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ABSTRACT
The region around the supernova remnant (SNR) W41 contains several TeV sources and has prompted the H.E.S.S.
Collaboration to perform deep observations of this field of view. This resulted in the discovery of the new very high
energy (VHE) source HESS J1832−093, at the position RA= 18h32m50s± 3s

stat± 2s
syst,Dec= −9◦22′36′′ ± 32′′stat ±

20′′syst (J2000), spatially coincident with a part of the radio shellof the neighboring remnant G22.7−0.2. The photon
spectrum is well described by a power-law of indexΓ = 2.6 ± 0.3stat ± 0.1syst and a normalization at 1 TeV of
Φ0 = (4.8 ± 0.8stat± 1.0syst) × 10−13 cm−2 s−1 TeV−1. The location of the gamma-ray emission on the edge of the
SNR rim first suggested a signature of escaping cosmic-rays illuminating a nearby molecular cloud. Then a dedicated
XMM-Newtonobservation led to the discovery of a new X-ray point source spatially coincident with the TeV excess.
Two other scenarios were hence proposed to identify the nature of HESS J1832−093. Gamma-rays from inverse
Compton radiation in the framework of a pulsar wind nebula scenario or the possibility of gamma-ray production
within a binary system are therefore also considered. Deeper multi-wavelength observations will help to shed new
light on this intriguing VHE source.

Key words: astroparticle physics - gamma rays: general - ISM: individual objects: HESS
J1832−093- ISM: individual objects: SNR G22.7−0.2

1 INTRODUCTION

H.E.S.S. (High Energy Stereoscopic System) is an array of five
imaging atmospheric Cherenkov telescopes located 1800 m above
sea level in the Khomas Highland of Namibia. The first four tele-
scopes have been fully operational since 2004 (Aharonian etal.
2006a), while the fifth telescope started operation in September
2012. The H.E.S.S. Collaboration has been conducting a system-
atic scan of the Galactic plane, which led to the discovery ofa rich
population of very high energy (VHE, E>100 GeV) gamma-ray
sources. The majority of these galactic sources are extended beyond
the H.E.S.S. point spread function (PSF), which is of the order of
6′, and mostly comprise supernova remnants (SNRs) and evolved
pulsar wind nebulae (PWNe). Point-like sources are also observed
in the Galactic plane and are generally associated with gamma-ray
binaries (e.g. LS 5039, Aharonian et al. (2006c)) and with young
PWNe such as G0.9+0.1 (Aharonian et al. 2005a). Furthermore, in
the particular case of HESS J1943+213, an identification of the
VHE point-like source in the Galactic plane with a background ac-
tive galactic nucleus (AGN) is currently the most likely hypothesis
(Abramowski et al. 2011a).

The paper at hand deals with the field of view around SNR
G22.7−0.2, which is close to SNR W41 in sky projection. The dis-
covery of a new point-like TeV source, HESS J1832−093, is re-
ported in Section 2 as well as the search for a GeV counterpart
with theFermi-LAT. The TeV emission lies close (about 1′ away)
to the radio rim of the supernova remnant G22.7−0.2. This SNR
shows a non-thermal ring of 26′ diameter in radio (Shaver & Goss
1970) and partially overlaps the neighboring remnant W41. How-
ever, there is no obvious flux enhancement in the radio data around
the position of HESS J1832−093. Using theΣ-D relation given by
Guseinov et al. (2003a) which connects the surface brightnessΣ of
a supernova remnant with its diameter D, the estimated distance to
G22.7−0.2 is approximately (3.7±1.1) kpc (Guseinov et al. 2003b).
The source location at the edge of the SNR shell could suggesta
signature of escaping hadronic cosmic-rays which would illuminate
dense material such as molecular clouds. Such scenario is consid-
ered a prime opportunity to unambiguously study hadronic cosmic-
rays accelerated in supernova remnants. This possibility is exam-
ined in Section 3. However, the compact nature of the TeV emission
together with the detection of a new X-ray counterpart is at odds
with this scenario. DedicatedXMM-Newtondata at the position of
HESS J1832−093 have led to the discovery of this new potential
counterpart, the X-ray point source XMMU J183245−0921539, as

detailed in Section 4. As a consequence, two scenarios of compact
objects, a young PWN or a binary system origin, are considered in
Section 4 in order to explain the VHE emission.

