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4 LERMA/LRA - ENS Paris et Observatoire de Paris, 24 rue Lhormond, 75231 Paris Cedex 05, France
5 Institut d’Astrophysique Spatiale, CNRS (UMR8617) Université Paris-Sud 11, Bâtiment 121, Orsay, France
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ABSTRACT

With the forthcoming release of high precision polarization measurements, such as from thePlanck satellite, it becomes critical to
evaluate the performance of estimators for the polarization fraction and angle. These two physical quantities suffer from a well-known
bias in the presence of measurement noise, as has been described in part I of this series. In this paper, part II of the series, we explore
the extent to which various estimators may correct the bias.Traditional frequentist estimators of the polarization fraction are compared
with two recent estimators: one inspired by a Bayesian analysis and a second following an asymptotic method. We investigate the
sensitivity of these estimators to the asymmetry of the covariance matrix which may vary over large datasets. We presentfor the first
time a comparison among polarization angle estimators, andevaluate the statistical bias on the angle that appears whenthe covariance
matrix exhibits effective ellipticity. We also address the question of the accuracy of the polarization fraction and angle uncertainty
estimators. The methods linked to the credible intervals and to the variance estimates are tested against the robust confidence interval
method. From this pool of polarization fraction and angle estimators, we build recipes adapted to different use-cases: we provide the
best estimators to build a mask, to compute large maps of the polarization fraction and angle, and to deal with low signal-to-noise data.
More generally, we show that the traditional estimators suffer from discontinuous distributions at low signal-to-noise ratio, while the
asymptotic and Bayesian methods do not. Attention is given to the shape of the output distribution of the estimators, andis compared
with a Gaussian distribution. In this regard, the new asymptotic method presents the best performance, while the Bayesian output
distribution is shown to be strongly asymmetric with a sharpcut at low signal-to-noise ratio. Finally, we present an optimization of
the estimator derived from the Bayesian analysis using adapted priors.

Key words. Polarization – Methods: data analysis – Methods: statistical

1. Introduction

The complexity of polarization measurement analysis has been
described bySerkowski(1958) when discussing the presence of
a systematic bias in optical measurements of linear polarization
from stars, and then byWardle & Kronberg(1974) addressing
the same issue in the field of radio astronomy. The bias of polar-
ization measurements happens when one is interested in the po-
larization intensityP ≡

√

(Q2 + U2) or the polarization fraction
p ≡ P/I and the polarization angleψ = 1/2 atan(U/Q) (where
I, Q andU are the Stokes parameters), quantities which become
systematically biased in the presence of noise. Working with the
Stokes parametersQ andU as far as possible avoids this kind
of bias. Once a physical modeling ofp andψ is available, and
can be translated intoQ andU, a likelihood analysis can be per-
formed directly on the Stokes parameters. For the other cases,
where no modeling is available,Simmons & Stewart(1985) pro-
posed the first compilation and comparison of methods to deal
with the problem of getting unbiased polarization estimates of
the polarization fraction and angle, with their associateduncer-
tainties. ThenNaghizadeh-Khouei & Clarke(1993) extended the
work of Simmons & Stewart(1985) to the characterisation of
the polarization angle uncertainties, andVaillancourt(2006) pro-
posed a method to build confidence limits on polarization frac-
tion measurements. More recently,Quinn(2012) suggested us-

ing a Bayesian approach to get polarization estimates with low
bias. In all these studies the authors made strong assumptions:
no noise on the intensityI and no correlation between theQ and
U components, which were also assumed to have equal noise
properties.Montier et al.(hereafter PMA I,2013 in preparation)
have quantified the impact of the asymmetry and the correlation
between theQ andU noise components on the bias of the polar-
ization fraction and angle measurements. They have shown that
the asymmetry of the noise properties can not be systematically
neglected as is usually done, and that the uncertainty of thein-
tensity may significantly affect the polarization measurements in
the low signal-to-noise (SNR) regime.

In the context of the new generation of polarization data,
such asPlanck1 (Planck Collaboration I 2011), Blast-Pol (The
Balloon-borne Large Aperture Submillimeter Telescope for
Polarimetry, Fissel et al. 2010), PILOT (Bernard et al. 2007)
or ALMA ( Pérez-Sánchez & Vlemmings 2013), which benefit
from a much better control of the noise properties, it is essential
to take into account the full covariance matrix when deriving the

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states (in particularthe lead
countries France and Italy), with contributions from NASA (USA) and
telescope reflectors provided by a collaboration between ESA and a sci-
entific consortium led and funded by Denmark.
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polarization measurement estimates. In recent works no correc-
tion for the bias of the polarization fraction were applied (e.g.
Dotson et al. 2010), or only high SNR data were used for anal-
ysis (>3) to avoid these issues (e.g.Vaillancourt & Matthews
2012). Two issues are immediately apparent. First, this choice
of the SNR threshold may not be relevant for all measurements,
and the asymmetry between the orthogonal Stokes noise com-
ponents could affect the threshold choice. Secondly, the ques-
tion remains of how to deal with low signal-to-noise data. Using
simply the measurements of the polarization parameters (wewill
call them the “naı̈ve” ones) as estimators of the true valuesleads
to very poor performance, as they lack any information on the
noise power. Instead, we would like to perform some transfor-
mation on the polarization parameters, in order to remove bias
and improve the variance.

This work is the second of a series on the ’Analysis of po-
larization measurements’. Its aim is to describe how to recover
from a measurement (p, ψ) the true polarization fractionp0 and
polarization angleψ0 with their associated uncertainties, taking
into account the full covariance matrixΣ. We will compare the
performance of the various estimators available, and studythe
impact of the correlation and ellipticity of the covariancema-
trix on these estimates. We stress that we adopt a frequentist
approach to investigate the properties of these estimators, even
when dealing with the method inspired by the Bayesian analy-
sis. This means that the estimators are defined as single value es-
timates, instead of considering the probability density function
(pdf) as the proper estimate, as it is usually done in Bayesian
methods. The performance of these estimators will be evaluated
using three main criteria: the minimum bias, the smallest risk
function, and the shape of the distribution of the output esti-
mates. The choice of the most appropriate estimator may vary
with the application at hand, and a compromise among them
may be chosen to achieve good overall performance. Throughout
this work we will make the following two assumptions: i) circu-
lar polarization is assumed to be negligible, and ii) the noise on
Stokes parameters is assumed to be Gaussian. We also define
four regimes of the covariance matrix to quantify its asymmetry,
in terms of effective ellipticity (εeff) as described in PMA I: the
extreme (1<εeff<2), thelow (1<εeff<1.1), thetiny (1<εeff<1.01)
and the canonical (εeff=1) regimes.

The paper is organized as follows: we first review in Sect.2
the expression and the limitations of the polarization estimators,
which are extended to take into account the full covariance ma-
trix. We discuss in Sect.3 the meaning of the polarization uncer-
tainties and we present the different uncertainty estimators. We
then compare the performance of the estimators of the polariza-
tion fraction in Sect.4, and of the polarization angle in Sect.5.
In Sect.6, we discuss some aspects of the problem when the to-
tal intensityI is not perfectly known. We conclude with general
recipes in Sect.7.

2. Polarization estimators

Early work on polarization estimators was based on theRice
(1945) distribution which provides the probability to find a mea-
surementp, for a given true valuep0 and the noise estimateσp of
the Q andU Stokes parameters. The noise values of the Stokes
parameters were assumed to be equal (σp=σQ/I0=σU/I0), and
the total intensity was assumed to be perfectly known,I = I0. As
we would like to include the full covariance matrix, we use the
generalized expression of the pdf from PMA I, which provides
the probability to get the measurements (I,p, ψ), given the true
values (I0, p0,ψ0) and the covariance matrixΣ. Following the no-
tations of PMA I, the expression of the pdf in 3D, including the
intensity terms, denotedf (I, p, ψ|I0, p0, ψ0, Σ), is given by Eq.1,
and the pdf in 2D,f2D(p, ψ|I0, p0, ψ0, Σp), by Eq.2 when the in-
tensity I0 is assumed to be perfectly known. We also note the
introduction of the covariance matrix reduced in 2D,
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whereε = σQ/σU is the ellipticity andρ = σQU/σQσU is the
correlation between theQ andU noise components, leading to
an effective ellipticity given by:

εeff =

√

√

1+ ε2 +
√

(ε2 − 1)2 + 4ρ2ε2

1+ ε2 −
√

(ε2 − 1)2 + 4ρ2ε2
. (4)

With these notations we have Det(Σp) = σ4
p,G and

σ2
p,G =

σ2
Q

I2
0

√

1− ρ2

ε
, (5)

which represents the equivalent radius of a circular Gaussian dis-
tribution with the same integrated area as the elliptical one. We
also defineσp=σQ/I0=σU/I0 whenεeff=1. Finally the pdfs ofp
andψ, fp and fψ, are obtained by marginalization off2D over
ψ and p, respectively. The expressions for the 1D pdfsfp and
fψ depend on the full set of initial parameters (I0, p0, ψ0) in the
general case, unlike the case under the canonical simplifications
(see appendix C of PMA I for fully developed analytical expres-
sions).

We describe below the various estimators of the polarization
fraction and angle listed in Table1. We stress that most of the
expressions derived in this work have been obtained when re-
stricting the analysis in the 2D case, assuming furthermorethat
the true intensityI0 is perfectly known, except for the Bayesian
estimator where we present a 3D development (see Sect.6).

