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The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty 
of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the 
same volume and report the result γn/γHg = 3.8424574(30).
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1. Introduction

After Chadwick’s discovery of the neutron in 1932, it became 
clear that nuclei are made out of protons and neutrons. In this 
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picture the neutron had to bear a nonzero magnetic moment in 
order to account for the magnetic moments of nuclei. The ob-
servation that the neutron, an electrically neutral particle, has a 
nonzero magnetic moment is in conflict with the prediction of the 
relativistic Dirac equation valid for elementary spin 1/2 particles. 
This fact was an early indication of the existence of a sub-structure 
for neutrons and protons.

The first direct measurement of the neutron magnetic moment 
was reported by Alvarez and Bloch in 1940 [1] with an uncertainty 
of one percent. The frequency fn of the neutron spin precession 
in a magnetic field B0 was measured using the Rabi resonance 
method, from which the gyromagnetic ratio γn = 2π fn/B0 and 
the magnetic moment μn = h̄/2γn were extracted. The precision 
of this method was then improved by using the proton magnetic 
resonance technique to measure the magnetic field B0 [2,3]. In 
1956, Cohen, Corngold and Ramsey achieved an uncertainty of 
25 ppm, using Ramsey’s resonance technique of separated oscil-
lating fields [4]. Then, challenged by the possible discovery of a 
nonzero neutron electric dipole moment (nEDM), Ramsey’s tech-
nique was further developed. Profiting from these developments, 
Greene and coworkers [5] measured in 1977 the neutron-to-proton 
magnetic moment ratio with an improvement of two orders of 
magnitude in accuracy. In the latter experiment, the separated field 
resonance technique was applied simultaneously to a beam of slow 
neutrons and a flow of protons in water precessing in the same 
magnetic field.

Since 1986 the neutron gyromagnetic ratio has been considered 
by the Committee on Data for Science and Technology (CODATA) as 
a fundamental constant. In the 2010 evaluation of the fundamental 
constants [6], the accepted value

γn

2π
= 29.1646943(69) MHz/T [0.24 ppm] (1)

was obtained by combining Greene’s measurement [5] of γn/γ ′
p

with the determination of the shielded proton gyromagnetic ratio 
in pure water γ ′

p .
In this letter we report on a measurement of the neutron mag-

netic moment with an accuracy of better than 1 ppm, using an 
apparatus that was built to search for the neutron electric dipole 
moment [7]. The experimental method differs in two essential as-
pects from the one reported in Ref. [5]. First, we use stored ultra-
cold neutrons (UCNs) rather than a beam of cold neutrons. Second, 
the magnetic field is measured using a co-magnetometer based on 
the nuclear spin precession of 199Hg atoms. The result presented 
is, in fact, a measurement of the ratio γn/γHg of the neutron to 
mercury 199Hg magnetic moments.

Although not as suitable as the proton, the 199Hg atom can also 
be used as a magnetic moment standard. In 1960 Cagnac measured 
γHg/γ

′
p in Kastler’s lab using the newly invented Brossel’s double 

resonance method [8]. Since the magnetic field was calibrated us-
ing nuclear magnetic resonance in water, the mercury magnetic 
moment was effectively measured in units of the proton magnetic 
moment. Cagnac’s result γHg/γ

′
p = 0.1782706(3) can be combined 

with the current accepted value of the shielded proton moment 
(γ ′

p/2π = 42.5763866(10) MHz/T [6]) to extract a mercury gyro-
magnetic ratio of

γHg

2π
= 7.590118(13) MHz/T [1.71 ppm]. (2)

Our result for γn/γHg with an accuracy better than 1 ppm pro-
vides an interesting consistency check on results (1) and (2). It 
confirms the currently accepted value of the neutron magnetic 
moment, which was inferred from a single experiment [5]. Alter-
natively, our result can be used to produce a more accurate value 
for the mercury magnetic moment.
Fig. 1. Vertical cut through the inner part of the nEDM apparatus. Schematically 
indicated are the precession chamber, the mercury comagnetometer and the Cs 
magnetometer array.