2 MULTI-WAVELENGTH DATA ANALYSIS

2.1 H.E.S.S.

A standard analysis method with Hillas event reconstruction
(Aharonian et al. 2006a) is adopted to study the field of view of
interest. A multi-variate analysis is used (Becherini et al. 2011)
to provide improved discrimination between hadrons and gamma-
rays. A minimum charge cut of 110 photo-electrons in the shower
images is applied to the data, resulting in an energy threshold of
about 450 GeV.

A standard run selection procedure is used to remove bad qual-
ity observations in order to study the newly discovered source. The
available data set in this region covers a zenith angle ranging be-
tween 13◦ and 50◦ (mean value of 25◦) and comprises 67 hours
live time of observations, taken from 2004 to 2011. Using this data
set, the new source, named HESS J1832−093, is detected with a
peak significance of 7.9 σ pre-trials, corresponding to a post-trial
detection significance of 5.6σ. The average angular resolution (r68)
obtained for the selected data set is 0.081◦ at the source position.
The excess map of the field of view centered on the new detected
source and smoothed with the r68 value is presented in Fig. 1.

A two-dimensional symmetrical Gaussian function is used to
determine the position and size of the TeV emission with aχ2

minimization. The best-fit position is RA= 18h32m50s ± 3s
stat ±

2s
syst,Dec= −9◦22′36′′ ± 32′′stat ± 20′′syst (J2000) (χ2/ndf=0.89). No

significant extension was found for the source and an upper limit
of 0.074◦ at a 99% confidence level (C.L.) is derived.

In order to broaden the accessible energy range the charge
cut of the shower images is lowered to a minimum of 80 photo-
electrons, resulting in an energy threshold of∼400 GeV. The
forward-folding method described in Aharonian et al. (2006a) is
applied to the data to derive the spectrum. Source counts areex-
tracted from a circular region of 0.1◦ radius around the best fit posi-
tion of HESS J1832−093, a size optimized for point source studies
with the applied cuts (Becherini et al. 2011).

The spectrum obtained between 400 GeV and 5 TeV (dis-
played in Fig. 2) is well described by a power-law (PL)dΦ

dE =

Φ0

(

E
1 TeV

)−Γ

, with an indexΓ = 2.6 ± 0.3stat ± 0.1syst and a dif-

c© 2014 RAS
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Figure 1. H.E.S.S. excess map smoothed with a 2D-gaussian of width
corresponding to the r68 value of 0.081◦ (represented by the dashed cir-
cle). Units are counts per integration area. The best-fit position of HESS
J1832−093 with statistical errors is represented by the black cross. The SNR
G22.7−0.2 observed at 1.4 GHz (Helfand et al. 2006) is represented by the
white contours. The emission seen on the upper left is a smallpart of HESS
J1834−087 (Aharonian et al. 2006b), the TeV source in spatial coincidence
with SNR W41.

ferential flux normalization at 1 TeV ofΦ0 = (4.8 ± 0.8stat ±

1.0syst) × 10−13 cm−2 s−1 TeV−1. The integrated flux above 1 TeV
is I(E > 1 TeV) = (3.0 ± 0.8stat± 0.6syst) × 10−13 cm−2 s−1, corre-
sponding roughly to 1% of the Crab Nebula flux above the same
energy (Aharonian et al. 2006a).

A search for curvature in the gamma-ray spectrum was per-
formed by fitting log-parabola and exponential cutoff power-law
models to the data. While not ruled out, these models are not fa-
vored since the improvement in fit quality compared to the simple
power-law model is not statistically significant.

Long-term light curves were produced with different inte-
grated times (run, night and month) and Z-transformed discrete cor-
relation functions (Alexander 1997) were applied to the data to look
for periodicity. However no significant temporal variability was de-
tected in the H.E.S.S. data set.