2.1. Maximum Likelihood estimators

The Maximum Likelihood (ML) estimators are defined as the
values ofp0 andψ0 which maximize the pdf calculated at the

2
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Table 1. List of the acronyms of the estimators used in this work.
The parameters to which each estimator applies, independently
(/) or simultaneously (&), are given in the last column.

Acronym Description Parameters
ML Maximum Likelihood p / ψ
MP Most Probable in 1D p / ψ
MP2 Most Probable in 2D p & ψ
AS Asymptotic p
MAS Modified Asymptotic p
MAP Maximum A Posteriori p / ψ
MAP2 Maximum A Posteriori in 2D p & ψ
MB Mean posterior Bayesian I & p & ψ

polarization measurementsp andψ. When computed using the
2D pdf f2D to fit p0 andψ0 simultaneously, this estimator gives
back the measurements, whatever the bias and the covariance
matrix are, and is inefficient at correcting the bias of the data.

After marginalization of the pdff2D overψ, the 1D ML esti-
mator ofp0, p̂ML , is now defined by

0 =
∂ fp

∂p0

(

p | p0, ψ0, Σp

)

∣

∣

∣p0=p̂ML
. (6)

Note that the expression offp is independent of the measurement
ψ, but still theoretically depends on the true valueψ0 which is
unknown. In the canonical case (εeff=1) ψ0 disappears from the
expression, but it must be considered as a nuisance parameter in
the general case. One way to proceed in such a case is to com-
pute the mean of the solutions ˆpML for ψ0 varying in the range
−π/2 toπ/2. As already stressed bySimmons & Stewart(1985),
this estimator yields a zero estimate below a certain threshold of
the measurementp, which implies a strong discontinuity in the
resulting distribution of thisp0 estimator. Nevertheless, contrary
to the 2D ML estimators, thep ML estimator does not give back
the initial measurements, and is often used to build polarization
estimates.

Similarly, the 1D ML estimator ofψ0, ψ̂ML , is given after
marginalization off2D over p by

0 =
∂ fψ
∂ψ0

(

ψ | p0, ψ0, Σp

)

∣

∣

∣ψ0=ψ̂ML
. (7)

As mentioned for the ML estimator ˆpML , the unknown parameter
p0 in the above expression has to be considered as a nuisance pa-
rameter when solving Eq.7. We stress that because the canonical
simplifications have always been assumed in the literature,bias
on theψ measurements has not been previously considered and
theψ̂ML estimator has not yet been used and qualified to correct
this kind of bias. This analysis is done in Sect.5.

2.2. Most Probable estimators

The Most Probable estimators ofp0 andψ0 are the values for
which the pdf f2D reaches its maximum at the measurements
values (p,ψ). Notice that the Most Probable estimators ensure
that the measurement values (p,ψ) are the most probable values
of the pdf computed for this choice ofp0 andψ0, i.e.they take
the maximum probability among all possible measurements with
this set ofp0 andψ0. As a comparison the ML estimators ensure
that the measurement values (p,ψ) take the maximum probability
for this choice ofp0 andψ0, compared to the probability of the
same measurement values (p,ψ) for all other possible sets ofp0
andψ0.

The 2D Most Probable estimators (MP2), ˆpMP2 and ψ̂MP2,
are defined as the values ofp0 andψ0 simultaneously satisfying
the two following relations:

0 =
∂ f2D
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(
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)

∣

∣

∣

∣

∣

∣

p0 = p̂MP2

ψ0 = ψ̂MP2

. (9)

These relations can be solved, using the fully developed expres-
sion of f2D including the terms of the inverse matrixΣ−1

p , as pro-
vided in AppendixA. When canonical simplifications are as-
sumed, this yields

ψ̂MP2 = ψ ,

p̂MP2 =

{

(p − σ2
p/p) for p > σp

0 for p ≤ σp
, (10)

as found inQuinn(2012). We observe that the MP2 estimate of
the polarization fraction is systematically lower than themea-
surements, so that this estimator tends to over-correctp, as it
will be shown in Sect.4.

After marginalization overp or ψ, the 1D Most Probable
(MP) estimators, ˆpMP and ψ̂MP, are defined independently by:

0 =
∂ fp

∂p

(

p | p0, ψ0, Σp

)

∣

∣

∣p0=p̂MP
(11)

and

0 =
∂ fψ
∂ψ

(

ψ |p0ψ0, Σp

)

∣

∣

∣ψ0=ψ̂MP
. (12)

The 1D and 2D estimators are not expected to provide the same
estimates. Under the canonical assumptions, the MP estimator
of p is commonly known as the Wardle and Kronberg’s (Wardle
& Kronberg 1974) estimator.

As mentioned earlier, the MP estimator yields a zero esti-
mate below a certain threshold ofp (Simmons & Stewart 1985),
which implies a strong discontinuity in the resulting distribution
of these estimators for low SNR measurements.

2.3. Asymptotic estimator

The Asymptotic estimator (AS) of the polarization fractionp is
usually defined in the canonical case by

p̂AS =

{

√

p2 − σ2
p p > σp

0 p ≤ σp

. (13)

The output distribution of the AS estimator appears as the
asymptotic limit of theRice(1945) distribution whenp/σp tends
to∞, just as the ML and MP estimators, and given by

pdf
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)
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, (14)

whereN(µ, σ) denotes the Gaussian distribution of meanµ and
varianceσ2. As with the previously presented estimators, this
one suffers from a strong discontinuity at ˆpAS=0.

In the general case, when the canonical simplification is not
assumed, it has been shown byPlaszczynski et al.(2014, here-
after P14) that the expression of the asymptotic estimator can

3
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Fig. 1. Distributions of p̂ estimates obtained with the standard
estimators: naı̈ve (black), ML (blue), MP (light green), MP2
(green) and AS (red). We assume the covariance matrix to be
canonical, and a SNR ofp0/σp=1.

be extended to a general expression by changing the termσ2
p in

Eq.13 into a ’noise-bias’ parameterb2 defined by

b2 =
σ′2U cos2(2ψ0 − θ) + σ′2Q sin2(2ψ0 − θ)

I2
0

, (15)

whereθ represents the position angle of the iso-probability bi-
variate distribution, andσ′2U , σ

′2
Q the rotated variances
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σ′2Q = σ2
Q cos2 θ + σ2

U sin2 θ + ρσQσU sin 2θ , (17)

σ′2U = σ2
Q sin2 θ + σ2

U cos2 θ − ρσQσU sin 2θ . (18)

andψ0 is the true polarization angle, which can be approximated
asymptotically by the naı̈ve measurementψ or, even better, by
the estimatêψML of Sect.2.1. It has been shown that this equiv-
alent ’noise-bias’b2 ensures the minimal bias of ˆpAS.

2.4. Discontinuous estimators

The estimators of ˆp introduced above (ML, MP and AS) exhibit
a common feature: below some cutoff value the estimator yields
exactly zero. This means that the estimator distribution isdis-
continuous and is a mixture of a discrete one (at ˆp=0) and a con-
tinuous one (for ˆp > 0), This type of distribution is illustrated
in Fig. 1 for a SNR p0/σp=1 and a canonical covariance ma-
trix. The distribution of the naı̈ve measurements is built using a
Monte-Carlo simulation, starting from true polarization param-
etersp0 andψ0. The other three distributions of ˆp are obtained
after applying the ML, MP and AS estimators. A non negligi-
ble fraction of the measurements provide null estimates of ˆp. As
shown in Fig.2, this fraction of null estimates reaches 40% at
low SNR with the MP and AS estimators, and more than 50%
with the ML estimator for SNR<1. It converges to 0% for SNR
>4.

If taken into account as reliable estimate of ˆp, null estimates
will somewhat artificially lower the statistical bias of thep̂ es-
timates compared to the true valuep0, as detailed in Sect.4. A
null value of these estimators should be understood as an indi-
cator of the low SNR of this measurement, which has in fact to

0 1 2 3 4 5
p0/σp

0

10

20

30

40

50

60

70

  
[%

]

ML
MPMP2 AS

Fig. 2. Statistical fraction of null estimates of ˆp provided by the
ML, MP, MP2 and AS estimators applied on Monte-Carlo mea-
surements, as a function of the SNR, in the canonical case.

be included into any further analysis as an upper limit value. In
practice, the user seldom has various realizations at hand.Using
these estimators then leads to a result with upper limits mixed
with non-zero estimates in the analysis. Such complications may
be especially hard to handle when studying polarized maps ofthe
interstellar medium. On the other hand, it would be disastrous to
omit those estimates in any statistical analysis, since weakly-
polarized points would be systematically rejected. To avoid such
complications, we explore below other estimators which avoid
this issue and lead to continuous distributions. This is especially
important in the range of SNR between 2 and 3, where the dis-
continuous estimators still yield up to 20% of null estimates.

2.5. Modified Asymptotic estimator

A novel powerful asymptotic estimator has been introduced by
Plaszczynski et al.(2014) to correct the discontinuous distribu-
tion of the standard estimators while still keeping the asymp-
totic properties. It has been derived from the first order devel-
opment of the Asymptotic estimator, which has been modified
to ensure positivity, smoothness and asymptotical convergence
at high SNR. The Modified Asymptotic (MAS) estimator is de-
fined as follows:

p̂MAS = p − b2 · 1− e−p2/b2

2p
, (19)

where the ’noise-bias’b2 is given by Eq.15and computed using
a polarization angle assessed from each sample using the asymp-
totic estimatorψ.

