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ABSTRACT

With the forthcoming release of high precision polarizatineasurements, such as from ®lanck satellite, it becomes critical to
evaluate the performance of estimators for the polarindtiction and angle. These two physical quantitigesdrom a well-known
bias in the presence of measurement noise, as has beerbddsorpart | of this series. In this paper, part Il of the sgnee explore
the extent to which various estimators may correct the Biaslitional frequentist estimators of the polarizaticexction are compared
with two recent estimators: one inspired by a Bayesian amBgnd a second following an asymptotic method. We invatithe
sensitivity of these estimators to the asymmetry of the itamae matrix which may vary over large datasets. We prefsetie first
time a comparison among polarization angle estimatorseaaldiate the statistical bias on the angle that appears thbaovariance
matrix exhibits &ective ellipticity. We also address the question of the esoy of the polarization fraction and angle uncertainty
estimators. The methods linked to the credible intervatstarthe variance estimates are tested against the robutd@ace interval
method. From this pool of polarization fraction and angliénestors, we build recipes adapted téfdient use-cases: we provide the
best estimators to build a mask, to compute large maps ofilagipation fraction and angle, and to deal with low sigttahoise data.
More generally, we show that the traditional estimatof$esdrom discontinuous distributions at low signal-to-roigtio, while the
asymptotic and Bayesian methods do not. Attention is gigehe shape of the output distribution of the estimators,isiedmpared
with a Gaussian distribution. In this regard, the new asytipimethod presents the best performance, while the Bayesitput
distribution is shown to be strongly asymmetric with a shewpat low signal-to-noise ratio. Finally, we present ariraj#ation of
the estimator derived from the Bayesian analysis usingtadapiors.

Key words. Polarization — Methods: data analysis — Methods: stagikstic

1. Introduction ing a Bayesian approach to get polarization estimates with |
bias. In all these studies the authors made strong assumsptio

The complexity of polarization measurement analysis has be10 noise on the intensityand no correlation between tiggand
described byserkowski(1958 when discussing the presence o) components, which were also assumed to have equal noise
a systematic bias in optical measurements of linear paigoiz  PropertiesMontier et al (hereafter PMA 1,2013 in preparation
from stars, and then bwardle & Kronberg(1974 addressing have quantified the impact of the asymmetry and the coreelati

the same issue in the field of radio astronomy. The bias ofpolRetween th& andU noise components on the bias of the polar-

ization measurements happens when one is interested imthelgation fraction and angle measurements. They have shaatn th

i S = EETY T . the asymmetry of the noise properties can not be systerigtica
Ianzza;;?naréetﬂseltﬁﬂ;rizégo; aUng)lg rzthle/g(;lgrrl]zua/tg); (Lrvicélr%n neglected as is usually done, and that the uncertainty ahthe

I, QandU are the Stokes parameters), quantities which becoﬁ?@sny may significantlyffiect the polarization measurements in

systematically biased in the presence of noise. Working thi¢ the low signal-to-noise (SNR) regime.

; ; e L In the context of the new generation of polarization data,
Stokes parametei® andU as far as possible avoids this kind .
of bias.pOnce a physical modeling p?andxp is available, and such asPlanck® (Planck Collaboration | 2091 Blast-Pol (The

can be translated int@ andU, a likelihood analysis can be per_BaIIoon-borne Large Aperture Submillimeter Telescope for

: larimetry, Fissel et al. 201)) PILOT (Bernard et al. 2007
formed directly on the Stokes parameters. For the otherscaézéo , A ; - .
where no modeling is availabl§jmmons & Stewart1985 pro- Of ALMA (Perez-Sanchez & Viemmings 2018vhich benefit

posed the first compilation and comparison of methods to d %ﬂtmka F“‘tJCh bettert(;ﬁntfrolll of the_n0|se pr?pertlﬁs, 'Ej's mb
with the problem of getting unbiased polarization estirate W [@ke into accountthe full covariance matrix when deguine

the polarization fraction and angle, with their associatader- —; Planck (http://www.esa.int/Planck) is a ,

o r . . : . . project of the
tainties. TherNaghlzadeh-Khouel & Clarkgl993 extepde_d the European Space Agency (ESA) with instruments provided toydei-
work of Simmons & Stewar{198J to the characterisation of gpific consortia funded by ESA member states (in partictiiarlead
the polarization angle uncertainties, araillancourt(2006 pro-  countries France and Italy), with contributions from NASASA) and
posed a method to build confidence limits on polarization-fratelescope reflectors provided by a collaboration betweehdEl a sci-
tion measurements. More recentf@uinn (2012 suggested us- entific consortium led and funded by Denmark.
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polarization measurement estimates. In recent works necor 2. Polarization estimators
tion for the bias of the polarization fraction were appliedg(
Dotson et al. 201)) or only high SNR data were used for anal
ysis (3) to avoid these issues (efillancourt & Matthews

2012. Two issues are immediately apparent. First, this choi X
of the SNR threshold may not be relevant for all measuremerf{ie Q andU Stokes parameters. The noise values of the Stokes

and the asymmetry between the orthogonal Stokes noise cfﬁﬂfamelt?’s were assumed todbe squ@ﬁb—Q/ll‘);‘Té’/IO)' a:d
ponents could féect the threshold choice. Secondly, the que 1€ total intensity was assumed to be perfectly kndwa|o. As

tion remains of how to deal with low signal-to-noise datairids we would like to include the full covariance matrix, we use th
simply the measurements of the polarization parametersvlive generalized expression of the pdf from PMA I, which provides

call them the “naive” ones) as estimators of the true valmss 1€ Probability to get the measuremeritp(y), given the true

to very poor performance, as they lack any information on ti&U€s (o, Powo) and the covariance matrk Following the no-

noise power. Instead, we would like to perform some transfdfuions of PMA I('j the explreSS|o|n of the pzdf In 3.D’ mtc);IuIcEimig:th
mation on the polarization parameters, in order to remoss pintensity terms, denotetll, p, yllo. Po, o, 2), is given by Eql,

; ; and the pdf in 2D fop(p, ¥llo, Po, Yo, Zp), by Eq.2 when the in-
and improve the variance. tensity lo is assumed to be perfectly known. We also note the

introduction of the covariance matrix reduced in 2D,
This work is the second of a series on the 'Analysis of po-

|Early work on polarization estimators was based on Riee
(1945 distribution which provides the probability to find a mea-
Hremenp, for a given true valugo and the noise estimate, of

larization measurements’. Its aim is to describe how toveco 1 ( o-é o-QU) _ 0-|2),G [s P ] 3)
from a measuremenp(y) the true polarization fractiopy and P 12\ oqu ol Ji-p2 P l/e ) >

polarization angley with their associated uncertainties, taking
into account the full covariance matrkx We will compare the wheres = oq/0v is the ellipticity andp = oqu/oqoy is the
performance of the various estimators available, and sthiely correlation between th€ andU noise components, leading to
impact of the correlation and ellipticity of the covarianw@- an dfective ellipticity given by:

trix on these estimates. We stress that we adopt a frequentis

approach to investigate the properties of these estimatoes

when dealing with the method inspired by the Bayesian analy- . J 1+%+ y(e2 ~ 1) + 4p%? . (4)
sis. This means that the estimators are defined as single @siu 1482 — /(&2 - 1)2 + 4p2&?

timates, instead of considering the probability densityction

(pdf) as the proper estimate, as it is usually done in Bapesi#/ith these notations we have DB} = o-g’G and

methods. The performance of these estimators will be etedua

using three main criteria: the minimum bias, the smallesk ri o'é Ny

function, and the shape of the distribution of the output- est O_%,G = (5)
mates. The choice of the most appropriate estimator may vary 15 &

with kt)he ﬁlppllca;tlon h@t hand, é’md a ﬁompf)romlse amrﬁnguthk%ich represents the equivalent radius of a circular Ganstis-
may be chosen to achieve good overall performance. Thratlghfy, ion with the same integrated area as the elliptical. de

this work we will make the following two assumptions: i) airc also definerp=og/lo=cy/lo Wheneer=1. Finally the pdfs ofp

lar polarization is assumed to be negligible, and ii) thesa@n afndw, f, and f,, are obtained by marginalization df over

Stokes parameters is assumed to be Gaussian. We also defi ; ;
four regﬁnes of the covariance matrix to quantify its asyrtrne v ahd p, respectively. The expressions for the 1D ptgsand
f, depend on the full set of initial parametets, (Do, ¥o) in the

in terms of éfective ellipticity er) as described in PMA I: the general case, unlike the case under the canonical simfitif

extreme (1<eex<2), thelow (1<eegr<1.1), thetiny (1<eeqr<1.01) ; :
and the canonicakte=1) regimes. ggrt]es?ppendm C of PMA | for fully developed analytical exgre

We describe below the various estimators of the polarinatio

The paper is organized as follows: we first review in Sact.fraction and angle listed in Table We stress that most of the
the expression and the limitations of the polarizatiomestors, expressions derived in this work have been obtained when re-
which are extended to take into account the full covarianae ntricting the analysis in the 2D case, assuming furtherrtiae
trix. We discuss in Sec® the meaning of the polarization uncerthe true intensityq is perfectly known, except for the Bayesian
tainties and we present thefidirent uncertainty estimators. Weestimator where we present a 3D development (see Gect.
then compare the performance of the estimators of the pgalari
tion fraction in _Sect.4, and of the polarization angle in Sebt. 2 1. Maximum Likelihood estimators
In Sect.6, we discuss some aspects of the problem when the to-
tal intensityl is not perfectly known. We conclude with generalhe Maximum Likelihood (ML) estimators are defined as the
recipes in Sectr. values ofpy andy which maximize the pdf calculated at the
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Table 1. List of the acronyms of the estimators used in thiswork. The 2D Most Probable estimators (MPDp> and gvps,
The parameters to which each estimator applies, indepégdeare defined as the values pf andyo simultaneously satisfying

(/) or simultaneously (&), are given in the last column.