2.2 Fermi-LAT

The Fermi Large Area Telescope (LAT) is a gamma-ray telescope
operating in the 20 MeV to 300 GeV energy range (Atwood et al.
2009). No Fermi-LAT source is listed at the position of HESS
J1832−093 in the Fermi 2-year catalog (2FGL, Nolan et al. 2012).
However, this field of view located close to the Galactic plane
is very rich in gamma-ray sources and diffuse emission, mak-
ing the analysis challenging. Furthermore, theFermi source 2FGL
J1834.3-0848, in spatial coincidence with SNR W41, lies very
close to HESS J1832−093 and theFermi angular resolution at
low energy does not allow different potential contributions to this
source to be distinguished. Therefore a dedicated analysiswas per-
formed in the field of view to look for a potential counterpartin
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Figure 2. Spectral energy distribution from the region of VHE emission
from HESS J1832−093. The VHE gamma-ray spectrum observed with
H.E.S.S. is displayed together with the upper limit obtained between 10
and 100 GeV with the Fermi-LAT. The green contour representsthe 1σ
confidence level of the fitted spectrum using a power-law hypothesis. Only
statistical errors (68% confidence level) are shown for the spectral points.
The X-ray power-law model of XMMU J183245−0921539 is overlaid in
red, taking into account the statistical uncertainties only.

the GeV range. The analysis was carried out with 4 years of data
and above 10 GeV as a compromise between statistics and back-
ground from the diffuse Galactic emission (dominating forE < 10
GeV). The Instrument Response Functions (IRFs) P7SOURCEV6
and theSourceclass events were used (see Ackermann et al. 2012,
for details about the event classification and IRFs). The correspond-
ing Galactic diffuse background (gal2yearp7v6v0.fits) and the ex-
tragalactic isotropic background (isop7v6source.txt), distributed
with the Fermi Science Tools1, were used. In addition to the diffuse
backgrounds, a model of the nearby sources within a 5◦ radius was
built based on the 2FGL catalog (Nolan et al. 2012). No significant
gamma-ray excess is found on top of the model previously built.
An energy flux upper limit of 3.6×10−12 erg cm−2 s−1 in the 10-100
GeV band is then obtained at 99% C.L., assuming a point sourceat
the position of HESS J1832−093. This upper limit is shown on the
spectral energy distribution (SED) displayed on Fig. 2.

2.3 XMM-Newton

In order to constrain the nature of the source HESS J1832−093, a
dedicated observation with the X-rayXMM-Newtonsatellite was
performed in March 2011 for 17 ks. After filtering out proton flare
contamination, 13 ks and 7 ks of exposure time remained for the
two EPIC-MOS cameras and for the EPIC-pn camera, respectively.
The data were processed using theXMM-NewtonScience Analy-
sis System (v10.0). The instrumental background was derived from
a compilation of blank sky observations (Carter & Read 2007),
renormalized to the actual exposure using the count rate in the 10-
12 keV energy band.

The brightest object in theXMM-Newtonfield of view is
a point-like source (Source A in Fig. 3) located at RA=
18h32m45s.04,Dec = −9◦ 21′ 53′′ .9 with a 90% C.L. error radius
of 2.3′′ which is 1.5′ away from the best-fit position of the H.E.S.S.

1 http://fermi.gsfc.nasa.gov/ssc/data/analysis/

c© 2014 RAS, MNRAS000, 2–6
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Figure 3. XMM-Newton composite flux map of the field of view around
HESS J1832−093 in the 0.5-2 keV (red) and 2-6 keV (green) energy ranges.
The SNR G22.7−0.2 observed at 1.4 GHz is overlaid in cyan contours. The
yellow cross symbolizes the best-fit position of HESS J1832−093 with cor-
responding errors. The confidence contour levels (68%, 95% and 99%) of
the source position fit are also shown in yellow. Two point-like sources are
detected near the position of HESS J1832−093: Sources A and B discussed
in Section 2.3. No diffuse emission from the SNR shell segment is seen in
the X-ray data. The maximal flux values are 3.5×10−4 cm−2 s−1arcmin−2

and 3.6×10−4 cm−2 s−1arcmin−2 for the red and green maps, respectively.

excess. This new source, named XMMU J183245−0921539, is lo-
cated within the 99% C.L. contours of the H.E.S.S. best fit posi-
tion and is a potential counterpart to the VHE source. Other point
sources detected in the field of view are either too soft (suchas
Source B, Fig. 3) or too far away from HESS J1832−093 to be
considered as potential counterparts.