2. The measurement with the nEDM spectrometer

The measurement was performed in fall 2012 with the nEDM 
spectrometer, currently installed at the Paul Scherrer Institute 
(PSI). A precursor of this room-temperature apparatus, operated 
at Institut Laue–Langevin (ILL), has produced the currently lowest 
experimental limit for the neutron EDM [9]. A detailed descrip-
tion of the apparatus, when operated at ILL, can be found in [10]. 
A schematic view of the core of the apparatus, as installed now at 
PSI, is depicted in Fig. 1.

The spectrometer uses UCNs, neutrons with kinetic energies of 
≈ 100 neV that can be stored in material bottles for a few minutes. 
In a typical measurement cycle, UCNs from the new PSI source [11]
are guided to the precession chamber, filling the volume for 34 s 
before closing the UCN valve. The neutrons are fully polarized on 
their way from the source to the apparatus by a 5 T supercon-
ducting magnet. The precession chamber is a 22 liter cylindrical 
storage volume of height H = 12 cm made out of a deuterated 
polystyrene ring and two diamond-like-carbon coated flat metal-
lic plates. The entire apparatus is evacuated to a residual pressure 
below 10−5 mbar during the measurements. After the comple-
tion of the Ramsey procedure described below, the UCN valve is 
opened again and the neutrons fall down into a detector where 
they are counted. On the way to the detector they pass through 
a magnetized iron foil that serves as a spin analyzer, providing a 
spin-dependent counting of the neutrons.

The precession chamber is exposed to a static vertical mag-
netic field of B0 ≈ 1030 nT, either pointing upwards or down-
wards, corresponding to a neutron Larmor precession frequency 
of fn = γn

2π B0 ≈ 30 Hz. This highly homogeneous magnetic field 
(δB/B ≈ 10−3) is generated by a cos θ coil. In addition, a set of 
trim coils permits the optimization of the magnetic field unifor-
mity or the application of magnetic field gradients. These coils are 
wound on the outside of the cylindrical vacuum tank, which is sur-
rounded by a four-layer mu-metal magnetic shield.

During the storage of polarized UCN, the Ramsey method of 
separated oscillatory fields is employed in order to measure fn ac-
curately. At the beginning of the storage period, a first oscillating 
horizontal field pulse of frequency fRF ≈ fn is applied for t = 2 s, 
thereby flipping the neutron spins by π/2. Next, the UCN spins 
are allowed to precess freely in the horizontal plane around the 
B0 field, for a precession time of T = 180 s. A second π/2-pulse, 
at the same frequency fRF and in phase with the first pulse, is 
then applied. The Ramsey procedure is resonant in the sense that 
it flips the neutron spins by exactly π only when fRF = fn.

In order to monitor the magnetic field B0 within the preces-
sion chamber, a cohabiting mercury magnetometer is used [12]. 
A gas of 199Hg mercury atoms is continuously polarized by optical 
pumping in a polarization chamber situated below the precession 
chamber. At the beginning of a measurement cycle, the precession 
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Fig. 2. Ramsey fit for the run 6043. In this run the goodness-of-fit is quantified by 
χ2/d.o.f. = 1.3.

chamber is filled with polarized atoms, and a π/2 mercury pulse 
is applied immediately before the first neutron pulse. Thus, during 
the precession time, both neutron spins and mercury spins precess 
in the horizontal plane, sampling the same volume. The Larmor 
frequency fHg = γHg

2π B0 ≈ 8 Hz of the mercury atoms is measured 
by optical means: the modulation of the transmission of a cir-
cularly polarized resonant UV light beam from a 204Hg discharge 
lamp is measured with a photomultiplier tube. For each cycle, the 
mercury comagnetometer provides a measurement of the magnetic 
field averaged over the same period of time as for the neutrons, at 
an accuracy of σ( fHg) ≈ 1 μHz.