Acronym  Description Parameters
ML Maximum Likelihood p/y

MP Most Probable in 1D p/v

MP2 Most Probable in 2D p&y

AS Asymptotic p

MAS Modified Asymptotic p

MAP Maximum A Posteriori p/y
MAP2 Maximum A Posteriori in 2D p&y

MB Mean posterior Bayesian 1& p&y

polarization measuremengsandy.. When computed using the

the two following relations:

0fap
O=_ s B 72 ~ 8
ap (p.w 1 Po. o, Zp) o = ez 8
Yo = Ymp2
and y
0=—2(p,v¥| po o, = . 9
o (pll’lpolﬁo p) bo = Pueo 9)
Yo = Ymp2

These relations can be solved, using the fully developetesxp
sion of fop including the terms of the inverse matég?!, as pro-
vided in AppendixA. When canonical simplifications are as-

2D pdf fp to fit po andyo simultaneously, this estimator givesSumed, this yields

back the measurements, whatever the bias and the covariqmg2 =y

matrix are, and is in@icient at correcting the bias of the data.
After marginalization of the pdf,p overy, the 1D ML esti-
mator of pg, PumL, is now defined by

of,

0= 300 (6)

(pI po. l//o,zp)lpozpML ,
Note that the expression ¢f is independent of the measureme
¥, but still theoretically depends on the true valixgwhich is

unknown. In the canonical casex{=1) v disappears from the

expression, but it must be considered as a nuisance paramete
the general case. One way to proceed in such a case is to com-

pute the mean of the solutionmg,” for o varying in the range
—n/2ton/2. As already stressed I8immons & Stewar{1985),
this estimator yields a zero estimate below a certain thlelsbf
the measurement, which implies a strong discontinuity in the

resulting distribution of thigy estimator. Nevertheless, contraryr

to the 2D ML estimators, thp ML estimator does not give back
the initial measurements, and is often used to build padédon
estimates. A

Similarly, the 1D ML estimator ofl, ¥mL, IS given after
marginalization off,p overp by

of
0=-2
o

As mentioned for the ML estimatqmy , the unknown parameter

(1 o, wo, p) (7)

ll//F@ML ’

po in the above expression has to be considered as a nuisance

_ {(p—o-%/p)
0

for p> op

for p < op (10)

Pmp2 ,
as found inQuinn (2012. We observe that the MP2 estimate of
the polarization fraction is systematically lower than thea-

surements, so that this estimator tends to over-copgees it

n\4§/ill be shown in Sect4.

After marginalization overp or ¢, the 1D Most Probable
(MP) estimatorspyp andyup, are defined independently by:

of

0=, (pIpo wo,zp)|p0=mp (11)
and ot
_ 0y

0= w(lﬂpolﬁo,zp)lwo:&w- (12)

he 1D and 2D estimators are not expected to provide the same
estimates. Under the canonical assumptions, the MP estimat
of pis commonly known as the Wardle and Kronberd¥afdle

& Kronberg 1974 estimator.

As mentioned earlier, the MP estimator yields a zero esti-
mate below a certain threshold p{Simmons & Stewart 1985
which implies a strong discontinuity in the resulting distition
of these estimators for low SNR measurements.

2.3. Asymptotic estimator
a-

rameter when solving Ed. We stress that because the canonicadhe Asymptotic estimator (AS) of the polarization fractipis

simplifications have always been assumed in the literabias,

on they measurements has not been previously considered and
theyw estimator has not yet been used and qualified to correct

this kind of bias. This analysis is done in Segt.

2.2. Most Probable estimators

The Most Probable estimators p§ andy are the values for

which the pdff,p reaches its maximum at the measurements

values p,y). Notice that the Most Probable estimators ensu

that the measurement valugsy) are the most probable values

of the pdf computed for this choice @b andyy, i.e.they take

usually defined in the canonical case by
2 _ 2
pAs={Vp Tp P>

0 p<op
The output distribution of the AS estimator appears as the
asymptotic limit of theRice (1949 distribution wherp/o, tends
to oo, just as the ML and MP estimators, and given by

2]

(13)

p

Op

Po

Op

()

the maximum probability among all possible measuremerits wivhere N (u, o) denotes the Gaussian distribution of meeend
this set ofpg andyo. As a comparison the ML estimators ensurearianceo?. As with the previously presented estimators, this

that the measurement valugs) take the maximum probability
for this choice ofpg andyo, compared to the probability of the
same measurement valugs) for all other possible sets gy
andyp.

one siffers from a strong discontinuity ahs=0.

In the general case, when the canonical simplification is not
assumed, it has been shown Blaszczynski et al2014 here-
after P14) that the expression of the asymptotic estimadar c
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Fig. 1. Distributions of p" estimates obtained with the standardFig. 2. Statistical fraction of null estimates @fprovided by the
estimators: naive (black), ML (blue), MP (light green), 2P ML, MP, MP2 and AS estimators applied on Monte-Carlo mea-
(green) and AS (red). We assume the covariance matrix to fagements, as a function of the SNR, in the canonical case.
canonical, and a SNR qfy/op=1.

be included into any further analysis as an upper limit valne
practice, the user seldom has various realizations at tésidg
these estimators then leads to a result with upper limitsechix
with non-zero estimates in the analysis. Such complicatay

be extended to a general expression by changing theat%r’nm
Eqg.13into a 'noise-bias’ paramet&f defined by

2 _ 2 Gi _ be especially hard to handle when studying polarized maiheof
p2 = JU COS (200 - 6) + oG ST (240 — 0) ’ (15) interstellar medium. On the other hand, it would be disastto
Ig omit those estimates in any statistical analysis, sinceklyea

olarized points would be systematically rejected. To @woich
omplications, we explore below other estimators whichicavo
this issue and lead to continuous distributions. This igeisfly

] important in the range of SNR between 2 and 3, where the dis-

whered represents the position angle of the iso-probability bE—
variate distribution, ane7, o7 the rotated variances

) - }atar{m

(16) continuous estimators still yield up to 20% of null estinsate

2 _ 2
2 SRy
0§ = 0HC0S 0+ 0 Sin 0+ pogoysind, (17) 2.5. Modified Asymptotic estimator

o = 0bSIP O+ 05 oS 0 — porooysind. (18) A novel powerful asymptotic estimator has been introduced b

Plaszczynski et al2014) to correct the discontinuous distribu-
ion of the standard estimators while still keeping the gzym
otic properties. It has been derived from the first orderettev
‘opment of the Asymptotic estimator, which has been modified
to ensure positivity, smoothness and asymptotical comverng

at high SNR. The Modified Asymptotic (MAS) estimator is de-

andy is the true polarization angle, which can be approximat
asymptotically by the naive measuremegnor, even better, by t
the estimate. of Sect.2.1 It has been shown that this equiv
alent 'noise-biash? ensures the minimal bias @hs.

2.4. Discontinuous estimators fined as follows:

. . 02 /2
The estimators op introduced above (ML, MP and AS) exhibit Pvas = p— b2 1-eP/ (19)
a common feature: below some cfitealue the estimator yields 2p

exactly zero. This means that the estimator distributiodiss where the 'noise-biad? is given by Eq15and computed using

continuous and is a mixture of a discrete onegpf@d) and a con- i :

: - - L e a polarization angle assessed from each sample using thgpas
tinuous one (fop™> 0), This type of distribution is illustrated toEc)ic estimator g P 9 y
in Fig. 1 for @ SNRpo/op=1 and a canonical covariance ma- - p14 aiso provides a sample estimate of the variance of the

',[\r/:x. 'tl'hecdlftrlpuuolnt_of thetnzi_lve ][neasturemerlns.ls tbmlhg & estimator that is shown to represent asymptotically thelabes
onte-L.arlo simulation, starting from {ru€ polarnzaticaram- - ey fnction (defined in Se@&.1) of the estimator:

eterspp andyo. The other three distributions @f dre obtained

after applying the ML, MP and AS estimators. A non negligi- 5 o5 coS(2y — 0) + o} Sinf(2y — 6)

ble fraction of the measurements provide null estimatgs 66" ThMAS = Z - (20)

shown in Fig.2, this fraction of null estimates reaches 40% at 0

low SNR with the MP and AS estimators, and more than 50% This estimator focuses on getting a “good” distributiomatth

with the ML estimator for SNR1. It converges to 0% for SNR transforms smoothly from a Rayleigh-like to a Gaussian tee,

>4. latter being reached in the canonical case for an SNR of gbout
If taken into account as reliable estimatepphtll estimates

will somewhat artificially lower the statistical bias of tifees-

timates compared to the true valpg as detailed in Sect.. A

null value of these estimators should be understood as @n inthe pdfs introduced in Se@.provide the probability to observe

cator of the low SNR of this measurement, which has in fact toset of polarization measurementsg, ) given the true po-

