−0.007 ± 0.003,

x+ = −0.084± 0.045± 0.009± 0.005,

y+ = −0.032± 0.048+0.010
−0.009 ± 0.008,
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where the �rst uncertainty is statistical, the second systematic and the third due to the amplitude
model used to describe the D0 → K0

Sπ
+π− decay. The leading experimental systematic errors

are due to the e�ciency and background description uncertainties. The constraints obtained on
the polar coordinates are rB± = 0.06±0.04, δB = (115+41

−51)◦ and γ = (84+49
−42)◦. These results are

consistent with those of the LHCb model-independent analysis based on the same data set [16].

2.1.2. Model-independent analysis This section presents the model-independent analysis of the
B± → D(K0

Sh
+h−)K± decays, using a sample of proton-proton collision data at a centre-of-

mass energy of 7 and 8 TeV corresponding to a total integrated luminosity of 3 fb−1. Full details
can be found in Ref. [17]. There is a signi�cant improvement compared to the former results in
Ref. [16], thanks to the increased statistics and a better analysis technique. To know the strong
phase variation over the D0 → K0

Sh
+h− phase space the measurements made by CLEO-c, in

a particular binning scheme, is used [14]. In this way the analysis is a counting experiment in
bins of the Dalitz plot. The expected number of D from B+ events falling in a particular bin
labelled ±i (the ± sign comes from the phase symmetry with respect to the Dalitz diagonal) can
be expressed as

N+
±i = h+

B

[
F∓i + (x2

+ + y2
+)F±i + 2

√
FiF−i(x+c±i ∓ y+s±i)

]
, (1)

where ci and si are the averaged cosine and sine of the strong phase di�erence in bin i (CLEO-c
inputs), Fi is the expected fraction of pure D0 events in bin i taking into account the e�ciency
pro�le over the phase space, and h+

B is a normalisation factor. The Fi parameters are deter-
mined from the B0 → D∗±µ∓νµ control mode. This is an excellent proxy because the sample
has a high purity, a high statistics and the D0 meson is tagged thanks to the slow pion in the
D∗+ → D0π+ decay. Some corrections are applied from simulated data to account for recon-
struction and selection discrepancies between the B0 → D∗±µ∓νµ and the B± → DK± decays.
The �t is performed in two steps. First the phase space integrated B± mass �t determines the
total signal yields (around 2600) and �xes the model used in the second step. This last �t is
made in each Dalitz bin with all the parameters in Eq. (1) �xed but the normalisation factor
and the (x±, y±) observables. The resulting values of the cartesian coordinates (Fig. 2) are the
most precise to date:

x− = (2.5± 2.5± 1.0± 0.5)× 10−2,

y− = (7.5± 2.9± 0.5± 1.4)× 10−2,

x+ = (−7.7± 2.4± 1.0± 0.4)× 10−2,

y+ = (−2.2± 2.5± 0.4± 1.0)× 10−2,

where the �rst uncertainty is statistical, the second systematic and the third due to the exper-
imental knowledge of the (ci, si) parameters. Compared to the 1 fb−1 measurement [16], the
statistical uncertainty is reduced thanks to the larger data sample, the experimental systematic
is reduced by using the new control mode B0 → D∗±µ∓νµ, and the (ci, si) systematic is also
improved by the increased LHCb sample size. The results are: rB± = 0.080+0.019

−0.021, γ = (62+15
−14)◦

and δB = (62+14
−15)◦.

2.2. Measurements with 2-body D meson decays

This section presents the ADS/GLW analysis of the B0 → DK∗0 decays, using a sample of
proton-proton collision data at a centre-of-mass energy of 7 and 8 TeV corresponding to a
total integrated luminosity of 3 fb−1. Full details can be found in Ref. [18]. Compared to
the B± → DK± decays, both Cabibbo favoured and suppressed diagrams are color suppressed,
which brings about a higher interference amplitude (rB0 is larger than rB±). Hence a better
sensitivity to γ is expected. However this neutral channel is experimentally more challenging.
For the GLW modes the D mesons are reconstructed in two CP eigenstate: K+K− and π+π−.
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Figure 2. Con�dence levels at 39.3%,
86.5% and 98.9% probability for (x+, y+)
and (x−, y−) as measured in B± →
DK± decays (statistical uncertainties
only). The parameters (x+, y+) relate
to B+ decays and (x−, y−) refer to B−

decays. The stars represent the best �t
central values.

For the ADS modes the D mesons are reconstructed in the K+π− and K−π+ �nal states. From
these decays several observables sensitive to γ can be built. For instance in the GLW modes the
CP asymmetries

Ahhd ≡
Γ(B̄0 → D(h+h−)K̄∗0)− Γ(B0 → D(h+h−)K∗0)

Γ(B̄0 → D(h+h−)K̄∗0) + Γ(B0 → D(h+h−)K∗0)
=

2rB0κ sin δB sin γ

1 + r2
B0 + 2rB0κ cos δB cos γ

are measured. The parameter κ is the coherence factor introduced to account for the e�ect of
the non resonant B0 → DK+π− contribution in the K∗0 signal region. And in the ADS mode
the ratio of suppressed B0 → D(π+K−)K∗0 to favoured B0 → D(K+π−)K∗0 partial widths are
measured separately for B0 and B̄0:

R+
d ≡ Γ(B0 → D(π+K−)K∗0)

Γ(B0 → D(K+π−)K∗0)
=

r2
B0 + r2

D + 2rB0rDκ cos(δB + δD + γ)

1 + r2
B0r2

D + 2rB0rDκ cos(δB − δD + γ)
,

R−
d ≡ Γ(B̄0 → D(π−K+)K̄∗0)

Γ(B̄0 → D(K−π+)K̄∗0)
=

r2
B0 + r2

D + 2rB0rDκ cos(δB + δD − γ)

1 + r2
B0r2

D + 2rB0rDκ cos(δB − δD − γ)
.