P14 also provides a sample estimate of the variance of the
estimator that is shown to represent asymptotically the absolute
risk function (defined in Sec.3.1) of the estimator:

σ2
p̂,MAS =

σ′2Q cos2(2ψ − θ) + σ′2U sin2(2ψ − θ)
I2
0

. (20)

This estimator focuses on getting a “good” distribution, that
transforms smoothly from a Rayleigh-like to a Gaussian one,the
latter being reached in the canonical case for an SNR of about2.

2.6. Bayesian estimators

The pdfs introduced in Sect.2 provide the probability to observe
a set of polarization measurements (I, p, ψ) given the true po-
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larization parameters (I0, p0, ψ0) and the covariance matrixΣ.
Because we are interested in the opposite, i.e. getting an estimate
of the true polarization parameters given a measurement andthe
knowledge of the noise properties, we use Bayes Theorem to
build the posterior distribution. The posterior pdfB is given in
the 3D case by

B(I0, p0, ψ0 | I, p, ψ,Σ) = (21)
f (I, p, ψ | I0, p0, ψ0, Σ) · κ(I0, p0, ψ0)

∫ +∞
0

∫ 1

0

∫ π/2

−π/2 f (I, p, ψ | I′0, p′0, ψ
′
0, Σ) κ(I

′
0, p′0, ψ

′
0) dI′0dp′0dψ′0

,

whereκ(I0, p0, ψ0) is the prior distribution, which represents the
a priori knowledge of the true polarization parameters and has
to be positive everywhere and normalized to 1 over the defi-
nition ranges ofI0, p0 and ψ0. When no a priori knowledge
is provided, we have to properly define a ’flat’ prior, or non-
informative prior, which encodes the ignorance of the prior. A
class of non-informative priors is given by the Jeffreys’ prior
(Jeffrey 1939) where the ignorance is defined under symmetry
transformations that leave the prior invariant. As discussed by
Quinn (2012) for the two dimensional case, this kind of prior
can be built as a uniform prior in cartesian space (Q0,U0) or in
polar space (p0, ψ0), both expressing the ignorance of location.
We will prefer the latter, uniform in polar space, which ensures
uniform sampling even for small values ofp0. While p0 andψ0
are only defined on a finite range ([0, 1] and [−π/2, π/2], respec-
tively), the intensityI0 may be infinite in theory, which leads to
an issue when defining the ignorance prior. In practice, an ap-
proximation of the ignorance prior forI0 will be chosen as a top-
hat centered on the measurementI and chosen to be sufficiently
wide to cover the wings of the distribution until it becomes neg-
ligible. Such uniform priors lead to the expression ofB given in
Eq. 23, where the normalization factor has been omitted. We
emphasize that the definition of the ignorance prior introduced
above becomes data-dependent, which is not strictly following
the Bayesian approach. Furthermore, the question of the defini-
tion range of the prior and the introduction of non-flat priors will
be discussed in Sect.4.3, in the context of comparing the perfor-
mance of the estimators inspired by the Bayesian approach.

Similarly, the posterior pdf in 2D (i.e., when the total inten-
sity is perfectly know,I = I0) is defined by

B2D(p0, ψ0 | p, ψ,Σp) =
f2D(p, ψ | p0, ψ0, Σp) · κ(p0, ψ0)

1
∫

0

+π/2
∫

−π/2
f2D(p, ψ|p′0, ψ′0, Σp) κ(p′0, ψ

′
0) dp′0dψ′0

.

(24)
The analytical expressions of the posterior pdfB2D with a

flat prior is given in Eq.25, where the normalization factors
have been omitted and the intensity has been assumed perfectly
known (I = I0). Illustrations of this posterior pdf are presented
in AppendixB. We also introduceBp andBψ the Bayesian pos-
terior pdfs of p andψ in 1D, respectively, and defined as the
marginalization of theB2D overψ andp, respectively.

We use the Bayesian posterior pdf in 2DB2D to build two
frequentist estimators: the MAP and the MB.

The MAP2 and MAP estimators in 2D and 1D, respectively,
are simply defined as the (p0, ψ0) values corresponding to the
maximum of the posterior pdf,B2D, andBp andBψ, respectively.
We recall that these estimators match exactly the ML estimators
of Sect.2 in one and two dimensions, respectively, when a flat
prior is assumed. Hence the MAP2 estimators yield back the po-
larization measurements, whereas the MAP estimators provide a
simple way to compute the ML estimates.

The Mean Bayesian Posterior (MB) estimators are defined
as the first order moments of the posterior pdf:

p̂MB ≡
∫ +π/2

−π/2

∫ 1

0
p0B2D(p0, ψ0 | p, ψ,Σp)dp0dψ0 (26)

and

ψ̂MB ≡
∫ ψ+π/2

ψ−π/2

∫ 1

0
ψ0B2D(p0, ψ0 | p, ψ,Σp)dp0dψ0 . (27)

Notice that in the definition of̂ψMB the integral overψ0 is per-
formed over a range centered on the measurementψ. This has
to be done to take into account the circularity of the posterior
pdf over theψ0 dimension. Note thatB2D(p0, ψ0 | p, ψ,Σp) =
B2D(p0, ψ0 + π | p, ψ,Σp).

We stress that the frequentist estimators inspired by a
Bayesian approach, ˆpMB and ψ̂MB , introduced above in the 2D
case can be easily extended to the 3D case by integrating the
pdf B(I0, p0, ψ0 | I, p, ψ,Σ) of Eq. 21 over theI, p andψ dimen-
sions. This is extremely powerful when the uncertainty of the
intensity I has to be taken into account in the estimate of the
polarization parameters, which is highly recommended in some
circumstances, such as a low SNR onI (<5) or the presence of
an unpolarized component on the line of sight (see Sect.6 and
PMA I for more details).

3. Uncertainties

3.1. Variance and risk function

It is important not to confuse the variance (notedV) of an estima-
tor with its absolute risk function (notedR). For any distribution
of the randomp variable the definitions are :

V ≡ E
[

(X − E[X])2
]

, (28)

R ≡ E
[

(X − X0)2
]

, (29)

whereE[X] is the expectation of the random variableX andX0
is the true value. Introducing the absolute bias inE[X] = X0 + B
and expanding both relations, the link between the varianceand
the absolute risk function is simply:

V = R − B2 . (30)

Therefore, for a constant absolute risk function, the variance
decreases with the absolute bias and both are equal when the
estimator is unbiased. The variance does not require knowing

B(I0, p0, ψ0 | I, p, ψ,Σ) ∝

√

Det(Σ−1)
2(π)3

exp










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


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







T

Σ
−1



















I − I0

p I cos(2ψ) − p0 I0 cos(2ψ0)
p I sin(2ψ) − p0 I0 sin(2ψ0)










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


















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



, (23)

B2D(p0, ψ0 | p, ψ,Σp) ∝ 1

πσ2
p,G

exp

















−1
2

[

p cos(2ψ) − p0 cos(2ψ0)
p sin(2ψ) − p0 sin(2ψ0)

]T

Σ
−1
p

[

p cos(2ψ) − p0 cos(2ψ0)
p sin(2ψ) − p0 sin(2ψ0)

]
















, (25)
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the true value of the random variable, which makes it useful to
provide an uncertainty estimate, but it has to be used extremely
carefully in the presence of bias. In such cases, the variance will
always underestimate the uncertainty.

Furthermore, it is known that the variance is not appropri-
ate for providing uncertainties with non-Gaussian distributions,
which is the case for the polarization fraction and angle. Insuch
circumstances, the confidence intervals (see Sect.3.3) are the
preferred method for obtaining robust uncertainties. The vari-
ance, however, is often used as a proxy of the uncertainty in the
high regime of the SNR. We will detail in Sect.4.5 and5.3 in
which conditions this can still be applied.

3.2. Posterior uncertainties

One of the main benefits of the Bayesian approach is to provide
simple estimates of the uncertainties associated with the polar-
ization estimates. One option is to build credible intervals around
the MAP estimates as first proposed byVaillancourt(2006), and
the other option is to use the variance of the pdf.

Given a polarization measurement (p, ψ) and the posterior
pdf B2D(p0, ψ0|p, ψ,Σp), the lower and upper limits of theλ%
credible intervals are defined as the lower and upper limits of p0
andψ0 ranging the iso-probability regionΩ(λ, p, ψ) over which
the integral ofB equalsλ%, so that

"
Ω(λ,p,ψ)

B2D(p0, ψ0 | p, ψ,Σp) dp0dψ0 =
λ

100
. (31)

These intervals, [plow
MAP2, pup

MAP2] and [ψlow
MAP2, ψ

up
MAP2], estimated

from the 2D expression ofB2D are defined around the MAP2 es-
timates ˆpMAP2 andψ̂MAP2, which are equal to the measurements
(p, ψ).

A similar definition can be given in the one-dimensional
case, which leads to different results. The lower and upper limits,
plow

MAP andpup
MAP, around ˆpMAP are defined as follows

∫ pup
MAP

plow
MAP

Bp(p0 | p, Σp) dp0 =
λ

100
, (32)

with the constraint that the posterior probability function is iden-
tical for plow

MAP and pup
MAP. Similarly, the lower and upper limits,

ψlow
MAP andψup

MAP, aroundψ̂MAP are given by

∫ ψ
up
MAP

ψlow
MAP

Bψ(ψ0 |ψ,Σp) dψ0 =
λ

100
. (33)

We recall that this integral has to be computed around the mea-
surement valuêψMAP to take into account the circularity of the
posterior pdf with the polarization angle. Notice that the credible
intervals built in 1D or 2D are not supposed to be identical, as
( p̂MAP2, ψ̂MAP2) and (p̂MAP, ψ̂MAP) are not equal in the general
case.