2.6. Bayesian estimators
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larization parameterdd, po, o) and the covariance matrix. The MAP2 and MAP estimators in 2D and 1D, respectively,
Because we are interested in the opposite, i.e. gettingtemegs are simply defined as they, ¥o) values corresponding to the
of the true polarization parameters given a measuremerth@ndmaximum of the posterior pdB.p, andBp andBy, respectively.
knowledge of the noise properties, we use Bayes TheoremWe recall that these estimators match exactly the ML estirsat
build the posterior distribution. The posterior galfis given in  of Sect.2 in one and two dimensions, respectively, when a flat

the 3D case by prior is assumed. Hence the MAP2 estimators yield back the po
_ larization measurements, whereas the MAP estimatorsgeavi
B(lo. po. ol 1. p. 4. 2) = (21) simple way to compute the ML estimates.
f(I, p, ¢ 1o, Po, o, Z) - k(lo, Po, ¥0) The Mean Bayesian Posterior (MB) estimators are defined
ol /2 ’ / ’ ’ / ’ ’ / ’ ’ i i .
f0+ fo f_n/z £ paw 115, P, Z) k(15 D, ) dlzdppdry as the first order moments of the posterior pdf:

wherex(lo, po, ¥o) is the prior distribution, which represents the A /2l

a priori knowledge of the true polarization parameters aasl h Pme = fn/z ﬁ PoBzo(Po. o | P #> Zp)dPodio (26)
to be positive everywhere and normalized to 1 over the defi-

nition ranges oflg, po and yo. When no a priori knowledge and

is provided, we have to properly define a 'flat’ prior, or non- pen)2 L

informative prior, which encodes the ignorance of the prfor UmB = f f YoBan(Po, Yol p. ¥, Zp)dpodyo.  (27)
class of non-informative priors is given by theffieys’ prior y-n/2 JO

(Jeffrey 1939 where the ignorance is defined under symmet% _ . - - : :
transformations that leave the prior invariant. As disedsy Notice thatin the definition ofws the integral ovet is per-

Quinn (2012 for the two dimensional case, this kind of prioformed over a range centered on the measuregeihis has

can be built as a uniform prior in cartesian spa@g, (o) or in to be done to tak_e into account the circularity of the posteri

polar spacefo, vo), both expressing the ignorance of locatiorPdf Over theyo dimension. Note thaBzo(Po, Yol P, ¢, Zp) =

We will prefer the latter, uniform in polar space, which eresu 520(Po, %0 + 7| P, ¥, Zp). _ . .

uniform sampling even for small values p§. While py andy We stress that the frequentist estimators inspired by a

are only defined on a finite range ([ and [-r/2, 7/2], respec- Bayesian approacpye andyyeg, introduced above in the 2D

tively), the intensitylo may be infinite in theory, which leads to€aS€ can be easily extended to the 3D case by integrating the

an issue when defining the ignorance prior. In practice, an fB(lo, Po.Yoll. p. ¥, 2) of Eq. 21 over thel, p andy c_Ilmen-

proximation of the ignorance prior fég will be chosen as a top- $10nS- This is extremely powerful when the uncertainty @& th

hat centered on the measuremeand chosen to be ficiently Ntensity| has to be taken into account in the estimate of the

wide to cover the wings of the distribution until it becomegn Polarization parameters, which is highly recommended meso

ligible. Such uniform priors lead to the expressiorBogiven in  circumstances, such as a low SNRIofx5) or the presence of

Eq. 23, where the normalization factor has been omitted. W& Unpolarized component on the line of sight (see Seand

emphasize that the definition of the ignorance prior intcedli P MA | for more details).

above becomes data-dependent, which is not strictly fatigw

the Bayesian approach. Furthermore, the question of theidef jncertainties

tion range of the prior and the introduction of non-flat psiuwiill

be discussed in Seet.3, in the context of comparing the perfor-3.1. Variance and risk function

mance of the estimators inspired by the Bayesian approach.
Similarly, the posterior pdf in 2D (i.e., when the total inte

sity is perfectly know| = lo) is defined by

fon (P, ¥ | Po. Yo, Zp) - k(Po, Yo)

Itis important not to confuse the variance (not§af an estima-
tor with its absolute risk function (noteR). For any distribution
of the randonp variable the definitions are :

Bzn(Po. Yol P, ¥, Zp) = = 2 -V =E [(X - E[X])Z] , (28)
of—Jz fan (P, wIpg, Yo, Zp) k(P ) dppdirg R = E[(X— xO)Z] i (29)

(24)

The analytical expressions of the posterior @ with a
flat prior is given in Eq.25, where the normalization factors
have been omitted and the intensity has been assumed perf
known (I = lp). lllustrations of this posterior pdf are presente

whereE[X] is the expectation of the random variat{eand X,

is the true value. Introducing the absolute biagjiX] = Xy + B
Qd expanding both relations, the link between the variance
e absolute risk function is simply:

in AppendixB. We also introduc@&, andB,, the Bayesian pos- V=R-B2. (30)
terior pdfs of p andy in 1D, respectively, and defined as the
marginalization of thé3,p overy andp, respectively. Therefore, for a constant absolute risk function, the verga
We use the Bayesian posterior pdf in By to build two decreases with the absolute bias and both are equal when the
frequentist estimators: the MAP and the MB. estimator is unbiased. The variance does not require krgpwin
Det(z-1) 1 I'=1lo ' I =1lo
B(lo, Po. Yol I, Py, 2) o 207 &P |73 | P! C0S@) — po locos(@o) =7 pl cos(@) - po lo cos(@o) || (23)
g pl sin(2)) - po losin(2ko) Pl sin(2)) — po lo sin(2o)
1 _1{ pcos(@) - pocos(@o) |" 51| p cos(@) - po cos(@o)
Bao(Po. Yol Povi2p) - o« 102 eXp[ 2[ p sin(&) - posin(@o) | P | psin(2) - po sin(2o) || ° (29)
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the true value of the random variable, which makes it useful The operation of subtraction between the two polarizatiayies
provide an uncertainty estimate, but it has to be used exigemmust be done with care, restricting the the maximum distémce
carefully in the presence of bias. In such cases, the vaiafic  7/2. At very low SNR, i.e. an almost flat uniform pdf, the un-
always underestimate the uncertainty. certainty reaches the upper linai, yg < 7/ V12rad= 51.°96.
Furthermore, it is known that the variance is not appropiwe stress that thesedt-estimates may not be associated with
ate for providing uncertainties with non-Gaussian distiitms, the usual 68% confidence intervals of the normal distrilsytio
which is the case for the polarization fraction and angleuech pecause of the asymmetrical shape of the posterior difiibu
circumstances, the confidence intervals (see Skéf.are the and because of the circularity of the angular variable.
preferred method for obtaining robust uncertainties. Tag-v
ance, however, is often used as a proxy of the uncertaintyen t ] ]
high regime of the SNR. We will detail in Seet.5and5.3in 3.3. Confidence intervals

which conditions this can still be applied. So far we have considered point estimation of the fryigalue
which is somewhat tricky in the low SNR regime because of the
3.2. Posterior uncertainties non-Gaussian nature of the estimator distribution.
_ ) ) ] _Adifferent approach, that takes into account the entire shape
One of the main benefits of the Bayesian approach is to provigiethe distribution is to build confidence regions (or intlg),
simple estimates of the uncertainties associated with di& which allows at some given significance level, to obtain fsun
ization estimates. One option is to build credible intesxabund  gn the true value given some estimator value.
the MAP estimates as first proposed\aillancourt(2009, and Simmons & Stewarf1985 have built the so-called Neyman
the other option is to use the variance of the pdf. ~ “confidence belt” for the naive estimator in the canonicae
Given a polarization measuremen, {/) and the posterior ppmA | proposed the construction of two-dimensiongd, o)
pdf Bap(Po. Yol P, ¥, Zp), the lower and upper limits of thé% ntervals, for the general covariance matrix case. Thesidab
credible intervals are defined as the lower and upper linfif0 construction sfiers from a standard issue: at very low SNR the
andyy ranging the iso-probability regiof(4, p,y) over which  confidence interval lies entirely in the unphysigak 0 region,
the integral of equalst%, so that and both previous studies provide over-conservative regio
2 P14 has implemented the Feldman-Cousins prescription
ff Boo(Po. Yol P, ¥, Zp) dpodyo = — .  (31) (Feldman & Cousins 1998vhich is based on using a likelihood
Q1.p.y) 100 ratio criterium in the Neyman construction. This allows|dui

. . ing intervals that always lie in the physical region witheuer
These intervals,gio%,. Pyiapo] @Nd [0, Upinp,l, €Stimated 9 4 pry g

A “MAR2’ 7 MAP?2 being conservative. They provided these intervals for theSM
f_rom theA2D expression CBzD. are defined around the MAP2 €Sastimator including analytical approximations to the upged
timatespuap2 andyvapz2, Which are equal to the measuremen

(D, 1) Rwer limits for 68, 95 and 99.5% significance levels.