Spectra from the three instruments were extracted from a
15′′ radius circular region centered on XMMU J183245−0921539.
Both an absorbed power-law model and an absorbed black body
model were tested. The best fit parameters for the power-law
model are a column density NH = 10.5+3.1

−2.7 × 1022 cm−2, a pho-
ton index Γ = 1.3+0.5

−0.4 and an unabsorbed energy fluxΦ(2-10
keV)= 6.9+1.7

−2.8 × 10−13 erg cm−2 s−1, with a p-value2 of 0.75. The
absorbed black-body fit yields NH = 5.5+1.3

−1.8 × 1022 cm−2, a tem-
perature kT = 1.9+0.3

−0.2 keV, an unabsorbed energy fluxΦ(2-10
keV)= 5.7+1.3

−2.2×10−13 erg cm−2 s−1, and a p-value of 0.73. Given the
low level of statistics, no spectral model can be rejected, as shown
by the p-values. However, the fitted temperature of the black-body
model is much higher than usually observed for cooling neutron
stars (∼ 0.2 keV) or central compact objects (CCOs;∼ 0.5 keV).
Such a high temperature can be observed in bursting binary sys-
tems, but due to the lack of evidence of bursting behavior in X-rays,
this scenario is not considered in the following discussion. Hence,
the power-law model is adopted to characterise the X-ray emission
of XMMU J183245−0921539 and it is displayed on Fig. 2.

2 The p-value corresponds to the null-hypothesis probability

Because of the low statistics and the fact that theXMM-
Newtonobservation was performed in imaging mode (timing reso-
lutions of 2.6 s and 73 ms for MOS and pn instruments), no detailed
pulsation search could be carried out. Future deeper observations in
timing mode could provide better constraints on the nature of this
X-ray source.

A comparison of the absorption along the line of sight ob-
tained from the X-ray spectral model with the column depth derived
from the atomic (HI) and molecular (12CO, J=1→0 transition line)
gas can be used to provide a lower limit on the distance to XMMU
J183245−0921539, as described in Abramowski et al. (2011b). A
minimal distance of∼5 kpc is thus derived using the lower bound
of the fitted NH obtained with the power-law model.

3 A HADRONIC ORIGIN?

The Galactic Ring Survey (GRS) performed with the Boston Uni-
versity FCRAO telescopes (Jackson et al. 2006) provides measure-
ments of the13CO (J=1→0) transition line covering the velocity
range from -5 to 135 km s−1 in this region. The detection of this
line is evidence for the presence of dense molecular clouds (MCs)
that are known to be targets for cosmic-rays and hence gamma-
ray emitters via neutral pion production and decay. SeveralMCs
measured at different radial velocities are found around the source
HESS J1832−093. The molecular structure showing the best spatial
coincidence with the TeV emission is selected and shown in Fig. 4.
The MC near distance of about 2.3 kpc given by the Galactic rota-
tion curve model provided by Hou et al. (2009) is compatible with
the distance estimate to the remnant. Following the approach de-
scribed in Simon et al. (2001), the integrated antenna temperature
on the MC velocity range is used to derive the gas mass of the
structure which is∼ 700 M⊙, corresponding to a gas density of
∼ 20 cm−3.

TeV emission from the direction of G22.7−0.2 might be re-
lated to protons either coming from the cosmic-ray (CR) sea or
accelerated in early phases of a nearby SNR and interacting in
dense molecular structures, producing neutral pions that decay into
gamma rays. This scenario has already been invoked e.g. to explain
“dark” TeV sources (e.g. Gabici et al. (2009)). For this hypothesis
to work, localised high density target material is needed inorder to
explain that only a very small fraction of G22.7−0.2 emits gamma-
rays.13CO measurements show the presence of such structures near
HESS J1832−093, as seen on Fig. 4. Although no significant exten-
sion of the TeV source is detected, the upper limit of 0.074◦ is con-
sistent with a slightly extended emission region as may be expected
from the MC spatially coincident with HESS J1832−093. The ex-
pected bremsstrahlung emission from accelerated electrons can be
neglected compared to the hadronic contribution since the proton
to electron ratio p/e should be≫ 100 for multi-TeV energies (e.g.
Yuan et al. (2012) and references therein).