The second definition of the uncertainty comes from the sec-
ond moment of the 1D posterior probability density functionsBp
andBψ, as follows:

σ2
p,MB ≡

∫ 1

0
(p0 − p̂MB)2Bp(p0 | p, Σp) dp0 , (34)

and

σ2
ψ,MB ≡

∫ ψ+π/2

ψ−π/2
(ψ0 − ψ̂MB)2Bψ(ψ0 |ψ,Σp) dψ0 . (35)

The operation of subtraction between the two polarization angles
must be done with care, restricting the the maximum distanceto
π/2. At very low SNR, i.e. an almost flat uniform pdf, the un-
certainty reaches the upper limitσψ,MB ≤ π/

√
12 rad= 51.◦96.

We stress that these 1-σ estimates may not be associated with
the usual 68% confidence intervals of the normal distribution,
because of the asymmetrical shape of the posterior distribution
and because of the circularity of the angular variable.

3.3. Confidence intervals

So far we have considered point estimation of the truep0 value
which is somewhat tricky in the low SNR regime because of the
non-Gaussian nature of the estimator distribution.

A different approach, that takes into account the entire shape
of the distribution is to build confidence regions (or intervals),
which allows at some given significance level, to obtain bounds
on the true value given some estimator value.

Simmons & Stewart(1985) have built the so-called Neyman
“confidence belt” for the naı̈ve estimator in the canonical case.
PMA I proposed the construction of two-dimensional (p0, ψ0)
intervals, for the general covariance matrix case. The classical
construction suffers from a standard issue: at very low SNR the
confidence interval lies entirely in the unphysicalp < 0 region,
and both previous studies provide over-conservative regions.

P14 has implemented the Feldman-Cousins prescription
(Feldman & Cousins 1998) which is based on using a likelihood
ratio criterium in the Neyman construction. This allows build-
ing intervals that always lie in the physical region withoutever
being conservative. They provided these intervals for the MAS
estimator including analytical approximations to the upper and
lower limits for 68, 95 and 99.5% significance levels.

4. p̂ estimator performance

4.1. Methodology

We investigate in this section the capability at providing polar-
ization fraction estimates with low bias of the seven ˆp estima-
tors introduced in the previous sections: the naı̈ve measurements
p, the Maximum Likelihood (ML), the Most Probable (MP and
MP2), the Asymptotic (AS), the Modified Asymptotic (MAS)
and the Mean Bayesian Posterior (MB) estimators. Their perfor-
mance is first quantified in terms of relative bias and risk func-
tion of the resulting estimates. Given true polarization parame-
ters (p0, ψ0) and a covariance matrixΣp, we build a sample of
one million simulated measurements (p,ψ) by adding noise on
the true Stokes parameters using the covariance matrix. We de-
fine the relative bias and risk function onp as follows:

Biasp ≡
〈p̂〉 − p0

σp,G
and Riskp ≡

〈

( p̂ − p0)2
〉

σ2
p,G

, (36)

where p̂ is the polarization fraction estimate computed on the
simulated measurementsp, p0 is the true polarization fraction,
<> denotes the average computed over the simulated sample,
andσp,G is the estimate of the noise of the polarization fraction.
The choice ofσp,G to scale the absolute bias and risk function,
as a proxy of the ˆp uncertainty, is motivated by the fact that it
depends only on the effective ellipticity and not onψ0. Notice
that this choice can lead to a relative risk function fallingbe-
low 1 at low SNR, due to the fact thatσ2

p,G>Var in this regime.
The accuracy of thep estimators is also quantified regarding the
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Fig. 3. Comparison of the average relative bias (top), risk func-
tion (middle) and Jarque-Bera test (bottom) of the pure mea-
surements (naı̈ve, black), ML (dashed blue), MP (dashed light
green), MP2 (dashed green), AS (dashed red), MAS (orange)
and MB (pink) p̂ estimators in the canonical case, as a function
of the the SNRp0/σp. The dashed lines stand for the discontin-
uous estimators presenting a peak of their output distribution at
p̂=0.

shape of their output distributions. We use the Jarque-Beraesti-
mator (Jarque & Bera 1980) as a test of normality of the output
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and the MB (pink) ˆp estimators in the canonical case (εeff=1), for
three levels of the SNRp0/σp=1,2 and 5 (from top to bottom).
In the case of the MB estimator, we show two setups ofp0=1%
and 50% to illustrate the dependence of the output distribution
on thep0 value, due to the prior used in the Bayesian approach
( p̂MB ∈ [0, 1] so that ˆpMB/p0 ∈ [0, 1/p0]). The other estimators
are not sensitive to the true valuep0.

distribution, and defined by

JB =
n
6















µ2
3

µ3
2

+













µ4

µ2
2

− 3













2

/4















, (37)

7



Montier et al.: Polarization measurements analysis II

wheren is the number of samples andµi is the naı̈ve estimate
of the ith central moment of the distribution. This test is based
on the joint hypothesis of the skewness and the excess kurtosis
being zero simultaneously. A valueJB=0 means a perfect agree-
ment with thenormality to the 4th order, but does not prevent
departure from the normality at higher orders. ThisJB estimator
tends to aχ2 test with two degrees of freedom whenn becomes
large enough. Hence theJB has to satisfy the following condi-
tion JB < χ2

α, once chosen a significance levelα. For a signifi-
cance levelα=5% and 1%, we get the conditionsJB < 5.99 and
JB < 9.21, respectively.

4.2. Canonical case

We first assume the canonical simplification of the covariance
matrix (εeff=1). The relative Biasp and Riskp quantities are
shown on Fig.3 for the seven ˆp estimators. We recall that the
discontinuous estimators, shown in dashed line (ML (blue),MP
(light green), MP2 (green) and AS (red)), have an output distri-
bution presenting a strong peak at zero, which leads to artificially
lower the statistical relative Biasp when simply including null
values instead of using upper limits, as discussed in Sect.2.4.
Effectively these estimators show the lowest relative biases (top
panel of Fig.3) compared to the MAS (orange) and MB (pink)
estimators. Hence the ML and MP2 estimators seem to statis-
tically over-correct the data, below SNR=3. Consequently, the
ML, MP and AS p̂ estimators have to be used with an extreme
care to deal with null estimates. We suggest here to focus on the
two continuous estimators: MAS and MB.

MAS provides the better performances in terms of relative
bias over the whole range of SNR, while MB appears less and
less efficient at correcting the bias when the SNR tends to zero.
At larger SNR (>2), MB tends to slightly over-correct with a
small negative relative bias (2% ofσp) up to SNR∼5, while
MAS converges quickly to a null relative bias for SNR> 3.

The MB estimator clearly minimizes the risk function (in
the range 0.7<SNR<3.2), as expected for this kind of posterior
estimator. At larger SNR (>3.2) both MAS and MB have roughly
the same behavior, even if the risk function associated to MAS
appears slightly lower.

The resulting ˆpMB distribution is highly asymmetric at low
SNR (see upper panels of Fig.4), with a sharp cutoff at 0.8σp.
Moreover, we note that the output ˆpMB distribution depends not
only on the SNRp0/σp, but also on the value of the true po-
larization fractionp0. We report two cases,p0=1% (pink) and
50% (dotted pink) in Fig.4. This comes from the prior of the
Bayesian method, which bounds the estimate ˆpMB between 0
and 1. As a consequence, thenormality of the Bayesian distribu-
tion is extremely poor, as pointed in the bottom panel of Fig.3,
where we show that the JB test of the MB estimator is larger
than 9.21 (consistent with aχ2

0.01 test) over the whole range of
SNR explored here (up to SNR∼5). On the contrary, the result-
ing p̂MAS distribution of Fig.4 looks much better, mimicking
the Rayleigh distribution for low SNR and going neatly to the
Gaussian regime, as pointed out by P14. The JB of the MAS es-
timator is the lowest for SNR>3 (see bottom panel of Fig.3),
illustrating the consistency between the MAS distributionand
the normal distribution. Notice that all distributions, naı̈ve, MAS
and MB, converge to a Gaussian distribution at higher SNR.

0 1 2 3 4 5
p0/σp

-0.5

0.0

0.5

1.0

1.5

B
ia

s p

Naive

κ ∈ [0,100p0]
κ ∈ [0,10p0]
κ ∈ [0, 5p0]
κ ∈ [0, 3p0]
κ ∈ [0, 2p0]

Fig. 5. Impact of the flat prior interval upper limit on the relative
Biasp performance of the MB estimator.
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Fig. 6. Illustration of the improvement of the MB estimator per-
formances when using evolved priors. Starting from an inputdis-
tribution of true values (p0,i), shown in Fig.7, the statistical rela-
tive bias is shown for four estimators: naı̈ve, MAS, and MB with
three different priors.