A similar definition can be given in the one-dimensional
case, which leads tofiierent results. The lower and upper limits4  estimator performance

low up " i
poae andpy .., aroundpuap are defined as follows
MAP MAP 4.1. Methodology

up
prAp Bo(Pol P, Zp) dpo = A , (32) We investigate in this section the capability at providirgdgn-
pow 100 ization fraction estimates with low bias of the seyeestima-

) ) ) - o tors introduced in the previous sections: the naive measeints
with the clonstralnt tﬂ)at the posterior probability funatis iden-  ; the Maximum Likelihood (ML), the Most Probable (MP and
tical for pyxe and pyp- Similarly, the lower and upper limits, Mp2), the Asymptotic (AS), the Modified Asymptotic (MAS)
ylon, andy,r, o, aroundiuap are given by and the Mean Bayesian Posterior (MB) estimators. Theioperf
mance is first quantified in terms of relative bias and riskcfun

Ve A tion of the resulting estimates. Given true polarizatiorapze-
fw"’w By (Yol 2p) o = 100° (33) ters (po, o) and a covariance matrix,, we build a sample of

MAP one million simulated measurementsy) by adding noise on
We recall that this integral has to be computed around the m#ze true Stokes parameters using the covariance matrix.eA/e d
surement valuéuap to take into account the circularity of thefine the relative bias and risk function gras follows:
posterior pdf with the polarization angle. Notice that thedible

up

intervals built in 1D or 2D are not supposed to be identicsl, a ) (P - po ) ((f)— po)2>
(Pmar2, ¥map2) and @uap, Umap) are not equal in the general Bias, = Tove and Risk = — (36)
case. : .G

The second definition of the uncertainty comes from the s
ond moment of the 1D posterior probability density funcsiép
andBy, as follows:

Skhere pis the polarization fraction estimate computed on the
simulated measuremengs py is the true polarization fraction,
<> denotes the average computed over the simulated sample,
1 ando g is the estimate of the noise of the polarization fraction.
O—;ZJ,MB = f (Po — Pve)*Bp(Pol b, Zp) dpo, (34) The choice obrp to scale the absolute bias and risk function,
0 as a proxy of the Uncertainty, is motivated by the fact that it
depends only on thefiiective ellipticity and not onyg. Notice
that this choice can lead to a relative risk function fallimer
, [V ~ low 1 at low SNR, due to the fact thaf ;>Var in this regime.
TymB = fw (Wo —yme) Buloly.Zp)dbo.  (35) e accuracy of the estimators is also quantified regarding the

and

—nt/2
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Fig. 3. Comparison of the average relative bias (top), risk funé&ig. 4. Output distributions of the naive (black), MAS (orange)
tion (middle) and Jarque-Bera test (bottom) of the pure meand the MB (pink)p'estimators in the canonical casgy=1), for
surements (naive, black), ML (dashed blue), MP (dashéd lighree levels of the SNRo/op=1,2 and 5 (from top to bottom).
green), MP2 (dashed green), AS (dashed red), MAS (orangiethe case of the MB estimator, we show two setuppafl%

and MB (pink) g estimators in the canonical case, as a functiand 50% to illustrate the dependence of the output distabut

of the the SNRpo/op. The dashed lines stand for the discontinen thepp value, due to the prior used in the Bayesian approach
uous estimators presenting a peak of their output distdbwtt  (pws € [0, 1] so thatpus/po € [0, 1/pg]). The other estimators

p=0. are not sensitive to the true valpg.

distribution, and defined by

shape of their output distributions. We use the Jarque-8gtia 5 2

mator Jarque & Bera 198(as a test of normality of the output IB = n (”_g + (/‘_‘2‘ -3l /4 (37)
6{; 13 ’
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wheren is the number of samples apglis the naive estimate
of the ith central moment of the distribution. This test isde 1.5[ - - - -

on the joint hypothesis of the skewness and the excess lkairtos — Naive ]
being zero simultaneously. A vald®=0 means a perfect agree- — «€[0,100p0]
ment with thenormality to the 4th order, but does not prevent 1.0 - «x €[0,10py] -
departure from the normality at higher orders. ThiBsestimator [/ — — «e[0,5p]

tends to a2 test with two degrees of freedom wherecomes w5 T
large enough. Hence thiB has to satisfy the following condi- & 0.50
tion JB < x2, once chosen a significance levelFor a signifi- U, = 77T =N
cance levelr=5% and 1%, we get the conditiod8 < 5.99 and 0 OL{:_ ____ e~

JB < 9.21, respectively. S

k€[0,3pg]

'0.5- L L L L

4.2. Canonical case
P/,

We first assume the canonical simplification of the covagangig 5 |mpact of the flat prior interval upper limit on the relative
matrix (eer=1). The relative Bias and Risk quantities are Bias, performance of the MB estimator.
shown on Fig.3 for the severpestimators. We recall that the

discontinuous estimators, shown in dashed line (ML (b,
(light green), MP2 (green) and AS (red)), have an outputidist

bution presenting a strong peak at zero, which leads tocaatl§j 1.5[ ' ' ' '
lower the statistical relative Bigsvhen simply including null A — Naive
values instead of using upper limits, as discussed in Sett. o 1.0k MAS
Effectively these estimators show the lowest relative biaegs ( 5 I\ MB flat prior ]
panel of Fig.3) compared to the MAS (orange) and MB (pink) MB prior (p) 1
estimators. Hence the ML and MP2 estimators seem to statis- s g 5[ -~~~ MB prior (Po;)
tically over-correct the data, below SNR. Consequently, the | ] "
ML, MP and ASp estimators have to be used with an extreme «
care to deal with null estimates. We suggest here to focus®nt vV gl ccinivmicm e LTI o T oo
two continuous estimators: MAS and MB.

MAS provides the better performances in terms of relative -0.5L - - L L
bias over the whole range of SNR, while MB appears less and 0 1 2 3 4 5
less dficient at correcting the bias when the SNR tends to zero. < Poi > /ope

At larger SNR £2), MB tends to slightly over-correct with a

small negative relative bias (2% of,) up to SNR~5, while Fig.6. lllustration of the improvement of the MB estimator per-

MAS converges quickly to a null relative bias for SNR3. formances when using evolved priors. Starting from an it

tribution of true valuesyy;), shown in Fig.7, the statistical rela-

The MB estimator clearly minimizes the risk function (intive bias is shown for four estimators: naive, MAS, and MBhwi

the range 0.£SNR<3.2), as expected for this kind of posteriothree diterent priors.

estimator. At larger SNRx3.2) both MAS and MB have roughly

the same behavior, even if the risk function associated tSMA

appears slightly lower. 4.3. Impact of the Bayesian prior

The resultingpyg distribution is highly asymmetric at low The choice of the prior is crucial in the Bayesian approanh, a
SNR (see upper panels of Fig), with a sharp cutfi at 0.8-,. we have seen how it is hard to define a non-informative prior in
Moreover, we note that the outppig distribution depends not Sect.2.6. The MB estimator studied up to now assumes a flat
only on the SNRpo/o, but also on the value of the true po-prior in po between 0 and 1, equivalent to no a priori knowl-
larization fractionpg. We report two casefo=1% (pink) and edge. In practice when dealing with astrophysical data, ave ¢
50% (dotted pink) in Fig4. This comes from the prior of the bound the expected true values of the polarization fradiien
Bayesian method, which bounds the estimpig between 0 tween much tighter limits. We know, for example, that the po-
and 1. As a consequence, tamality of the Bayesian distribu- larization fraction of the synchrotron signal peaks-@&b5%, but
tion is extremely poor, as pointed in the bottom panel of Bjg. never reaches this maximum due to line-of-sight averadihg.
where we show that the JB test of the MB estimator is largeraximum polarization fraction of the dust thermal emiss®n
than 9.21 (consistent with gj ,, test) over the whole range ofstill a debated issue, but is unlikely to be larger than 200%3
SNR explored here (up to SNIB). On the contrary, the result- (Benoit et al. 2004 Appropriate priors can then be introduced
ing Pumas distribution of Fig.4 looks much better, mimicking to take into account this a priori physical knowledge inte kB
the Rayleigh distribution for low SNR and going neatly to thestimator.

Gaussian regime, as pointed out by P14. The JB of the MAS es- We have already observed in Se¢t2 how the output dis-
timator is the lowest for SNR-3 (see bottom panel of Fig), tribution of the pyg estimates is impacted by the value of the
illustrating the consistency between the MAS distributaord true py (1% or 50%) due to the upper limipg<1) of the prior,
the normal distribution. Notice that all distributionsjvea MAS see Fig4. We explore here a family of simple priors defined by
and MB, converge to a Gaussian distribution at higher SNR. «(py) = 1/(kpo) for pj € [0, kpo] and O otherwise, where we ad-
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Fig. 7. Output distributions of th@ éstimates starting from a dis-Fig. 8. Same as Fig7 with a different initial distribution fg;)
tribution of independent true valuegy centered around 10% of centered on 20% of polarization fraction.

polarization fraction (grey shaded region) shown at thezels
of noise characterized by the mean SK®&,)/opc=1, 2 and
3 (top, middle and bottom, respectively). The naive (bjasid

MAS (orange) output distributions are compared to the MB out
put distributions obtained with threeftérent priors: flat prior

between 0 and 1 (solid pink), set to the naive output distidin
(dotted pink) and set to the true input distribution (daspied).
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just the upper limit of the prior as a function of the expedtee@ not as muchfiiected by the cut{at low p as observed in Fig.
value. We performed Monte Carlo simulations in the candnicahe MB estimator with the naive prior appears extreméigce
case by setting the true value @=1% and varying the upper tive, even at low SNR~2).