A typical run consists of a succession of ∼ 20 cycles, in which 
the neutron pulse frequency fRF is randomly varied. We analyzed 
each run to extract the neutron to mercury frequency ratio R =
fn/ fHg, which, in absence of systematic effects, would be equal 
to γn/γHg. In a Ramsey experiment, the phase of the spin after 
the effective precession time T + 4t/π is φ = 2π( fRF − fn)(T +
4t/π) (see e.g. [13] for a derivation of the factor 4/π ). When the 
magnetic field acting on the neutron is monitored via the mercury 
precession frequency, then the analysis of a run consists in fitting 
a Ramsey fringe pattern to the data, according to

Nup
i = N0

(
1 − α cos

(
K ( fRF,i/ fHg,i − R)

))
, (3)

where Nup
i is the number of neutron counts in cycle i, fRF,i is the 

frequency of the neutron π/2-pulses for cycle i and fHg,i the mea-
sured mercury precession frequency. The parameter K defined by

K = 2π(T + 4t/π)〈 fHg〉 (4)

represents the period of the fringes, where 〈 fHg〉 is the mean mer-
cury frequency during the run. For each run the three parame-
ters α (visibility of the Ramsey fringe), N0 and R are extracted 
from the fit. An example of a run is shown in Fig. 2. The ver-
tical error bars follow from counting statistics and the horizon-
tal error bars are negligible. The sensitivity of the technique is 
thus limited by neutron counting statistics and was on average 
σ(R) = 1.5 × 10−6 per run.

Different runs correspond to different trim coil current set-
tings and thus different magnetic field gradients. The measure-
ments with different magnetic field configurations serve to correct 
the systematic effects described in the next section. For the sake 
of simplicity we have retained for the final analysis only runs 
with gradients smaller than 200 pT/cm, i.e. 7 runs with the mag-
netic field pointing downwards and 9 runs with the magnetic field 
pointing upwards.
3. Systematic effects

There are four known effects that could significantly shift the 
ratio R = fn/ fHg from its unperturbed value γn/γHg, either by 
affecting the neutron frequency or the mercury frequency. We 
write the combination of all these effects as

R = fn

fHg
= γn

γHg
(1 + δGrav + δT + δLight + δEarth), (5)

and address them in detail in what follows.
The most important effect is known as the gravitational shift 

δGrav. The room temperature gas of mercury atoms fills the storage 
volume with a uniform density in all spatial directions. Conversely, 
the much colder UCN gas is strongly affected by gravity and the 
UCN density is significantly higher at the bottom of the storage 
chamber than at the top. This results in a difference h of the ver-
tical locations of the centers of mass of the two species which, in 
turn, results in a shift of the ratio R in the presence of a vertical 
magnetic field gradient:

δ
↑/↓
Grav = ± h

B0

∂ B

∂z
, (6)

where the arrows and the ± sign refer to the direction of the 
magnetic field. A direct measurement of this effect was reported 
in [14].

To correct for the gravitational shift, the magnetic field gradi-
ent was measured using an array of cesium magnetometers (four 
magnetometers on the top of the chamber and seven on the bot-
tom; see Fig. 1). The working principle of these magnetometers is 
described in [16]. The transverse components of the magnetic field 
are small, therefore the scalar magnetometers are effectively mea-
suring the longitudinal component: B ≈ Bz . For each run, a field 
value was extracted for each magnetometer by averaging the mag-
netometer readings over the duration of the run. A second-order 
parameterization of the field was then fitted to the field measured 
at the positions of the eleven magnetometers. The parameteriza-
tion

B(x, y, z) = b0 + gxx + g y y + gzz + gxx
(
x2 − z2)

+ g yy
(

y2 − z2) + gxyxy + gxzxz + g yz yz, (7)

is the most general second order polynomial satisfying constraints 
imposed by Maxwell’s equation. The nine parameters were ex-
tracted by performing an unweighted least-squares minimization. 
The main parameter of interest is gz , since the differences of the 
UCN and mercury volume averages for the other terms are negli-
gible. For an error evaluation on gz , the jackknife procedure was 
applied, by removing one magnetometer at a time and performing 
the fit always with ten magnetic field values. The standard devia-
tion of those eleven values for gz was then used as the uncertainty 
on gz . The jackknife error obtained by this procedure was 8 pT/cm. 
This analysis method was tested using toy data [15], it was found 
that the jackknife procedure accounts for the incompleteness of 
the second order parameterization (7) and for the possible offsets 
of the magnetometers.