4.3. Impact of the Bayesian prior

The choice of the prior is crucial in the Bayesian approach, and
we have seen how it is hard to define a non-informative prior in
Sect.2.6. The MB estimator studied up to now assumes a flat
prior in p0 between 0 and 1, equivalent to no a priori knowl-
edge. In practice when dealing with astrophysical data, we can
bound the expected true values of the polarization fractionbe-
tween much tighter limits. We know, for example, that the po-
larization fraction of the synchrotron signal peaks at∼75%, but
never reaches this maximum due to line-of-sight averaging.The
maximum polarization fraction of the dust thermal emissionis
still a debated issue, but is unlikely to be larger than 20 to 30%
(Benoı̂t et al. 2004). Appropriate priors can then be introduced
to take into account this a priori physical knowledge into the MB
estimator.

We have already observed in Sect.4.2 how the output dis-
tribution of the p̂MB estimates is impacted by the value of the
true p0 (1% or 50%) due to the upper limit (p0<1) of the prior,
see Fig.4. We explore here a family of simple priors defined by
κ(p′0) = 1/(kp0) for p′0 ∈ [0, kp0] and 0 otherwise, where we ad-
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Fig. 7. Output distributions of the ˆp estimates starting from a dis-
tribution of independent true values (p0,i centered around 10% of
polarization fraction (grey shaded region) shown at three levels
of noise characterized by the mean SNR〈p0,i〉/σp,G=1, 2 and
3 (top, middle and bottom, respectively). The naı̈ve (black) and
MAS (orange) output distributions are compared to the MB out-
put distributions obtained with three different priors: flat prior
between 0 and 1 (solid pink), set to the naı̈ve output distribution
(dotted pink) and set to the true input distribution (dashedpink).
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just the upper limit of the prior as a function of the expectedtrue
value. We performed Monte Carlo simulations in the canonical
case by setting the true value atp0=1% and varying the upper
limit of the prior (k = 2, 3, 5, 10, and 100). The statistical rela-
tive Biasp of the MB estimators associated with each version of
the priors are shown on Fig.5. The smaller the upper limit, the
lower the relative Biasp, as expected. However the upper limit
of the prior has to be very constraining (k ≤ 3) to observe a de-
crease of the relative bias in the range of SNR between 1.5 and3.
This requires very good a priori knowledge. Using more relaxed
priors (k ≥ 5) will not improve significantly the performances of
the MB estimator at SNR>1.

When dealing with maps of polarized data, an interesting ap-
proach would be to start by estimating the histogram ofp values
in the map and use it as a prior into our MB estimators, even if
this moves away from a strictly Bayesian approach again by in-
troducing a data-dependent prior. As a first guess, the priorcan
be set to the histogram of the naı̈ve estimates of ˆp, but a more so-
phisticated prior would be an histogram ofp deconvolved from
the errors, using a Maximum Entropy method for example.

We illustrate the performance of the MB estimator with this
kind of prior on Figs.6 and7. We start with a sample of 10 000
independent true values (p0,i) ranging between 0 and 20% of po-
larization fraction, with a distribution shown as the grey shaded
histogram in Fig.7 on which a random realization of the noise is
added with the same noise level over the whole sample, leading
to varying SNRs through the sample. We explore two extreme
cases of the Bayesian prior, corresponding to i) an idealistic per-
fect knowledge of the input distribution and ii) its first guess
provided by the naı̈ve estimates. Hence the prior is chosen as
the input distribution of the truep0,i values (dashed pink) and
the output distribution of the naı̈ve estimates (dotted pink). We
compare the performance of these two new versions of the MB
estimators with the naı̈ve (black), MAS (orange) and flat prior
MB (solid pink) estimators, in terms of relative bias in Fig.6.

We stress that the relative bias values are not defined as pre-
viously done in Sect.4.1, but refer now to the mean of the dif-
ference between each sample of true valuep0,i and its associ-
ated estimate ˆpi. The pink shaded region provides the domain
of the possible improvement of the MB estimators, by setting
an appropriate prior as close as possible to the true distribution.
The improvements may seem spectacular, leading to a statistical
relative bias close to zero at all SNRs in the best configuration
(dashed line). Caution is warranted, however, when lookingat
the output distributions associated with these new MB estima-
tors on Fig.7, shown for three levels of the noise chosen so that
the mean SNR isp0/σp,G=1, 2 and 3. At low SNR (≃1), the out-
put distribution of the MB estimator with aperfect prior (dashed
line) is extremely peaked around the mean value of the sam-
ple p0, but does not match the input distribution at all. Even at
higher SNR (2-3), the three MB output distributions suffer from
the same feature already mentioned in Sect.4.2, a sharp cutoff at
low values ofp. Using a prior that is too constraining will yield
dramatic cuts of the extremes values of the input distribution.
By contrast, the naı̈ve prior is quite effective in that it allows the
MB estimator to recover the upper limit of the input distribution
reasonably well at a SNR&2, while the other estimators fail to
do so at such low SNR.

The performance of the MB estimator with an evolved prior
will also strongly depend on the initial true distribution of the po-
larization fraction. For example we duplicated the analysis made
above with a different initial distribution (p0,i) centered on 20%
of polarization fraction instead of 10% (see Fig.8). In this con-
figuration, the output distributions of the Bayesian estimators are

not as much affected by the cut-off at low p as observed in Fig7.
The MB estimator with the naı̈ve prior appears extremely effec-
tive, even at low SNR (∼2).

4.4. Robustness to the covariance matrix

In PMA I we have discussed extensively the impact of the asym-
metry of the covariance matrix on the measurements of the po-
larization fraction. In particular, we have stressed that once the
effective ellipticity departs from the canonical case, the bias on
the polarization fraction now depends on the true polarization
angleψ0, which remains unknown. We would like to explore in
this section how the performance of the various ˆp estimators are
sensitive to the effective ellipticity of the covariance matrix.

We illustrate the dependence of the ˆp estimators on the true
polarization angleψ0 in Fig. 9. Given true polarization parame-
ters (p0=0.1 andψ0 ranging between -π/2 andπ/2) and a covari-
ance matrix characterized byεeff=2 andθ=0 (left panel), and a
SNR p0/σp,G=1, we first set the polarization measurements (p,
ψ) to the maximum of the pdff2D (left panel). We apply then the
six estimators on these measurements to get the ˆp estimates for
eachψ0 between -π/2 andπ/2. With this particular setting, the
MP2 (green) estimator gives back the true polarization fraction
p0 whatever the polarization angleψ0, by definition of this es-
timator and the choice of the measurement in this example. On
the contrary, the MP (light green) and the ML (blue) estimators
are extremely sensitive to the true polarization angleψ0, yield-
ing estimates spanning between 0 and 1.4p0, while the AS (red)
and MAS (orange) estimators yield results spanning between1
to 1.8p0 whenψ0 varies. The MB (pink) estimator provides sta-
ble estimates in the range 1.4 to 1.5p0, which is consistent with
the fact that the posterior estimators minimize the risk function.
This of course has a cost, and the MB estimator provides here
the largest averaged relative bias compared to the other meth-
ods, with the exception of the naı̈ve (black) one.

More generally, for each value of the true polarization angle
ψ0 between−π/2 andπ/2, we build a sample of 10 000 simu-
lated measurements using the same setup of the covariance ma-
trix as above. Then we compute the statistical average of the
naı̈ve, MAS and MB estimates (black, orange and pink lines,
respectively) obtained on this simulated sample, with their as-
sociated 1-σ dispersion (black, orange and pink dot-dash lines,
respectively), as shown in the right panel of Fig.9. The averaged
MB estimates present the same characteristic as shown on the
left panel. By contrast, the averaged MAS estimates are inde-
pendent from the unknownψ0 true polarization angle. The MAS
1-σ dispersion is, however, slightly larger than the MB 1-σ dis-
persion.

The impact of the effective ellipticity of the covariance ma-
trix is then analysed statistically for the MAS and MB estimators
only in Fig. 10. Instead of looking at the accuracy of the ˆp es-
timators around one particular measurement (the most probable
one) as done in Fig.9, for each set of true polarization parame-
ters (p0=0.1,ψ0), withψ0 ranging between -π/2 andπ/2, we per-
form Monte Carlo simulations. For each set of true polarization
parameters, we build a sample of 100 000 simulated measure-
ments on which we apply the MAS and MB estimators to finally
compute the statistical relative Biasp and Riskp, as defined in
Sect.4.1. This is done for various setups of the covariance matrix
chosen to cover the whole range of theextreme andlow regimes.
The minimum and maximum relative Biasp and Riskp are then
computed over the whole range ofψ0 and effective ellipticity
εeff in each regime of the covariance matrix to build the shaded
regions of Fig.10 for the MAS (top panels) and MB (bottom

10
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naı̈ve, MAS and MB estimators (right panel). The full lines stand for the mean, and the dot-dash lines for the 1-σ dispersion.

panels) ˆp estimators. The domain of the naı̈ve measurements in
each regime is repeated in grey shaded regions, while we show

the result in orange shaded regions for the MAS and pink shaded
regions for the MB estimators. It appears that the relative Biasp
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Fig. 10. Impact of the effective ellipticity of the covariance matrix on the statistical relative Biasp (left column) and Riskp (right
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p̂ are

the lower and upper limits of each estimator: credible intervals
ML /MAP (blue), a posteriori variance MB (pink) and MAS vari-
ance (orange). It is plotted as a function of the SNRp0/σp,G.
Monte-Carlo simulations have been carried on inlow regime of
the covariance matrix. The Gaussian level at 68% is shown as a
dashed line.
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Fig. 12. Same as Fig.11but plotted as a function of the measured
SNR p̂/σp̂.

of the MAS estimator is less impacted by a change of ellipticity
for SNR>2 than the MB estimator, even in theextreme regime
of the covariance matrix. The dependance of the risk function on
the ellipticity is almost identical for the two estimators around
their respective canonical curve. The thickness of the riskfunc-
tion region is slightly smaller for the MB estimator than forthe
MAS estimator at low SNR (<3), while it is the opposite for
larger SNR (>3), as already observed in the canonical case.