limit of the prior k = 2,3,5,10, and 100). The statistical rela-
tive Bias, of the MB estimators associated with each version o
the priors are shown on Fi§. The smaller the upper limit, the
lower the relative Bias as expected. However the upper limitn PMA | we have discussed extensively the impact of the asym-
of the prior has to be very constrainiriy £ 3) to observe a de- metry of the covariance matrix on the measurements of the po-
crease of the relative bias in the range of SNR between 1.8.an¢hrization fraction. In particular, we have stressed thateothe

This requires very good a priori knowledge. Using more rethx effective ellipticity departs from the canonical case, theslia
priors k > 5) will notimprove significantly the performances ofthe polarization fraction now depends on the true poladgat

the MB estimator at SNRL. angleyo, which remains unknown. We would like to explore in

When dealing with maps of polarized data, an interesting aghis section how the performance of the varigussfimators are
proach would be to start by estimating the histogram vhlues sensitive to the féective ellipticity of the covariance matrix.
in the map and use it as a prior into our MB estimators, even if \We illustrate the dependence of thestimators on the true
this moves away from a strictly Bayesian approach again by ipolarization angleyo in Fig. 9. Given true polarization parame-
troducing a data-dependent prior. As a first guess, the paor ters (po=0.1 andy, ranging betweens/2 andr/2) and a covari-
be set to the histogram of the naive estimatgs, dif a more so- ance matrix characterized lay;=2 and#=0 (left panel), and a
phisticated prior would be an histogramptieconvolved from SNR py/opc=1, we first set the polarization measurements (
the errors, using a Maximum Entropy method for example. ) to the maximum of the pdfyp (left panel). We apply then the

We illustrate the performance of the MB estimator with thisix estimators on these measurements to geptéstimates for
kind of prior on Figs.6 and7. We start with a sample of 10 000eachyq between z/2 andxr/2. With this particular setting, the
independent true valuepd;) ranging between 0 and 20% of po-MP2 (green) estimator gives back the true polarizationtivac
larization fraction, with a distribution shown as the gréyaded p, whatever the polarization angle, by definition of this es-
histogram in Fig7 on which a random realization of the noise isimator and the choice of the measurement in this example. On
added with the same noise level over the whole sample, lgadihe contrary, the MP (light green) and the ML (blue) estimato
to varying SNRs through the sample. We explore two extrerage extremely sensitive to the true polarization angleyield-
cases of the Bayesian prior, corresponding to i) an idéafist- ing estimates spanning between 0 andod, &vhile the AS (red)
fect knowledge of the input distribution and ii) its first gise and MAS (orange) estimators yield results spanning between
provided by the naive estimates. Hence the prior is chosenta 1.8p, wheny varies. The MB (pink) estimator provides sta-
the input distribution of the trug@g; values (dashed pink) andble estimates in the range 1.4 to p& which is consistent with
the output distribution of the naive estimates (dottedk)pilVe the fact that the posterior estimators minimize the riskcfiom.
compare the performance of these two new versions of the MBis of course has a cost, and the MB estimator provides here
estimators with the naive (black), MAS (orange) and flabipri the largest averaged relative bias compared to the othdr-met
MB (solid pink) estimators, in terms of relative bias in Fig.  ods, with the exception of the naive (black) one.

We stress that the relative bias values are not defined as pre-More generally, for each value of the true polarization angl
viously done in Sec#.1, but refer now to the mean of the dif-yq between-n/2 andx/2, we build a sample of 10000 simu-
ference between each sample of true vglgeand its associ- lated measurements using the same setup of the covariance ma
ated estimatgp;” The pink shaded region provides the domaitrix as above. Then we compute the statistical average of the
of the possible improvement of the MB estimators, by settingaive, MAS and MB estimates (black, orange and pink lines,
an appropriate prior as close as possible to the true disivih  respectively) obtained on this simulated sample, withrthasi
The improvements may seem spectacular, leading to a Efatistsociated 1s- dispersion (black, orange and pink dot-dash lines,
relative bias close to zero at all SNRs in the best configamatirespectively), as shown in the right panel of FigThe averaged
(dashed line). Caution is warranted, however, when looking MB estimates present the same characteristic as shown on the
the output distributions associated with these new MB estimeft panel. By contrast, the averaged MAS estimates are-inde
tors on Fig.7, shown for three levels of the noise chosen so thpendent from the unknowy, true polarization angle. The MAS
the mean SNR i§p/0pc=1, 2 and 3. At low SNR£1), the out- 1-o dispersion is, however, slightly larger than the MB-His-
put distribution of the MB estimator withgerfect prior (dashed persion.
line) is extremely peaked around the mean value of the sam- The impact of the &ective ellipticity of the covariance ma-
ple Po, but does not match the input distribution at all. Even atix is then analysed statistically for the MAS and MB esttora
higher SNR (2-3), the three MB output distributiongtsufrom only in Fig. 10. Instead of looking at the accuracy of thess$-
the same feature already mentioned in Sé&.a sharp cutffat timators around one particular measurement (the most pteba
low values ofp. Using a prior that is too constraining will yield one) as done in Fig, for each set of true polarization parame-
dramatic cuts of the extremes values of the input distrdouti ters (po=0.1,0), with yo ranging betweem/2 andr/2, we per-

By contrast, the naive prior is quitéective in that it allows the form Monte Carlo simulations. For each set of true polaitrat

MB estimator to recover the upper limit of the input disttibm  parameters, we build a sample of 100 000 simulated measure-
reasonably well at a SNR2, while the other estimators fail to ments on which we apply the MAS and MB estimators to finally
do so at such low SNR. compute the statistical relative Biaand Risk, as defined in

The performance of the MB estimator with an evolved pridect4.1. This is done for various setups of the covariance matrix
will also strongly depend on the initial true distributioftioe po- chosen to cover the whole range of tixéreme andlow regimes.
larization fraction. For example we duplicated the analysade The minimum and maximum relative Biaand Risk are then
above with a dterent initial distribution ;) centered on 20% computed over the whole range @§ and éfective ellipticity
of polarization fraction instead of 10% (see F#). In this con- & in each regime of the covariance matrix to build the shaded
figuration, the output distributions of the Bayesian estormare regions of Fig.10 for the MAS (top panels) and MB (bottom

.4. Robustness to the covariance matrix

10
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Fig. 9. lllustration of the robustness of thpeeStimators against the unknowp parameter when the covariance matrix departs from
the canonical value. The covariance matrix is setup wdg-2 and a SNRy/opc= 1, and a true polarization fractiqn=0.1. For
each value oy, we first illustrate (on the left panel) the performance &f thestimators on one particular measurement set to the
maximum of the pdf. We focus then on the statistical averatjenatesp"computed over 10 000 Monte-Carlo realizations for the
naive, MAS and MB estimators (right panel). The full linésrsl for the mean, and the dot-dash lines for thedispersion.

panels)p’estimators. The domain of the naive measurementstire result in orange shaded regions for the MAS and pink shade
each regime is repeated in grey shaded regions, while we shegions for the MB estimators. It appears that the relatiiees3
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Fig. 10. Impact of the &ective ellipticity of the covariance matrix on the statslirelative Biag (left column) and Risk (right
column) quantities in thextreme (light shaded region) andw (dark shaded regions) regimes, for both MAS (orange, tog \MB
(pink, bottom)p'estimators. The domain of the naive measurements is expregrey shaded regions on both plots. The canonical
case of the MAS (and MB) is also repeated on each panel in dashege (and pink) lines.
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_ full knowledge of the covariance matrix may represent a-chal
X, 1001 ' ' ] lenge for large samples of data. Hence P14 provides analytic
= I ] approximations of such confidence intervals for the MAS-esti

S 80 mator, which can be extremely useful.

- : A commonly used approach, however, is to provide the 1-
=" 6ok dispersion, assuming the Gaussian distribution oftbstimates
=0 as a first approximation. We have already stressed tferéeince

|

i between the risk function and the variance, and the linoitesti
- —  MUMAP CL] of the latter to derive robust uncertainties in the preseftéas.

S I — MBVar ] We compare below the performance of the usual uncertainty es
iy

N
S
b

T AsVar 4 timates introduced in Sec® to provide robust 68% tolerance
intervals: MAS variance, credible intervals MAP and-la pos-

oL - - 1 teriori dispersion MB.
0.1 1.0 , 10.0 Starting with a truepy value, we have performed Monte-
Po/Opa Carlo simulations in théow regime of the covariance matrix, by

exploring the whole range of the true polarization angjewith
Fig. 11. Probability of finding the true polarization angg in-  an SNR spanning from 0 to 30. For each simulated measure-
side the interval p™— o lgw, P+ o p] Whereglgw and o P are ment (p), we compute the estimates with their uncertainty
the lower and upper limits of each estimator: credible iaby €Stimatorsrs. We then compute the a posteriori probability to
ML/MAP (blue), a posteriori variance MB (pink) and MAS vari-find the truep inside the intervalp=c 2", p+oy]. Inthe case
ance (orange). It is plotted as a function of the SNR(rpG of the MAP estimator, the lower and upper limits of the inter-
Monte-Carlo simulations have been carried oo regime of - val, puap — g andpuap + o7y, are set topjjar and pyp,o,
the covariance matrix. The Gaussian level at 68% is shown ag8pectively, (withi=68 as defined in Secs.2), which can be
dashed line. asymmetric. We report the results compared to the expe88d 6
level in Fig.11. We recall that this comparison approach is fre-
guentist again, while anything derived from the Bayesiahigd
used to build single estimates and to be compared with the con
fidence intervals.
] As pointed out in Sect3.1, the theoretical variance associ-
_______ ated with the MAS estimator still tends to provide slightiwier
probabilities than the expected 68% at low SNR, mainly due to
the asymmetry of the distribution. The variance associttée
h MB estimator, which is more biased at low SNR, gives extrgmel
— MUMAP CL{ low probability to recover the trupp value at low SNR € 0.5).
— MBVar ] By contrast, it provides probabilities greater than 68%hja

)

up

P(po € [f)—a"gw, f)+0'ﬁ

T SV as 90%) for SNR between 0.5 and 2. This comes from the fact
that the MB variance statistically over-estimates by adeof 2
: the exact variance of the a posteripyig"distribution at low SNR
0.1 1.0 10.0 (<2). Thus the MB uncertainty estimator yields conservatire e
P/op timates of the uncertainty for SNRO.5. At high SNR £3) all

these uncertainty estimators provide compatible estisnatthe

Fig. 12. Same as Figl1but plotted as a function of the measured@robability close to 68%.