Fig. 3 shows the R value for each run as a function of the 
gradient gz . We extrapolate the R value to the limit of vanish-
ing gradient by performing a combined fit of the data according 
to

R↑ = R↑
0

(
1 + h

B0
g↑

z

)
and R↓ = R↓

0

(
1 − h

B0
g↓

z

)
, (8)

and obtain the following values for the three fit parameters:
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Fig. 3. Neutron to mercury frequency R = fn/ fHg plotted as a function of the field 
gradient. Upwards-pointing (red) and downwards-pointing (blue) triangles repre-
sents runs in which B0 was pointing upwards and downwards, respectively. The 
vertical error bars are smaller than the size of the triangles.

h = −0.235(5) cm, (9)

R↑
0 = 3.8424580(23), (10)

R↓
0 = 3.8424653(27). (11)

The goodness-of-fit is quantified by χ2/d.o.f. = 23/13, which sup-
ports the validity of the gradient errors. An analysis of an extended 
set of data, including runs with higher magnetic field gradients, 
has been performed independently [17], confirming the result pre-
sented here. The values R↑

0 and R↓
0 are intermediate quantities for 

which Eq. (5) holds with the δGrav term set to zero. The other three 
systematic effects, which depend solely at first order on the mag-
netic field direction, still need to be corrected.

The second systematic effect δT arises from residual transverse 
magnetic field components BT. The neutron magnetometer is sen-
sitive to the volume average of the magnetic field modulus, viz. 
fn ∝ 〈|�B|〉 since the neutron Larmor frequency is larger than the 
wall collision frequency (adiabatic regime). On the other hand, the 
mercury Larmor frequency is much lower than the wall collision 
frequency. As a consequence the mercury magnetometer is sen-
sitive to the vectorial volume average of the field: fHg ∝ |〈�B〉|. 
From this essential difference the resulting frequency shift due to 
a transverse field is given by

δT = 〈BT
2〉

2B2
0

, (12)

where 〈BT
2〉 is the volume average over the precession chamber of 

the squared transverse field.
To correct for the transverse shift we performed an extensive 

magnetic-field mapping of the precession chamber region using 
a three-axis fluxgate magnetometer attached to a robot mapper. 
From the magnetic-field maps we were able to extract the trans-
verse field components in both configurations B0 up and B0 down:

〈
BT

2〉↑ = (2.1 ± 0.5) nT2; 〈
BT

2〉↓ = (1.7 ± 0.7) nT2. (13)

From this we infer corrections given by

δ
↑
T = (1.0 ± 0.2) × 10−6; δ

↓
T = (0.8 ± 0.3) × 10−6. (14)

The third systematic effect δLight arises from a possible light 
shift of the mercury precession frequency induced by the light 
beam that detects the Hg free-induction decay. This phenomenon, 
discovered in 1961 by Cohen-Tannoudji [18], is a shift of the res-
onance frequency proportional to the UV light intensity. We per-
formed a dedicated test to quantify this effect, by measuring the 
mercury frequency while varying the light intensity. The light shift 
has a vectorial component, i.e. it could depend on the angle be-
tween the light beam axis and the magnetic field direction. There-
fore the associated frequency shift could in principle depend on 
the B0 direction. We performed the test for both B0 polarities and 
we report the result:

δ
↑
Light = (0.34 ± 0.18) × 10−6;

δ
↓
Light = (0.21 ± 0.14) × 10−6. (15)

The last systematic effect δEarth is a shift due to the Earth’s ro-
tation (see [19] for a discussion of this effect in the context of the 
nEDM). The precession frequencies of the neutron and the mercury 
results from the Larmor frequencies in a non-rotating frame com-
bined with the rotation of the Earth. One can derive the following 
expression for the associated frequency shift

δ
↑/↓
Earth = ∓

(
fEarth

fn
+ fEarth

fHg

)
sin(λ) = ∓1.4 × 10−6, (16)

where fEarth = 11.6 μHz is the Earth’s rotation frequency and 
sin(λ) = 0.738 the sine of the latitude of the PSI location. The con-
ventions are such that fn and fHg are positive frequencies. In the 
derivation of Eq. (16) it was important to consider that the true 
neutron and mercury gyromagnetic ratios are negative and posi-
tive quantities, respectively.