4.5. Polarization fraction uncertainty estimates

The questions of estimating the polarization uncertainties and
how uncertainties are propagated are essential in reliablepolar-
ization analysis. The best approach consists of building the con-
fidence intervals to retrieve robust estimates of the lower and
upper limits of the 68, 95 or 99.5% intervals, which is valid even
when the distribution is not Gaussian. As already mentionedin
sect.3.3, building optimized confidence intervals including the

full knowledge of the covariance matrix may represent a chal-
lenge for large samples of data. Hence P14 provides analytic
approximations of such confidence intervals for the MAS esti-
mator, which can be extremely useful.

A commonly used approach, however, is to provide the 1-σ
dispersion, assuming the Gaussian distribution of the ˆp estimates
as a first approximation. We have already stressed the difference
between the risk function and the variance, and the limitations
of the latter to derive robust uncertainties in the presenceof bias.
We compare below the performance of the usual uncertainty es-
timates introduced in Sect.3 to provide robust 68% tolerance
intervals: MAS variance, credible intervals MAP and 1-σ a pos-
teriori dispersion MB.

Starting with a truep0 value, we have performed Monte-
Carlo simulations in thelow regime of the covariance matrix, by
exploring the whole range of the true polarization angleψ0, with
an SNR spanning from 0 to 30. For each simulated measure-
ment (p,ψ), we compute the ˆp estimates with their uncertainty
estimatorsσp̂. We then compute the a posteriori probability to
find the truep0 inside the interval [ ˆp−σlow

p̂ , p̂+σup
p̂ ]. In the case

of the MAP estimator, the lower and upper limits of the inter-
val, p̂MAP − σlow

p̂MAP
and p̂MAP + σ

up
p̂MAP

, are set toplow
MAP andpup

MAP,
respectively, (withλ=68 as defined in Sect.3.2), which can be
asymmetric. We report the results compared to the expected 68%
level in Fig.11. We recall that this comparison approach is fre-
quentist again, while anything derived from the Bayesian pdf is
used to build single estimates and to be compared with the con-
fidence intervals.

As pointed out in Sect.3.1, the theoretical variance associ-
ated with the MAS estimator still tends to provide slightly lower
probabilities than the expected 68% at low SNR, mainly due to
the asymmetry of the distribution. The variance associatedto the
MB estimator, which is more biased at low SNR, gives extremely
low probability to recover the truep0 value at low SNR (< 0.5).
By contrast, it provides probabilities greater than 68% (ashigh
as 90%) for SNR between 0.5 and 2. This comes from the fact
that the MB variance statistically over-estimates by a factor of 2
the exact variance of the a posteriori ˆpMB distribution at low SNR
(<2). Thus the MB uncertainty estimator yields conservative es-
timates of the uncertainty for SNR>0.5. At high SNR (>3) all
these uncertainty estimators provide compatible estimates of the
probability close to 68%.

Because the true SNR is always unknown (see Sect.4.6), the
probability to find the truep0 value in the confidence interval is
also shown as a function of the measured SNR in Fig.12. This
much more realistic picture shows that the variance estimates
provide reliable probability for measured SNR larger than∼6.

4.6. Polarization signal-to-noise ratio

In any real measurement, the true SNRp0/σp,G remains un-
known. From observations, we only have access to the mea-
sured SNR, which can be obtained by the ratio ˆp/σp̂ associated
with each estimator, or by a confidence interval approach (see
P14), which is much more robust at a low true SNR. We show
in Fig. 13 the accuracy of the measured SNR compared to the
true SNR for the four following methods: the naı̈ve estimateplus
Classical estimate of the uncertainty, the MAS estimate with the
associated variance, the MB estimate and its variance, and the
ML estimate with the MAP credible intervals. We observe that
all methods agree only for a true SNR larger than 3, giving back
the true SNR in this regime. Below this true SNR, the measured
SNR becomes extremely biased whatever the method used, due
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regime.

to the bias of the measurement ˆp itself, but also due to the bias in-
troduced by the variance as an estimate of the uncertainty when
the output distribution departs from the Gaussian regime.

5. ψ̂ estimator performance

5.1. Methodology

As pointed out by PMA I, once the covariance matrix is not
canonical (εeft > 1), a bias of the polarization angle measure-
mentsψ appears with respect to the true polarization angleψ0.
This bias may be positive or negative. We propose to compare
the accuracy at correcting the bias of the polarization angle of
the four followingψ̂ estimators: naı̈ve measurementsψ, the ML
ψ̂ML (which is equivalent to the MAP̂ψMAP), the MP2ψ̂MP2 and
the MB ψ̂MB .

Similarly to thep̂ estimators, we define the relative bias and
risk function onψ̂ as follows:

Biasψ ≡

〈

ψ̂ − ψ0

〉

σψ,0
and Riskψ ≡

〈

(ψ̂ − ψ0)2
〉

σ2
ψ,0

, (38)

whereψ̂ is the polarization angle estimate computed on the sim-
ulated measurementsψ, ψ0 is the true polarization fraction and
angle,<> denotes the average computed over the simulated sam-
ple, andσψ,0 is the standard deviation of the simulated measure-
ments.

5.2. Performance Comparison

We explore the performance of the fourψ̂ estimators at four
SNR=0.5, 1, 2 and 5 (from top to bottom) and a covariance ma-
trix with an effective ellipticity εeff=2, on Fig.14. The relative
Biasψ (left panels) and Riskψ (right panels) are plotted as a func-
tion of the true polarization angleψ0. While the MB (pink) esti-
mator seems to provide the least biased estimates with the lowest
risk function at low SNR (<1), it becomes the least efficient at
higher SNR. On the contrary, the ML (or MAP too) presents
poor performances at low SNR, but provides impressive results

at high SNR, reducing the relative bias close to zero at a SNR
of 5. The MP2 estimator does not present any satisfactory prop-
erties: strong relative bias and risk function in almost allcases.
Hence thisψ̂MP2 estimator can be ruled out.

An overview of the performance of the fourψ̂ estimators as
a function of the SNR is shown on Fig.15, after marginalization
over all the possible values of theψ0 parameter. As the relative
Biasψ can be positive or negative depending onψ0, we compute
the average of the absolute value of the relative bias,< |Biasψ| >
as an indicator of the statistical performance of the estimators
whatever the true polarization angle is. We observe again onthe
left panel of Fig.15 that the MB (pink) estimator provides the
lowest relative bias for SNR<1.2, while the ML is especially
powerful for SNR>2. All estimators provide almost the same
results for the average Riskψ (left panel), even if MB appears
slightly better than the others, including the naı̈ve measurements.

The examples provided above have been computed with an
extreme effective ellipticity (εeff=2) to emphasize the observa-
tions, but the same conclusions can be reached for lower values
of the ellipticity. See, for example, the case withεeff=1.1 shown
in dotted line in Fig.15. In the low regime of the covariance
matrix, however, the statistical relative bias onψ is very small,
typically smaller than 5% of the dispersion, so that the needto
correct the bias onψ remains extremely limited.

5.3. Polarization angle uncertainty estimates

Once a reliable estimate ofψ̂ based on the MB and ML (MAP)
estimators has been obtained, we would like to build a robustes-
timate of the associated uncertaintiesσψ̂, which should be done
by building confidence intervals. Because this last step could
represent important efforts in some cases, for example when
dealing with the full covariance matrix, we detail other methods
below.

One option is to use the uncertainty associated with the MB
estimator,σψ̂,MB (see Eq.35). Another is to use the credible in-
tervals built around the MAP estimates on the posterior pdf.We
can keep the lower and upper limits,ψlow

MAP andψup
MAP computed

for a 68% credible interval, or build a symmetrized uncertainty:

σψ̂,MAP =
1
2

(

ψ
up
MAP − ψ

low
MAP

)

. (39)

A third option consists in taking the classical uncertaintygiven
in PMA I, derived from the derivatives of the polarization param-
eters. PMA I has already shown that thisψ̂ uncertainty estimator,
associated with the naı̈ve measurements, tends to systematically
underestimate the true dispersion of theψ distribution.

We first assume the canonical simplification of the covari-
ance matrix, which implies that theψ measurements are not sta-
tistically biased. We also recall that under such assumptions the
ML (MAP) and MB ψ̂ estimators will give back the measure-
mentsψ. We study, however, how the uncertainties associated
with these two estimators can be used to get a reliable estimate
of the uncertaintyσψ̂. Starting from a true (p0, ψ0), we simu-
late a sample of 50 000 simulated measurementsp, ψ at a given
SNR p0/σp, on which we apply the two ML (MAP) and MB
ψ̂ estimators and their associated uncertaintyσψ̂,MAP andσψ̂,MB,
respectively. From this simulated set we can derive the averaged
σψ̂ for both methods. Because all estimators give back the mea-
surements in the canonical case, we compare the MAP (blue)
and MB (pink) polarization angle uncertainties estimatorsdi-
rectly to the true dispersion (black) of theψ measurements in
Fig. 16. We also repeat the average of the classical estimates
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The covariance matrix is set toε = 2 andρ = 0 (εeff = 2).
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MB σψ̂,MB (pink) estimators. The covariance matrix is assumed
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(dashed line) of the polarization uncertainty estimate, which has
been shown by PMA I (see their Fig. 7) to underestimate by a
factor of two the true uncertainty at low SNR (<2). We observe
that the MAP estimatorσψ̂,MAP provides an extremely good es-
timate of the polarization angle uncertainty compared to the true
one over the whole range of SNR, even if slightly conservative
up to a SNR of 5. The MB estimatorσψ̂,MB provides consistent
estimates of the uncertainty from intermediate SNR∼1, but still
underestimates at lower SNR (<1).