SNRp/cp. Because the true SNR is always unknown (see 8ed)t.the
probability to find the trugy value in the confidence interval is
also shown as a function of the measured SNR in Eig.This

of the MAS estimator is less impacted by a change of elligticimuch more realistic picture shows that the variance estisnat

for SNR>2 than the MB estimator, even in tlegtreme regime  provide reliable probability for measured SNR larger th#&n

of the covariance matrix. The dependance of the risk funaiio

the ellipticity is almost identical for the two estimaton®and

their respective canonical curve. The thickness of theftigk-
tion reglo_n IS Sllghtly smaller for the MB e_stlmator thar_1 foe In any real measurement, the true SWUP,G remains un-

MAS estimator at low SNR<3), while it is the opposite for known. From observations, we only have access to the mea-

larger SNR £3), as already observed in the canonical case. sured SNR, which can be obtained by the ratjo-5 associated

with each estimator, or by a confidence interval approach (se

P14), which is much more robust at a low true SNR. We show

in Fig. 13 the accuracy of the measured SNR compared to the

The questions of estimating the polarization uncertasnéied true SNR for the four following methods: the naive estingdtes

how uncertainties are propagated are essential in relpdiée- Classical estimate of the uncertainty, the MAS estimaté thie

ization analysis. The best approach consists of buildiegtin- associated variance, the MB estimate and its variance,band t

fidence intervals to retrieve robust estimates of the lowel aML estimate with the MAP credible intervals. We observe that

upper limits of the 68, 95 or 99.5% intervals, which is valige all methods agree only for a true SNR larger than 3, givinkbac
when the distribution is not Gaussian. As already mentidnedthe true SNR in this regime. Below this true SNR, the measured
sect.3.3, building optimized confidence intervals including theSNR becomes extremely biased whatever the method used, due

4.6. Polarization signal-to-noise ratio

4.5, Polarization fraction uncertainty estimates
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at high SNR, reducing the relative bias close to zero at a SNR
' ' of 5. The MP2 estimator does not present any satisfactony-pro
] erties: strong relative bias and risk function in aimostakes.
10.0¢ E Hence thisyvp, estimator can be ruled out.
; ] An overview of the performance of the foyrrestimators as
a function of the SNR is shown on Figj5, after marginalization

§ ] over all the possible values of thig parameter. As the relative
< 10E ~ g — NaiveC | Bias, can be positive or negative dependinglm we compute
“E 2 — ML/MAP CL] the average of the absolute value of the relative bigBjas,| >
- — MBVar as an indicator of the statistical performance of the egtinsa
7 T WAsVar 4 whatever the true polarization angle is. We observe agathen
R l left panel of Fig.15 that the MB (pink) estimator provides the
0.1L2 - . lowest relative bias for SNRL.2, while the ML is especially
0.1 1.0 10.0 powerful for SNR-2. All estimators provide almost the same
Po/Tpo results for the average RigKleft panel), even if MB appears

slightly better than the others, including the naive measients.

Fig. 13. Average Measured SNR computed over 10 000 Monte- The examples provided above have been computed with an
Carlo simualtions as a function of the true SNR for fougXtreme effective ellipticity €er=2) to emphasize the observa-
methods : Naivep/o,c (dark), MAP confidence intervals iOns, but the same conclusions can be reached for loweesalu
PuL /T awap (blue), MB Pus /oams (pink) and MAS variance Of the ellipticity. See, for example, the case with=1.1 shown

Puvas/Tpmas(orange). The covariance matrix is taken inlgey 1N dotted line in Fig.15. In the low regime of the covariance

regime. matrix, however, the statistical relative bias s very small,
typically smaller than 5% of the dispersion, so that the rteed
correct the bias ogr remains extremely limited.

to the bias of the measuremanitself, but also due to the bias in-

troduced by.the var lance as an estimate of the uncer_taim,’ylwrb_g_ Polarization angle uncertainty estimates

the output distribution departs from the Gaussian regime.
Once a reliable estimate ¢fbased on the MB and ML (MAP)

- ) estimators has been obtained, we would like to build a rofsist

5. ¢ estimator performance timate of the associated uncertainties which should be done

5.1. Methodology by buiIding confidence int_ervals. Because this last stegddcou
represent importantflorts in some cases, for example when

As pointed out by PMA I, once the covariance matrix is nalealing with the full covariance matrix, we detail other hrals

canonical £ > 1), a bias of the polarization angle measureselow.

mentsy appears with respect to the true polarization angle One option is to use the uncertainty associated with the MB

This bias may be positive or negative. We propose to compastimatoro;, s (See Eq35). Another is to use the credible in-

the accuracy at correcting the bias of the polarizationewgl tervals built around the MAP estimates on the Eosteriorw.

the four followingy estimators: naive measuremepizghe ML can keep the lower and upper limitg%, andy,;,, computed

YL (which is equivalent to the MARwap), the MP2yyp2 and  for a 68% credible interval, or build a symmetrized uncertgai

the MBlﬁMB.

Similarly to thep estimators, we define the relative bias and o _ }(lpup _ ylow ) (39)
risk function ony as follows: MAP = 5 \PMAP — Y MAP/ -
<¢‘, _ lﬁ0> «& _ lﬁo)2> A third option consists in taking the classical uncertaigityen
Biagy = —— and Ris=-—5—, (38) inPMAI, derived from the derivatives of the polarizatioraa-
0y,0 ) eters. PMA | has already shown that thisincertainty estimator,

R associated with the naive measurements, tends to systalyat
wherey is the polarization angle estimate computed on the simmnderestimate the true dispersion of thdistribution.
ulated measuremenys v is the true polarization fraction and  We first assume the canonical simplification of the covari-
angle <> denotes the average computed over the simulated saanee matrix, which implies that themeasurements are not sta-
ple, andoy o is the standard deviation of the simulated measurgstically biased. We also recall that under such assumgtibe
ments. ML (MAP) and MB y estimators will give back the measure-
mentsy. We study, however, how the uncertainties associated
with these two estimators can be used to get a reliable estima
of the uncertaintyr;. Starting from a true o, ¥o), we simu-
We explore the performance of the folirestimators at four late a sample of 50 000 simulated measurempnjsat a given
SNR=0.5, 1, 2 and 5 (from top to bottom) and a covariance m&NR po/op, on which we apply the two ML (MAP) and MB
trix with an efective ellipticity eeqr=2, on Fig.14. The relative ¢ estimators and their associated uncertaingy,ap ando; yg,
Biag, (left panels) and Risk(right panels) are plotted as a func+espectively. From this simulated set we can derive thesaeezt
tion of the true polarization anglg. While the MB (pink) esti- o, for both methods. Because all estimators give back the mea-
mator seems to provide the least biased estimates withwhesto surements in the canonical case, we compare the MAP (blue)
risk function at low SNR €1), it becomes the leasffieient at and MB (pink) polarization angle uncertainties estimattirs
higher SNR. On the contrary, the ML (or MAP too) presentectly to the true dispersion (black) of thlemeasurements in
poor performances at low SNR, but provides impressive tesuFig. 16. We also repeat the average of the classical estimates

5.2. Performance Comparison
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Fig. 14. Comparison of the relative Biggleft) and Risk, (right) quantities of the foup estimators: Naive (black), ML (blue), MP2
(green) and MB (pink) plotted as a function of the true palation angleyo and computed at four SNBy/0pc=0.5, 1, 2 and 5.
The covariance matrix is set to= 2 andp = 0 (geq = 2).
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Fig. 15. Statistical relative}Biaspl (left panel) and Risk (right panel) averaged oveg between-7/2 andr/2, as a function of the

SNR onpo/opc, for the foury estimators: naive (black), MLMAP (blue), MP2 (green) and MB (pink). We consider two setups
of the covariance matrix hereg;=2 (solid line) and ande;=1.1 (dotted line).