The relative difference between the R ratios measured with 
B0 up and B0 down, after correcting for the gravitational, trans-
verse, and light shifts, should amount to the Earth’s rotation effect, 
whose anticipated value is δ↑

Earth − δ
↓
Earth = −2.7 × 10−6. Indeed we 

find

2
R↑

0 − R↓
0

R↑
0 + R↓

0

− (
δ
↑
T − δ

↓
T

) − (
δ
↑
Light − δ

↓
Light

)

= (−2.2 ± 1.0) × 10−6, (17)

in agreement with the expected value.
Two additional minor systematic effects were considered and 

neglected. First, the Bloch–Siegert shift of the neutron resonance, 
associated with the use of a linearly oscillating rather than rotat-
ing field for applying the π/2-pulses, is calculated to be 2 μHz. 
Second, possible biases induced by the DAQ electronics were in-
vestigated. A dedicated multifunction electronic module [20] syn-
chronized on an atomic clock serves both to generate the neutron 
pulses and to sample the mercury precession signal. We checked 
that effects that could modify the frequency ratio, such as a loss of 
phase coherence between the two neutron pulses, are negligible.

The error budget and the correction procedure are summa-
rized in Table 1 and the key data for each run is presented in 
Table 2. As a final step we combine the results obtained for B0 up 
and B0 down. The agreement between these two results provides 
a nontrivial consistency check. To avoid double use of data, we 
conservatively quote for the final uncertainty the largest of the two 
individual errors:

γn/γHg = 3.8424574(30) [0.78 ppm]. (18)

4. Discussion

Our result (18) can be considered as a consistency check of the 
accepted values for the neutron and 199Hg magnetic moments as 
shown in Fig. 4. Equivalently, this result provides a new accurate 
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Table 1
Error budget for the measurement of γn/γHg.

Effect B0 ↑ B0 ↓
Counting statistics ±0.5 × 10−6 ±0.5 × 10−6

Gravitational shift 
(3.84 × δGrav)

(−8.9 ± 2.3) × 10−6 (−1.8 ± 2.7) × 10−6

Intermediate R0 3.8424580(23) 3.8424653(27)

Transverse shift 
(3.84 × δT)

(3.7 ± 0.8) × 10−6 (3.0 ± 1.2) × 10−6

Light shift 
(3.84 × δLight)

(1.3 ± 0.7) × 10−6 (0.8 ± 0.6) × 10−6

Earth rotation 
(3.84 × δEarth)

−5.3 × 10−6 +5.3 × 10−6

Corrected value 3.8424583(26) 3.8424562(30)

Combined final γn/γHg 3.8424574(30)

Table 2
Key data for each run selected for the analysis: the fitted visibility α, the ratio R , 
the average field BHg extracted from the mercury comagnetometer, the gradient gz

extracted from the Cs magnetometer array and the squared transverse field 〈BT
2〉

extracted from the field maps are reported.

Run # α R BHg

[nT]
gz

[pT/cm]
〈BT

2〉
[nT2]

B0 ↓
6015 0.41 3.842321 1031.86 −175 2.5
6016 0.48 3.842587 1031.33 130 1.8
6023 0.66 3.842435 1031.60 −23 1.1
6027-8 0.57 3.842508 1030.18 32 1.0
6030 0.55 3.842415 1030.32 −43 1.0
6031 0.38 3.842622 1029.92 185 2.6
6033 0.48 3.842357 1030.45 −120 1.7

B0 ↑
6040-1 0.54 3.842445 1027.97 9 1.7
6042 0.36 3.842325 1028.23 161 2.6
6043 0.38 3.842582 1027.70 −144 3.0
6047 0.46 3.842520 1027.82 −67 2.1
6049 0.43 3.842378 1028.14 86 1.9
6058 0.53 3.842434 1027.82 17 1.7
6059 0.42 3.842511 1026.82 −44 2.0
6060 0.55 3.842455 1028.25 5 1.7
6064 0.44 3.842392 1029.47 68 1.9

and independent measurement of the neutron gyromagnetic ratio. 
Using (2), we obtain:

γn

2π
= 29.164705(55) MHz/T [1.89 ppm], (19)

thus confirming the accepted value which, until now, was based 
on a single measurement [6].

Alternatively, we can use the results (1) and (18) to propose a 
new, more accurate value of the 199Hg atomic gyromagnetic ratio:

γHg

2π
= 7.5901152(62) MHz/T [0.82 ppm]. (20)
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