The parameters rD and δD are the magnitude ratio and the phase di�erence, respectively, between
the amplitudes of the D0 → K+π− and D0 → K−π+ decays. The signi�cances of the combined
B0 and B̄0 signals for the B0 → D(K+K−)K∗0, B0 → D(π+π−)K∗0 and B0 → D(π+K−)K∗0

decay modes are 8.6 σ, 5.8 σ and 2.9 σ respectively. Once the production and e�ciency asym-
metries are taken into account the results are:

AKKd = −0.20± 0.15± 0.02,

Aππd = −0.09± 0.22± 0.02,

R+
d = 0.06± 0.03± 0.01,

R−
d = 0.06± 0.03± 0.01,

where the �rst uncertainties are statistical and the second systematic. Aππd , R+
d and R−

d are �rst
measurements and the AKKd result supersedes the former LHCb one [19]. From these measure-
ments the value of rB0 (proper to the B0 → DK∗0 channel) is found to be rB0 = 0.240+0.055

−0.048.
This is the most precise measurement to date.

3. Time-dependent measurement of γ
This section presents the time-dependent analysis of the B0

s → D∓
s K

± decays, using a sample of
proton-proton collision data at a centre-of-mass energy of 7 TeV corresponding to an integrated
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Figure 4. Frequentist interpretation of the γ
measurement in term of con�dence interval.

luminosity of 1 fb−1. Full details can be found in Ref. [20]. In addition to the same tree level
processes as in the time-integrated analysis (Fig. 1), the e�ect of the Bs mixing occurs. Hence
the interference between mixing and decay amplitudes in B0

s → D∓
s K

± is sensitive to the CP
violating phase (γ − 2βs) where βs ≡ arg(−VtsV ∗

tb/VcsV
∗
cb). The time-dependent decay rates

depend on the CP observables:

Cf =
1−r2DsK

1+r2DsK
, A∆Γ

f =
−2rDsK cos(δ−(γ−2βs))

1+r2DsK
, A∆Γ

f̄
=

−2rDsK cos(δ+(γ−2βs))

1+r2DsK
,

Sf =
2rDsK sin(δ−(γ−2βs))

1+r2DsK
, Sf̄ =

−2rDsK sin(δ+(γ−2βs))

1+r2DsK
,

where rDsK is the magnitude of the amplitude ratio |A(B̄0
s → D−

s K
+)/A(B0

s → D−
s K

+)|, δ
the strong phase di�erence and (γ − 2βs) the weak phase di�erence. This analysis uses an
independent measurement of φs [21] and assumes φs = −2βs to interpret the results in terms
of γ. To discriminate the signal and background components a 3D �t is performed on the Bs
and Ds masses along with the log-likelihood di�erence between the kaon and pion hypothesis for
the companion particle (K± for B0

s → D∓
s K

± signal and π+ for B0
s → D−

s π
+ control mode).

Then the output of this multivariate �t is used for the decay-time �t. Two �ts are performed: a
background subtracted �t, called sFit, using the sWeights [22, 23] determined by the multivariate
�t; and a classical �t, called cFit (Fig. 3) where all signal and background time distributions are
described. The results of these two �ts are in excellent agreement:

Parameter sFit �tted value cFit �tted value
Cf 0.52± 0.25± 0.04 0.53± 0.25± 0.04
A∆Γ
f 0.29± 0.42± 0.17 0.37± 0.42± 0.20

A∆Γ
f̄

0.14± 0.41± 0.18 0.20± 0.41± 0.20

Sf −0.09± 0.31± 0.06 −1.09± 0.33± 0.08
Sf̄ −0.36± 0.34± 0.06 −0.36± 0.34± 0.08

The �rst uncertainties are statistical and the second systematic. The main sources of systematic
arise from the trigger-induced time-dependent e�ciency, Γs and ∆Γs. These results can be
interpreted as a con�dence interval γ = (115+28

−43)◦ at 68% CL (Fig. 4). This is the �rst
measurement of γ with B0

s → D∓
s K

± decays.
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4. Conclusion

The latest LHCb results on the CKM angle γ are reported: the model dependent GGSZ analysis
of B± → DK± decays, the update to the full available data set of the model indepent GGSZ
analysis of B± → DK± decays, the ADS/GLW analysis of B0 → DK∗0 decays and the
�rst γ measurement with B0

s → D∓
s K

±decays. Using these results and the corresponding
improvements, the next combination of the LHCb γ measurements should yield a signi�cant
reduction of the uncertainty.
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