60g T T

| i
L% -

Y — wumapct]

= — MBVar

N ]
0.1 1.0 10.0

po /Gp,G po/op,G

Fig. 16. Average polarization angle uncertainty as a function gfig 17, Probability to find the true polarization angie in-
the SNR in the canonical case: true uncertaimfy, (black), sjde the interval — o', + o*P], where ™ and " are
l// b ‘// 7

Classical estimate, c (C, dashed dark), Mir, \ap (blue) and o .
MB o v (pink) estimators. The covariance matrix is assum ge lower and upper uncertainties for each estimator}
y : lue) and MB (pink), and plotted as a function of the SNR
to be canonical. ; ) . .
Po/opc. Monte-Carlo simulations have been carried out in the
low regime of the covariance matrix. The expected level at 68%

(dashed line) of the polarization uncertainty estimatdctvhas is shown as a dashed line.
been shown by PMA | (see their Fig. 7) to underestimate by a

factor of two the true uncertainty at low SNRZ). We observe
that the MAP estimatos;, yap Provides an extremely good es-
timate of the polarization angle uncertainty compared ¢ctithe
one over the whole range of SNR, even if slightly consereati
up to a SNR of 5. The MB estimater;; ;5 provides consistent
estimates of the uncertainty from intermediate SNRbut still
underestimates at lower SNRYX).

In the non-canonical case a statistical biasyomppears,
which can be partially corrected using the appropriatesti-
mators (see Sech.2), leading to an output distribution of the
y estimates. We quantify the performance of ¢hencertainty In all of the preceding sections, the total intensityas assumed
estimators via Monte-Carlo simulations, as done forghcer- to be perfectly known| = lo. in some cases, however, this as-
tainties. Starting from a set of polarization parametegs-0.1, sumption is not valid as discussed by PMAL. For instance, one
-m/2<yo<n/2), we build a sample of simulated measuremenigeds to subtract from the observed intensity signal anp-unp
(p, ¥) using various setups of the covariance matrix inlthe larized component, leading to three main issues: i) theveldri
regime, and various SNRs ranging from 0 to 30. We then cofelarization fraction may be grossly underestimated & thinot
pute the a posteriori probability to find the true polariaatangle done properly, ii) this subtraction may be subject to a iakit

Yo in the interval fj—o™, y+c 7], whereo-:g‘” ando-gp are sym- large uncertainty, larger than the noise on the total iritgrand

metrized. The results are shown as a function of the true SNR
Po/opc in Fig. 17 and of the measured SN/ 7 in Fig. 18.

Ve observe that the MAP estimator provides slightly corserv
tive probabilities over the whole range of SNR. The MB estima
tor gives low probabilities to recover the true polarizatangle

Yo for atrue SNR<1, and a measured SNR.

6. Three-dimensional case

15



Montier et al.: Polarization measurements analysis Il

of the Stokes parameters. We have also included in this compa

=100 ison a novel estimator of the polarization fraction, the NMied
= Asymptotic (MAS, Plaszczynski et al. 20)4In addition, we
7 have performed for the first time a comparison of the perfor-
(; mance of the polarization angle estimators, since a statist
. bias ofy is expected when the covariance matrix departs from
= its canonical form. We have followed a frequentist methedol
| . ogy to investigate the properties of the polarization estors,
>, 40 ] even when dealing with the frequentist estimators inspingd
o — MUMAPCL] the Bayesian approach.
\5/ T MBVar 4 The question of the performance ofpeof i estimator de-
pends intrinsically on the analysis we would like to carryt ou
: with these quantities. Including or not the full covariancatrix
0.1 1.0 10.0 is one of the first questions that must be handled, but the more
Plop important aspect relies on the properties of the outputidist

tion of each estimator. In practice, a compromise betweegeth
Fig. 18. Same as Figl7, but plotted as a function of the meafréquentist criteria has to be found: a minimum bias, a mimm
sured SNR/op. risk function, and_ the shape of the output dlstrlbytlon,enns_

of non-Gaussianity. We present below a few recipes assaktiat
to typical use cases.

- Build amask. It is usually recommended to build a mask on
the intensity map, instead of using the SNR of the polarati
fraction, so that no values of the polarization fractiorpésally
lpw values ofp) are discarded in the further analysis. It can be
useful, however, to build a mask based on the SNR of a polar-
ization fraction map when we are interested in strong vatifies

component at high latitude, where the total intensity ofsigaal the polarization fraction only, and we try to rejepestimates

is strongly contaminated by the unpolarized signal of therftio artificially bqosted by the noise. This is the case when wé loo
Infrared Background (CIB). for the maximum value op, for example. In this context we

gest following the prescription of P14, using a combamat
ofthe MAS estimator with confidence intervals. This methbd a
lows building conservative domains where the SNR is enstored
be greater than a given threshold. P14 provide numericabapp
imations in the canonical case. If one wants to take into @aeto
the specificity of the noise properties in each pixel, comfage
intervals can be built for any covariance matrix (includetijp-

could lead to diverging estimates of the polarization firact
when intensity crosses null values ; iii) this uncertaintythis
unpolarized component intensity level should be includetthé
3D noise covariance matrix, and propagated to the uncéytai
estimates of the polarization fraction. This happens fetance
when dealing with the polarization fraction of the Galacticst

The Bayesian approach has the definite advantage over o
estimators discussed here in that it can deal fairly easitig w
three-dimensionall(Q, U) noise. However, an uncertain to-
tal intensity still poses problems, which are most acuteoim |
brightness regions, since the noisynay become null or nega-
tive, leading to infinite or negative polarization fract®mwith

this in mind, it is possible that the choice of the priorgpand .. g : o . .
lo may have a strong impact on tlpg;s” estimate. One may for Kﬂ%ﬁnrd (I:torrflztiigorm t?IUttlt COUIid rteqtl)uri%ln:er&istl)\lle imng.
instance choose to allow for negatilgin low-brightness re- other alternative at case Is o build credibie WS-

gions, which implies extending the definition range of the p(J)ng the posteriordfis;ributlior? (M.AP%' . ith hiah
larization fraction to the negative part, leading to a pdefined - Large maps of the polarization fraction with high SNR on

on [-1,1]. Another possibility in this case, and possiblealep- € intensity. Another typical use case is to provide large maps
ment of the present paper, is to extend the dimensionalitiyef of the polarization fraction with the associated uncetiainhen
problem to include the unpolarized intensity componigie; the intensity is assumed to be perfectly known. Becausesif th

e.g., with a flat prior betweeRsetmin andlosetmasx and still im- d|sc0nt(|jnuousdd|str|but|0hns prisentlng a pea}lpat) and thellr
posinglo > 0. strong dependance to the unknown true polarization angle

Let us stress that the Bayesian approach is also curremtly {He cc()jrr]:m(iﬂlesnmators _ﬁ]ML' MF; an;:i AS ar? dnot v&/e(ljlﬂde_-
only one that can deal with correlation between total iritgrls signed for this purpose. These estimators could produdehig

to StokesQ andU. We note, however, (i) new and forthcomin iscontinuous patterns with zero V{ilues over the °“ﬂ°“t"?‘f’
polarization data sets have a much better control of these €N the SNR goes below 4, which may imply complicated

tematics, and (ii) the impact of these correlations betwesige aNnalysis including upper limits values. In order to avoidfsu
components on the polarization fraction and angle biasiie qu|ssues, we first suggest using the MAS egtlmatqrwhlch h‘f“ bee
limited, as shown by PMAL. shown to produce the lowest relative bias, with a continuous

output distribution which becomes close to a Gaussian fdR SN
larger than 2. Moreover, the relative risk function asseclavith
the MAS estimator becomes competitive for SA&R while the
MB estimator minimizes the relative risk function for anant
We have presented in this work an extensive comparison roédiate SNR, between 1 and 3. The uncertainties can then be de
the performance of the polarization fraction and anglenesti rived again from the confidence or credible intervals, delpen
tors. WhileSimmons & Stewar1985 focused on the common on the ellipticity of the covariance matrix. A second opties-
estimators of the polarization fraction, such as the Maximupecially suited for intermediate SNR (2-3), consists infgen-
Likelihood (ML), the Most Probable (MP) and the Asymptotidng a preliminary analysis on the data to build a prior from fh
(AS), andQuinn (2012 suggested to use a Bayesian approadiistribution, which can then be injected into the MB estionat
to estimate the polarization fraction, we have generalaikd The performance of this method strongly rely of the propsrtif
these methods to take into account the full covariance matthe initial true distribution. It is particularlyfgcient for true po-

7. Conclusion

16



Montier et al.: Polarization measurements analysis Il

larization fractions largely greater than zero, to avoiel thajor package. We would also like to thank P. Leahy, S. Prunet ar8elifert for their
drawback of the MB estimator presenting a lower-limit propo very useful comments.

tional to the noise level. Hence the MB (with flat prior) estiior

presents a cutfbat 0.8r, so that it can never provide null esti- ) )

mates ofp” We stress that above a SNR of 4, all methods (excepppendix A: Most Probable in general case

MP?2) fall in agreement.

- Combined polarization fraction and angle analysis. The
Bayesian estimators giyg andy s may be used to build esti-
mates of the polarization fraction and angle simultango s
taking into account the full covariance matrix, includitg tel-
lipticity and correlation betwee® andU, and the correlation s-1 (V11 Vlz) ’ (A1)

The MP2 estimatorgivp2 and(/?Mpz, have to satisfy the Eg8.
and9 simultaneously. These relations can be solved, using the
fully developed expression dfp including the terms of the in-
verse matrixe ;'

between total and polarized intensity. This could be usghédn P Vi2 V22
performing an analysis over large areas with inhomogeneous .
noise properties, when the SNR on the intensity becomes préifding to
lematic, or when an important correlation betwéeand @, U)

exists. Nevertheless we stress that the output distrihsitid the

MB estimates are strongly asymmetric at low SN&3), and . 1 ((V11V22 - sz) PP - V11) Sin 2 +Vi2c0S 2
that the Bayesian uncertainty estimates can not be usegias tfmMp2 = - arcta 2\ o : ;
cal Gaussian 68% tolerance intervals. (V11V22 - Vlz) pe - sz) COS 4y + Vi2SiN 24

- Low SNR on the intensity. We recommend in this case toANIP2 A
use the Bayesian estimators which allow simultaneous atgsn ; o7 ’
of the inter¥sity and the polarization parameters, taking ac- (A2 C0S Jmpz + AsSiN ZﬁMPZ)
count the full covariance matrix, and include the impacttef t
uncertainty of the intensity on the polarization fractictimate.