Using the mass and distance of the selected MC and follow-
ing Eq. 10 of Aharonian (1991), the CR density enhancement factor
kCR can be estimated in units of the local CR density, corresponding
to a value of 780. Such a high enhancement factor require the pres-
ence of a nearby CR source such as SNR G22.7−0.2 in order to ex-
plain the observed TeV emission. Moreover, Aharonian & Atoyan
(1996) show that, given the SNR radius of about 10 pc and an as-
sumed age around 103 yr, such a highkCR value is expected for a
slow diffusion coefficient ofD ∼ 1027 cm2 s−1 for 10 TeV hadrons,
but excluded for a diffusion coefficient ofD ∼ 1029 cm2 s−1. There-
fore the hadronic origin of the VHE emission is possible in the case
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Figure 4. Integrated 13CO antenna temperature in arbitrary units
(Jackson et al. 2006) in a velocity range of 26 to 31 km s−1 smoothed with
the average H.E.S.S. PSF for this data set. The gamma-ray excess of Fig. 1
is shown in black contours (50, 75 and 100 gamma levels) whilethe radio
observation of SNR G22.7−0.2 (Helfand et al. 2006) at 1.4 GHz is overlaid
in white contours. (0.002 and 0.005 mJy/beam). The black cross represents
the best-fit position of the H.E.S.S. excess with corresponding errors.

of slow diffusion only. Similar diffusion coefficients are also needed
in other studies such as for the VHE emission in spatial coincidence
with dense MCs around SNR W28 (Aharonian et al. 2008).

4 A COMPACT NATURE

4.1 A faint PWN?

A likely scenario would be that both the X-ray and TeV sources
stem from a PWN powered by a yet unknown pulsar. Even if
the non-thermal aspect of the X-ray emission is not well deter-
mined, its hard spectral index for the PL assumption is indicative
of an emission from the vicinity of a pulsar, e.g. magnetospheric
or striped wind (e.g. Pétri & Lyubarsky 2007). Therefore, despite
the lack of observed pulsations in the object, a pulsar origin for
XMMU J183245−0921539 will be considered here. The TeV emis-
sion would then be attributed to inverse Compton emission coming
from the nebula powered by the putative pulsar.

It can be tested whether energetically a PWN scenario plau-
sibly matches with the population of known TeV-emitting PWNe,
under the hypothesis that the X-ray emission comes from the pul-
sar’s magnetosphere. The luminosityLX(2 − 10 keV) of the X-ray
point source can be translated to an estimate of theĖ of the hypo-
thetical pulsar using theLX/Ė relation provided by Li et al. (2008).
The estimated spin-down luminosity is of the order of 1037 erg s−1

for a distance of 5 kpc, pointing towards a rather young pulsar
age (. 105 years). Note that the compact size of the TeV source
is also an indication for a fairly young object. TheĖ/d2 for the
same distance is 6× 1035erg s−1kpc−2, corresponding to the band
for which more than 40% of the PWNe are detected with H.E.S.S.
(Klepser et al. 2013). Therefore, if the putative pulsar powers a TeV
PWN, the latter should be detectable with the H.E.S.S. array. A
very similar conclusion is derived if the detected X-ray emission is
assumed to stem from the hard core of the X-ray PWN. The lack of
an extended X-ray PWN around XMMU J183245−0921539 could

be attributed to yet insufficient statistics andXMM-Newtonangu-
lar resolution, or to the high absorption which would prevent any
detection of the extension below 3 keV (due to synchrotron cool-
ing of the electrons, the outer region of the PWN would have a
softer index than its core). Another possibility would be that the X-
ray PWN is underluminous (Kargaltsev et al. 2008). Future high-
resolution X-ray observations are thus needed to clarify this issue.
Together with the absence of detected X-ray pulsations, thePWN
scenario is possible but remains for the moment still unconfirmed.