In the non-canonical case a statistical bias onψ appears,
which can be partially corrected using the appropriateψ̂ esti-
mators (see Sect.5.2), leading to an output distribution of the
ψ̂ estimates. We quantify the performance of theψ uncertainty
estimators via Monte-Carlo simulations, as done for the ˆp uncer-
tainties. Starting from a set of polarization parameters (p0=0.1,
-π/2<ψ0<π/2), we build a sample of simulated measurements
(p, ψ) using various setups of the covariance matrix in thelow
regime, and various SNRs ranging from 0 to 30. We then com-
pute the a posteriori probability to find the true polarization angle
ψ0 in the interval [̂ψ−σlow
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Fig. 17. Probability to find the true polarization angleψ0 in-
side the interval [̂ψ − σlow

ψ̂
, ψ̂ + σ

up
ψ̂

], whereσlow
ψ̂

andσup
ψ̂

are
the lower and upper uncertainties for each estimator, ML/MAP
(blue) and MB (pink), and plotted as a function of the SNR
p0/σp,G. Monte-Carlo simulations have been carried out in the
low regime of the covariance matrix. The expected level at 68%
is shown as a dashed line.

metrized. The results are shown as a function of the true SNR
p0/σp,G in Fig. 17 and of the measured SNR ˆp/σp̂ in Fig. 18.
We observe that the MAP estimator provides slightly conserva-
tive probabilities over the whole range of SNR. The MB estima-
tor gives low probabilities to recover the true polarization angle
ψ0 for a true SNR<1, and a measured SNR<2.

6. Three-dimensional case

In all of the preceding sections, the total intensityI was assumed
to be perfectly known,I = I0. in some cases, however, this as-
sumption is not valid as discussed by PMA1. For instance, one
needs to subtract from the observed intensity signal any unpo-
larized component, leading to three main issues: i) the derived
polarization fraction may be grossly underestimated if this is not
done properly, ii) this subtraction may be subject to a relatively
large uncertainty, larger than the noise on the total intensity, and
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Fig. 18. Same as Fig.17, but plotted as a function of the mea-
sured SNR ˆp/σp̂.

could lead to diverging estimates of the polarization fraction
when intensity crosses null values ; iii) this uncertainty on this
unpolarized component intensity level should be included in the
3D noise covariance matrix, and propagated to the uncertainty
estimates of the polarization fraction. This happens for instance
when dealing with the polarization fraction of the Galacticdust
component at high latitude, where the total intensity of thesignal
is strongly contaminated by the unpolarized signal of the Cosmic
Infrared Background (CIB).

The Bayesian approach has the definite advantage over other
estimators discussed here in that it can deal fairly easily with
three-dimensional (I,Q,U) noise. However, an uncertain to-
tal intensity still poses problems, which are most acute in low
brightness regions, since the noisyI may become null or nega-
tive, leading to infinite or negative polarization fractions. With
this in mind, it is possible that the choice of the prior inp0 and
I0 may have a strong impact on the ˆpMB estimate. One may for
instance choose to allow for negativeI0 in low-brightness re-
gions, which implies extending the definition range of the po-
larization fraction to the negative part, leading to a priordefined
on [-1,1]. Another possibility in this case, and possible develop-
ment of the present paper, is to extend the dimensionality ofthe
problem to include the unpolarized intensity componentIoffset,
e.g., with a flat prior betweenIoffset,min andIoffset,max, and still im-
posingI0 > 0.

Let us stress that the Bayesian approach is also currently the
only one that can deal with correlation between total intensity I
to StokesQ andU. We note, however, (i) new and forthcoming
polarization data sets have a much better control of these sys-
tematics, and (ii) the impact of these correlations betweennoise
components on the polarization fraction and angle bias is quite
limited, as shown by PMA1.

7. Conclusion

We have presented in this work an extensive comparison of
the performance of the polarization fraction and angle estima-
tors. WhileSimmons & Stewart(1985) focused on the common
estimators of the polarization fraction, such as the Maximum
Likelihood (ML), the Most Probable (MP) and the Asymptotic
(AS), andQuinn (2012) suggested to use a Bayesian approach
to estimate the polarization fraction, we have generalizedall
these methods to take into account the full covariance matrix

of the Stokes parameters. We have also included in this compar-
ison a novel estimator of the polarization fraction, the Modified
Asymptotic (MAS, Plaszczynski et al. 2014). In addition, we
have performed for the first time a comparison of the perfor-
mance of the polarization angle estimators, since a statistical
bias ofψ is expected when the covariance matrix departs from
its canonical form. We have followed a frequentist methodol-
ogy to investigate the properties of the polarization estimators,
even when dealing with the frequentist estimators inspiredby
the Bayesian approach.

The question of the performance of a ˆp or ψ̂ estimator de-
pends intrinsically on the analysis we would like to carry out
with these quantities. Including or not the full covariancematrix
is one of the first questions that must be handled, but the more
important aspect relies on the properties of the output distribu-
tion of each estimator. In practice, a compromise between three
frequentist criteria has to be found: a minimum bias, a minimum
risk function, and the shape of the output distribution, in terms
of non-Gaussianity. We present below a few recipes associated
to typical use cases.

- Build a mask. It is usually recommended to build a mask on
the intensity map, instead of using the SNR of the polarization
fraction, so that no values of the polarization fraction (especially
low values ofp) are discarded in the further analysis. It can be
useful, however, to build a mask based on the SNR of a polar-
ization fraction map when we are interested in strong valuesof
the polarization fraction only, and we try to rejectp estimates
artificially boosted by the noise. This is the case when we look
for the maximum value ofp, for example. In this context we
suggest following the prescription of P14, using a combination
of the MAS estimator with confidence intervals. This method al-
lows building conservative domains where the SNR is ensuredto
be greater than a given threshold. P14 provide numerical approx-
imations in the canonical case. If one wants to take into account
the specificity of the noise properties in each pixel, confidence
intervals can be built for any covariance matrix (includingellip-
ticity and correlation), but it could require intensive computing.
Another alternative in that case is to build credible intervals us-
ing the posterior distribution (MAP).

- Large maps of the polarization fraction with high SNR on
the intensity. Another typical use case is to provide large maps
of the polarization fraction with the associated uncertainty, when
the intensity is assumed to be perfectly known. Because of their
discontinuous distributions presenting a peak at ˆp=0 and their
strong dependance to the unknown true polarization angleψ0,
the common estimators ofp ML, MP and AS are not well de-
signed for this purpose. These estimators could produce highly
discontinuous patterns with zero values over the output ˆp map
when the SNR goes below 4, which may imply complicated
analysis including upper limits values. In order to avoid such
issues, we first suggest using the MAS estimator which has been
shown to produce the lowest relative bias, with a continuous
output distribution which becomes close to a Gaussian for SNR
larger than 2. Moreover, the relative risk function associated with
the MAS estimator becomes competitive for SNR>3, while the
MB estimator minimizes the relative risk function for an inter-
mediate SNR, between 1 and 3. The uncertainties can then be de-
rived again from the confidence or credible intervals, depending
on the ellipticity of the covariance matrix. A second option, es-
pecially suited for intermediate SNR (2-3), consists in perform-
ing a preliminary analysis on the data to build a prior from the p̂
distribution, which can then be injected into the MB estimator.
The performance of this method strongly rely of the properties of
the initial true distribution. It is particularly efficient for true po-
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larization fractions largely greater than zero, to avoid the major
drawback of the MB estimator presenting a lower-limit propor-
tional to the noise level. Hence the MB (with flat prior) estimator
presents a cut-off at 0.8σp, so that it can never provide null esti-
mates of ˆp. We stress that above a SNR of 4, all methods (except
MP2) fall in agreement.

- Combined polarization fraction and angle analysis. The
Bayesian estimators of ˆpMB andψ̂MB may be used to build esti-
mates of the polarization fraction and angle simultaneously, by
taking into account the full covariance matrix, including the el-
lipticity and correlation betweenQ andU, and the correlation
between total and polarized intensity. This could be usefulwhen
performing an analysis over large areas with inhomogeneous
noise properties, when the SNR on the intensity becomes prob-
lematic, or when an important correlation betweenI and (Q, U)
exists. Nevertheless we stress that the output distributions of the
MB estimates are strongly asymmetric at low SNR (<3), and
that the Bayesian uncertainty estimates can not be used as typi-
cal Gaussian 68% tolerance intervals.

- Low SNR on the intensity. We recommend in this case to
use the Bayesian estimators which allow simultaneous estimates
of the intensity and the polarization parameters, taking into ac-
count the full covariance matrix, and include the impact of the
uncertainty of the intensity on the polarization fraction estimate.