- Very low SNR studies. Very low SNRs studies may re- : :
quire d'f%/erent approaches. Weyhave seen that at low SyNR, afl = p(V11 COS’ 24 + Vo SIN* 20 + 2v12COS 2y Sin 2//) -1/p,
estimators provide biased estimates of the polarizatiactisn, A> = Vi1C0S 2 + vi2Sin 2y,
with highly asymme_trical distributions._The more con_seime_l Ag = VoSN + V12COS 2 . (A.3)
option in this case is to use the confidence or credible inter-
vals. Similarly the question of assessing the unpolarieeell This analytical solution only depends on the input measergm
of a set of data (i.e. SNFO) has been first raised b@larke (p, ) and the covariance matri,. Because the polarization
et al.(1993. They suggested to used Kolmogorov test to confraction must be positive, there exists a lower limit of tH¢rS
pare the measurement distributions with the expectatiomete so thatpypz = 0. In that case/vpz is not constrained any more
from the Rice distribution witfpo=0. Another option is to build and can be chosen to any possible value, we will set it equal to
the likelihood in two dimension<},U) to perform gy? test with  the measurement Moreover, this expression can be simplified
Qo=Uo=0. A last method is to use the Bayesian posterior protwhenp = 0, which implies that,, = 0, leading to:
ability B(polp, op) to assess the probability to hapg=0 for a

(A.2)

with

given measurement or a series of measurements by convolving 1 (p2 - 1/\/22)

all individual pdfs. Ynp2 = > arcta (21 an , (A.4)
- Polarization angle. Concerning the polarization angle esti- (p? = 1/v11)

matesy, we have shown that the ML provides the best perfor- Vi1 COL 20 + Voo Si2 207) — 1

mance in terms of relative bias and risk function for SNRIt = p( - Alp 2 "0) /pA .

corrects a potential bias @f when the covariance matrix is not (vll COS 2/ COS Amp2 + V22 SiN 24 SiN z,bMpz)

under its canonical form. Because the ML and MAP estimators
give equivalent reSUltS, the MAP can be USEdfﬁEbntly build In the canonical CaSWﬁzzo, Vll:VZZ::I-/O-,Z)), we recover the ex-
credible intervals and symmetric uncertainties, whichena®en pression derived b@uinn(2012:

shown to be in a very good agreement with the output distribu-

tions. Nevertheless we stress that the level of the absbiaseof Jyp, = v,

¥ remains extremely limited compared to the dispersion of the >
polarization angle in most cases (i.e. in thes andtiny regime  pyp2 = { E)p ~op/P)
of the covariance matrix), so that it can be usually negtkcte

for p> op

forp<op” (A-5)
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Fig. B.1. Posterior probability density functiorp(po, Yol p, ¥, Zp) computed for the most probable measuremepijg)(of the
fop distribution (crosses), which were obtained for a givero$étue polarization parametepg = 0° andpy = 0.10 (dashed lines)
and various configurations of the covariance matrix, at fewgls of SNRpo/opc = 0.1,0.5,1 and 5 (top to bottom).

Appendix C: Mean Bayesian Posterior analytical ~ The MB estimator and the posterior variance take the follow-
expression ing forms
In the canonical case, the MB estimator of the polarizatian-f N
tion p takes a simple analytical expression. The Bayesian poste- fo Po ePe/209) 1y (’;—’320 dpo
rior on p is given in this case by: Pve = - 2 (C.3)
Jo &P 10(22) do
R(p| po, Zp) - (Po)
Bp(pol p.Zp) = — / P —— (C.1)
Jo R(P1 pg. Zp) x(pp) dpy and
wherex is the prior chosen equal to 1 over the definition range fol(po - Pwe)? e(*Pé/Zﬂlp)]o(’(’f#";’)dpo
([0,1]), andR denotes th&ice (1945 function which is defined Gpm = - 2 (C.4)
2

by o €2 1o (22 ) dpo

p (P*+19)) - (Ppo in afi imati i

R(P! Po. 5p) = _Zexp(_ > )I [_2) , (C.2) If we assume in a first approximation that the mtegrab@bver
oy 2075 op [0, 1] can be taken over [@-oo[ (which is fine at high SNR), and

we use the formula dPrudnikov et al(1986

whereZ(X) is the zeroth-order modified Bessel function of the ,
firstkind (Gradshteyn & Ryzhik 20Q&andop = 0g/lo = ou/lo a1 by 1 a0 a_ c
is the characteristic noise level of the polarization fieret o X e To(edx = 5b ¥ T(a/21F1( 5. 1 4p ] . (C.5)
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0.20r - - ] 6F - -
: Py @ccuracy 1 [T gt ]
0.15:— ------ Opp accuracy - r . 1<gy<1.01 ]
-~ I ~ f ]
& 0.10F ] s 2r T<gy< 1.1 7
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g oot ; g o e
RS r =
D L L)
T 0.00- = T g -
L 7
L / B B
- 7/ - r
008 - - e - 3 a4 1
'0,10: 1 1 : '6- 1 1
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p/o, p/O,g

Fig.C.1. Accuracy of the approximate analytical expression

10 T T
of the Bayesian estimates of the polarization fractiogms ~ [ — e,
(solid line) and its associated uncertainty g (dashed line),
as a function of the SNR of the measuremert-,, where 5t . 1<ty < 1.01
op=0q/lo=0u/lo. S Tegy<id
wherel is the Gamma function and-; is the confluent hyper- 2 O ——
geometric function of the first kind, we can derive that s I
o 1( 1) (1 1. p £
(-p3/20%) | PPo - P i
e Pl Ty dpo = =|=—| T|=z|1F:1|=.1,=— L
fo (app 2\202 2) 12" 202 i
2402 2,4 2 -10L . .
= /20y €410 (p?/407) 0.1 10 10.0
(C.6) PlOye
and

Fig.C.2. Accuracy of the generalized approximate analytical

. PPo p? expression of the Bayesian estimapgg {top) ando’pve (bot-
f po €P6/279) 1 ( 2 )dpo = o51F1 (1» 1, 7‘_2) tom), taking into account the full covariance matrix comeots,
0 P L P in thelow (light grey ) andtiny (dark grey) regimes.
= o5e”?7, (C.7)
and finally

We explore in FigC.2to extent to which the canonical sim-
, \ Plification may be done in the presence of dieetive ellipticity
(§) 1F1(§ 1 p_] of the covariance matrix. In this more general case, we sigge
2 2" 203 ) changingo, into o in the Egs.C.9 and C.1Q The relative
3 D error between the approximate estimate and the exact laayesi
\/772% 1F1( 1, 2] (C.8) estimate has been explored in two regimes of the covariaaee m
20 trix, thelow (1<eger<1.1) andtiny (1<eer<1.01) regimes. Three

We finally obtain the simple expression of the MB estimatat a omains are observed in the top panel of Rg2 dealing with

3
2

Y ezt (PR~ (L)
[vsnlhon -3

the associated Bayesian variance: he accuracy of theyvs estimate: i) at low SNR<1) the bias on
p is so large that the presence of dfeetive ellipticity does not
\/5 P affect significantly the estimate in comparison; ii) for an inte

Tpyx exp(m) mediate range of the SNR {BNR<4), the dfective ellipticity

Pvg = ————~ (€.9)  of the , significantly d@fects the Bayesian estimate so that the
Lo (Kg) departure of the analytical approximation from the exatt es
mate becomes important; iii) at high SNRY) the noise is so
low that the Bayesian estimate is not sensitive to the asyimyme
2 3 02 of the CO\I/ariar;ce matrix anqu&e. Consequgntly,_ the appfrox
5 - B z g JRL.A mate analytical expression provides very good estimat@g©
TpMe pMB\/ exp( )10(40,%] 1F1(2’ L 20%] L for SNR<1yand SNpR»4, andp5% to 0.50% %f relative er?c?r for
(C.10) intermediate £SNR<4 in thelow andtiny regimes of the co-
As shown in Fig.C.1, this analytical approximation givesvariance matrix, respectively. Notice that in td¢reme regime
less than 0.15% of relative error at low SNR compared to tled the covariance matrix the relative error increases ué6.2
exactpyg estimate and less than 0.05% for the associated un- Concerning the accuracy of the Bayesian approximate es-
certainty. This small departure quickly tends to O for a SMR timate o, mg Of the polarization fraction uncertainty (bottom
Thus these expressions may be used to speed up the compuianeel), the agreement is better than 0.1% for SMRand about
time when the canonical simplification may be assumed. 8% SNR-1 in the low regime, and 1% in thdiny regime.

and
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Because the uncertainty becomes small compared to the polar
ization fraction at high SNR, up to 8% of error ér, g is still
acceptable for this approximation.
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