4.2 A new binary system?

The 2MASS catalog3 lists three infrared sources around the posi-
tion of XMMU J183245−0921539 within theXMM-NewtonPSF of
about 6′′ (FWHM). However only one faint source is located within
the statistic positional error (2.3′′) of XMMU J183245−0921539.
This source, 2MASS J18324516−0921545, lies 1.9′′ away from
the position of the X-ray source. No optical counterpart is found,
likely due to strong extinction in the Galactic plane. The appar-
ent magnitudes observed in the J, H, K bands aremJ = 15.52±
0.06 mag,mH = 13.26± 0.04 mag, andmK = 12.17± 0.02 mag,
respectively (Skrutskie et al. 2006). The probability of a chance
association between 2MASS J18324516−0921545 and XMMU
J183245−0921539 is around 2%, following the approach by Akujor
(1987). To derive this value, all sources of the 2MASS catalog with
mK 6 13 in a 2◦ side box around XMMU J183245−0921539 were
selected, and the chance probability was computed to detectone of
them in a surface of 16.6 arcseconds2 corresponding to theXMM-
Newtonlocalisation error area.

The infrared source 2MASS J18324516−0921545 discovered
in spatial coincidence with XMMU J183245−0921539 could sug-
gest that the X-ray source resides in a binary system around a
massive star. Variable TeV emission from a number of gamma-
ray binaries has already been detected (Aharonian et al. 2005b,
2006c; Albert et al. 2009; Aliu et al. 2014). The optical brightness
derived for 2MASS J18324516−0921545 is compatible with an
association in a binary system with XMMU J183245−0921539
if the measured X-ray absorption is mainly stemming from local
gas around the X-ray source. In the absence of orbitally modu-
lated X-ray or TeV emission, the binary possibility remainsuncon-
firmed, although the low chance probability association between
the IR and X-ray sources seems to support this scenario. The non-
detection of variability could be either due to insufficient statis-
tics or due to a specific geometrical shape of the binary system
that would not produce modulated emission in gamma-rays. Al-
though one could expect strong GeV emission from gamma-ray
binary systems, one of these objects has currently no GeV coun-
terpart : HESS J0632+057. Therefore the non-detection in GeV
of HESS J1832−093 does not rule out the binary scenario. More-
over, HESS J0632+057 was unidentified at the time of its discov-
ery (Aharonian et al. 2007) and its variability was only confirmed
later on (Hinton et al. 2009; Bongiorno et al. 2011). The similari-
ties with HESS J0632+057 make HESS J1832−093 a very good
binary system candidate despite the absence of modulated emis-
sion.

3 http://www.ipac.caltech.edu/2mass/releases/allsky/
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5 CONCLUSION

Observations in the field of view of SNR G22.7−0.2 have led to the
discovery of the point-like source HESS J1832−093 lying on the
edge of the SNR radio rim. Hadronic particles accelerated inthe
SNR G22.7−0.2 interacting with dense gas material could result
in TeV emission through neutral pion production and decay inthe
case of slow CR diffusion.

On the other hand, a compelling X-ray counterpart, XMMU
J183245−0921539, has been discovered, whose nature is yet to be
established. Together with the TeV emission and the infrared point
source 2MASS J18324516−0921545, plausible object classifica-
tions are a young pulsar wind nebula or a gamma-ray binary. Fol-
lowing the case of HESS J1943+213, an extragalactic origin such
as an AGN could also be possible. However this scenario was disfa-
vored due to the lack of GeV emission and point-like counterparts
in radio data.

The TeV source properties strongly resemble the situation of
HESS J0632+057 at the time of its discovery (Aharonian et al.
2007), which only after extensive continued monitoring in X-
rays and gamma-rays could be identified as a gamma-ray binary
(Hinton et al. 2009; Acciari et al. 2009; Bongiorno et al. 2011).
Point-like sources remain rare amongst all newly discovered VHE
sources and HESS J1832−093 is an excellent candidate for belong-
ing to the rare and special class of gamma-ray binaries.

Nevertheless, given the lack of a clear confirmation of the bi-
nary scenario through variability, other scenarios are also possi-
ble. The isolated PWN scenario, however, lacks an X-ray PWN
detection despite XMM-Newton coverage, and the cosmic-ray-
molecular cloud interaction scenario is hard to reconcile with
the possible association of XMMU J183245−0921539 with HESS
J1832−093. Further multiwavelength studies are therefore encour-
aged to establish (or ultimately reject) HESS J1832−093’s classifi-
cation as illuminated molecular cloud, gamma-ray binary orpulsar
wind nebula.
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