- Very low SNR studies. Very low SNRs studies may re-
quire different approaches. We have seen that at low SNR, all
estimators provide biased estimates of the polarization fraction,
with highly asymmetrical distributions. The more conservative
option in this case is to use the confidence or credible inter-
vals. Similarly the question of assessing the unpolarized level
of a set of data (i.e. SNR∼0) has been first raised byClarke
et al. (1993). They suggested to used Kolmogorov test to com-
pare the measurement distributions with the expectation derived
from the Rice distribution withp0=0. Another option is to build
the likelihood in two dimensions (Q,U) to perform aχ2 test with
Q0=U0=0. A last method is to use the Bayesian posterior prob-
ability B(p0|p, σp) to assess the probability to havep0=0 for a
given measurement or a series of measurements by convolving
all individual pdfs.

- Polarization angle. Concerning the polarization angle esti-
matesψ̂, we have shown that the ML provides the best perfor-
mance in terms of relative bias and risk function for SNR>1. It
corrects a potential bias ofψ when the covariance matrix is not
under its canonical form. Because the ML and MAP estimators
give equivalent results, the MAP can be used to efficiently build
credible intervals and symmetric uncertainties, which have been
shown to be in a very good agreement with the output distribu-
tions. Nevertheless we stress that the level of the absolutebias of
ψ remains extremely limited compared to the dispersion of the
polarization angle in most cases (i.e. in thelow andtiny regime
of the covariance matrix), so that it can be usually neglected.
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Appendix A: Most Probable in general case

The MP2 estimators, ˆpMP2 andψ̂MP2, have to satisfy the Eqs.8
and9 simultaneously. These relations can be solved, using the
fully developed expression off2D including the terms of the in-
verse matrixΣ−1

p :

Σ
−1
p =

(

v11 v12
v12 v22

)

, (A.1)

leading to

ψ̂MP2 =
1
2

arctan

















((

v11v22− v2
12

)

p2 − v11

)

sin 2ψ + v12 cos 2ψ
((

v11v22− v2
12

)

p2 − v22

)

cos 2ψ + v12 sin 2ψ

















,

p̂MP2 =
A1

(

A2 cos 2̂ψMP2+ A3 sin 2ψ̂MP2

) , (A.2)

with

A1 ≡ p
(

v11 cos2 2ψ + v22 sin2 2ψ + 2v12 cos 2ψ sin 2ψ
)

− 1/p ,

A2 ≡ v11 cos 2ψ + v12 sin 2ψ ,

A3 ≡ v22 sin 2ψ + v12 cos 2ψ . (A.3)

This analytical solution only depends on the input measurements
(p, ψ) and the covariance matrixΣp. Because the polarization
fraction must be positive, there exists a lower limit of the SNR
so that ˆpMP2 = 0. In that casêψMP2 is not constrained any more
and can be chosen to any possible value, we will set it equal to
the measurementψ. Moreover, this expression can be simplified
whenρ = 0, which implies thatv12 = 0, leading to:

ψ̂MP2 =
1
2

arctan

















(

p2 − 1/v22

)

(

p2 − 1/v11
) tan 2ψ








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





, (A.4)

p̂MP2 =
p
(

v11 cos2 2ψ + v22 sin2 2ψ
)

− 1/p
(

v11 cos 2ψ cos 2̂ψMP2 + v22 sin 2ψ sin 2ψ̂MP2

) .

In the canonical case (v12=0, v11=v22=1/σ2
p), we recover the ex-

pression derived byQuinn(2012):

ψ̂MP2 = ψ ,

p̂MP2 =

{

(p − σ2
p/p) for p > σp

0 for p ≤ σp
. (A.5)

Appendix B: Bayesian Posterior pdf

We illustrate the shape of the posterior pdf in Fig.B.1, where
B2D(p0, ψ0 | p, ψ,Σp) is shown at four levels of the SNR and five
couples of (ε, ρ). It is interesting to notice that the posterior pdf
allows the polarization fraction to be null at low SNR, when
these values were rejected by the pdf (see Appendix B of PMA
I). Moreover the posterior pdf peaks at the location of the mea-
surements used to compute it. As largely emphasized in PMA
I, we also recall that once the effective ellipticity of the covari-
ance matrix departs from the canonical simplification, the pdfs
are sensitive to the initial true polarization angleψ0.
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Fig. B.1. Posterior probability density functionsB2D(p0, ψ0 | p, ψ,Σp) computed for the most probable measurements (p,ψ) of the
f2D distribution (crosses), which were obtained for a given setof true polarization parametersψ0 = 0◦ andp0 = 0.10 (dashed lines)
and various configurations of the covariance matrix, at fourlevels of SNRp0/σp,G = 0.1, 0.5, 1 and 5 (top to bottom).

Appendix C: Mean Bayesian Posterior analytical
expression

In the canonical case, the MB estimator of the polarization frac-
tion p takes a simple analytical expression. The Bayesian poste-
rior on p is given in this case by:

Bp(p0 | p, Σp) =
R(p | p0, Σp) · κ(p0)

∫ 1

0
R(p | p′0, Σp) κ(p′0) dp′0

, (C.1)

whereκ is the prior chosen equal to 1 over the definition range
([0,1]), andR denotes theRice(1945) function which is defined
by

R(p | p0, Σp) =
p
σ2

p
exp


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



, (C.2)

whereI0(x) is the zeroth-order modified Bessel function of the
first kind (Gradshteyn & Ryzhik 2007) andσp = σQ/I0 = σU/I0
is the characteristic noise level of the polarization fraction.

The MB estimator and the posterior variance take the follow-
ing forms

p̂MB =

∫ 1

0
p0 e(−p2

0/2σ
2
p)I0

(

pp0

σ2
p

)

dp0

∫ 1

0
e(−p0

2/2σ2
p)I0

(

pp0

σ2
p

)

dp0

(C.3)

and

σ̂p,MB =

∫ 1

0
(p0 − p̂MB)2 e(−p2

0/2σ
2
p)I0

(

pp0

σ2
p

)

dp0

∫ 1

0
e(−p0

2/2σ2
p)I0

(

pp0

σ2
p

)

dp0

. (C.4)

If we assume in a first approximation that the integral ofp0 over
[0, 1] can be taken over [0,+∞[ (which is fine at high SNR), and
we use the formula ofPrudnikov et al.(1986)

∫ ∞

0
xa−1e−bx2I0(cx)dx =

1
2

b−a/2Γ(a/2)1F1

(

a
2
, 1,

c2

4b

)

, (C.5)
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Fig. C.1. Accuracy of the approximate analytical expression
of the Bayesian estimates of the polarization fraction ˆpMB
(solid line) and its associated uncertainty ˆσp,MB (dashed line),
as a function of the SNR of the measurementp/σp, where
σp=σQ/I0=σU/I0.

whereΓ is the Gamma function and1F1 is the confluent hyper-
geometric function of the first kind, we can derive that
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and
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and finally

∫ ∞

0
p2

0 e(−p2
0/2σ

2
p)I0













pp0

σ2
p













dp0 =
1
2













1
2σ2

p













− 3
2

Γ

(

3
2

)

1F1













3
2
, 1,

p2

2σ2
p













=
√

π/2σ3
p 1F1













3
2
, 1,

p2

2σ2
p













. (C.8)

We finally obtain the simple expression of the MB estimator and
the associated Bayesian variance:

p̂MB =
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and
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(C.10)
As shown in Fig.C.1, this analytical approximation gives

less than 0.15% of relative error at low SNR compared to the
exact p̂MB estimate and less than 0.05% for the associated un-
certainty. This small departure quickly tends to 0 for a SNR>4.
Thus these expressions may be used to speed up the computing
time when the canonical simplification may be assumed.
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Fig. C.2. Accuracy of the generalized approximate analytical
expression of the Bayesian estimates ˆpMB (top) andσ̂p,MB (bot-
tom), taking into account the full covariance matrix components,
in the low (light grey ) andtiny (dark grey) regimes.

We explore in Fig.C.2to extent to which the canonical sim-
plification may be done in the presence of an effective ellipticity
of the covariance matrix. In this more general case, we suggest
changingσp into σp,G in the Eqs.C.9 and C.10. The relative
error between the approximate estimate and the exact bayesian
estimate has been explored in two regimes of the covariance ma-
trix, the low (1<εeff<1.1) andtiny (1<εeff<1.01) regimes. Three
domains are observed in the top panel of Fig.C.2 dealing with
the accuracy of the ˆpMB estimate: i) at low SNR (<1) the bias on
p is so large that the presence of an effective ellipticity does not
affect significantly the estimate in comparison; ii) for an inter-
mediate range of the SNR (1<SNR<4), the effective ellipticity
of theΣp significantly affects the Bayesian estimate so that the
departure of the analytical approximation from the exact esti-
mate becomes important; iii) at high SNR(>4) the noise is so
low that the Bayesian estimate is not sensitive to the asymmetry
of the covariance matrix anymore. Consequently, the approxi-
mate analytical expression provides very good estimates ofp̂MB
for SNR<1 and SNR>4, and 5% to 0.5% of relative error for
intermediate 1<SNR<4 in the low and tiny regimes of the co-
variance matrix, respectively. Notice that in theextreme regime
of the covariance matrix the relative error increases up to 20%.

Concerning the accuracy of the Bayesian approximate es-
timate σ̂p,MB of the polarization fraction uncertainty (bottom
panel), the agreement is better than 0.1% for SNR<1, and about
8% SNR>1 in the low regime, and 1% in thetiny regime.
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Because the uncertainty becomes small compared to the polar-
ization fraction at high SNR, up to 8% of error in ˆσp,MB is still
acceptable for this approximation.
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