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We present a measurement of the cross sections for the associated production of a W boson with at 
least one heavy quark jet, b or c, in proton–antiproton collisions. Data corresponding to an integrated 
luminosity of 8.7 fb−1 recorded with the D0 detector at the Fermilab Tevatron pp̄ Collider at 

√
s =

1.96 TeV are used to measure the cross sections differentially as a function of the jet transverse momenta 
in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as 
well as predictions from Monte Carlo generators.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Measurement of the production cross section of a W boson 
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of quantum chromodynamics (QCD). At hadron colliders, the as-
sociated production of a heavy quark with a W boson can also be 
a significant background to rare standard model (SM) processes, for 
example, production of top quark pairs [1], a single top quark [2], 
and a W boson in association with a Higgs boson decaying to two 
b quarks [3], as well as for new physics processes, e.g., supersym-
metric scalar top quark production [4].

The dominant processes contributing to W + c-jet produc-
tion are qg → W c and qq̄′ → W g followed by g → cc̄. The 
production cross section for the first process is sensitive to the 
quark and gluon parton density functions (PDFs). Since the c–b
quark Cabibbo–Kobayashi–Maskawa matrix element is very small 
(|V cb|2 ≈ 0.0016) [5], the contribution of a b-quark initial state in 
the PDF is negligible. Comparing the d-quark and s-quark PDFs, 
the probability of interaction of a gluon with a d-quark is greater 
than that with an s-quark, but the CKM matrix element suppresses 
d → c transitions since |V cd|2 ≈ 0.04. As a result, the expected con-
tributions from s-quark and d-quark initial states for a jet trans-
verse momentum pjet

T > 20 GeV at the Tevatron are around 85% 
and 15%, respectively [6]. According to the alpgen + pythia [7,8]

http://creativecommons.org/licenses/by/4.0/
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simulation for W + c-jet events, the contribution from qg → W + c

dominates the entire 20 < pjet
T < 100 GeV region with the con-

tribution from qq̄′ → W + cc̄ events increasing from about 25% 
to 45% as jet pT increases from 20 to 100 GeV. Measurement of 
the pp̄ → W + c-jet differential cross section should provide in-
formation about the s-quark PDF. This PDF has been measured 
directly only in fixed target neutrino–nucleon deep inelastic scat-
tering experiments at relatively low momentum transfer Q �
15–20 GeV [9–14]. A probe of the s-quark PDF at the Tevatron tests 
the universality of s(x, Q 2), where x is the Feynman variable [15], 
and its QCD evolution up to Q 2 � 104 GeV2.

There are only a few previous measurements of the W + c-jet 
cross section at hadron colliders, performed by the D0 [6], CDF [16,
17], ATLAS [18], and CMS [19] Collaborations. The previous D0 and 
CDF measurements are inclusive; the CMS and ATLAS inclusive re-
sults were augmented by distributions in the pseudorapidity of the 
lepton from W decay. It is important to note that the measure-
ments listed above are performed by requiring opposite electric 
charges of a soft lepton inside a jet from semileptonic charmed 
hadron decay with a lepton from W decay elsewhere in the event, 
and measuring the cross section for “opposite-sign” (OS) minus 
“same-sign” (SS) events. A requirement of opposite signs for the 
leptons and subtraction of events with the same signs suppresses 
the sign-symmetric backgrounds as well as W + cc̄ events due 
to gluon splitting, which become significant at high jet pT . All 
measurements are in agreement with the perturbative next-to-
leading order (NLO) QCD predictions [20,21] that include contri-
butions from gluon splitting within total theoretical uncertainties 
of 15–30%.

Measurements of the inclusive W + b-jet cross-sections have 
been reported by the CDF [22], D0 [23], and ATLAS [24] Collabo-
rations. The CDF result is approximately 3σ higher than the NLO 
predictions while the D0 and ATLAS measurements agree with the 
theory within large (30–40%) theoretical uncertainties. A dominant 
(� 85%) contribution to W + b-jet production at the Tevatron is 
due to the qq̄′ → W + g (g → bb̄) process while the remaining 
contribution arises from the bq̄ → W bq̄′ process [21], with a neg-
ligible contribution from single top quark production.

We present, for the first time, measurements of W + c-jet and 
W + b-jet differential cross sections as a function of jet pT , where 
no requirement of a soft lepton within a jet is made, and that 
are therefore sensitive to the gluon splitting contributions. The W
boson candidates are identified in the μ + ν decay channel.

The data used in this analysis were collected between July 2006 
and September 2011 using the D0 detector at the Fermilab Teva-
tron Collider at 

√
s = 1.96 TeV, and correspond to an integrated 

luminosity of 8.7 fb−1. The D0 detector [25] has a central tracking 
system consisting of a silicon microstrip tracker (SMT) [26] and 
a central fiber tracker, both located within a 1.9 T superconducting 
solenoidal magnet, which are optimized for tracking and vertexing 
at pseudorapidities |η| < 3 and |η| < 2.5, respectively [27]. A liquid 
argon and uranium calorimeter has a central section (CC) cover-
ing pseudorapidities |η| � 1.1, and two end calorimeters (EC) that 
extend coverage to |η| ≈ 4.2, with all three housed in separate 
cryostats [28]. An outer muon system covering |η| < 2 consists of 
a layer of tracking detectors and scintillation trigger counters in 
front of 1.8 T iron toroids, followed by two similar layers after the 
toroids. Luminosity is measured using plastic scintillator arrays lo-
cated in front of the EC cryostats.

The W + b/c candidate events are chosen by selecting single 
muon or muon + jet signatures with a three-level trigger system. 
The trigger efficiency has been estimated using Z → μ+μ− (+ jets)
events in data. The trigger efficiency is parametrized as a function 
of muon pT and η and is on average ≈ 70%.
Offline event selection requires a reconstructed pp̄ interaction 
primary vertex (PV) that has at least three associated tracks and is 
located within 60 cm of the center of the detector along the beam 
direction. The vertex selection for W +b/c events is approximately 
99% efficient as measured in simulation.

We require a muon candidate to be reconstructed from hits in 
the muon system and matched to a reconstructed track in the cen-
tral tracker [29]. The transverse momentum of the muon must 
satisfy pμ

T > 20 GeV, with |ημ| < 1.7. Muons are required to be 
spatially isolated from other energetic particles using information 
from the central tracking detectors and calorimeter [30]. Muons 
from cosmic rays are rejected by applying a timing criterion on the 
hits in the scintillator layers of the muon system and by applying 
restrictions on the displacement of the muon track with respect to 
the PV. The muon reconstruction efficiency is ≈ 90%.

Candidate W + jets events are selected by requiring at least 
one reconstructed jet with pseudorapidity |ηjet| < 1.5 and pjet

T >

20 GeV. Jets are reconstructed from energy deposits in the 
calorimeter using the iterative midpoint cone algorithm [31] with 
a cone of radius R = √

�y2 + �φ2 = 0.5 [27]. The energies of jets 
are corrected for detector response, the presence of noise and mul-
tiple pp̄ interactions [32]. To enrich the sample with W bosons, 
events are required to have missing transverse energy [32] /E T >

25 GeV due to the neutrino escaping detection. We require that the 
W boson candidates have a transverse mass MT > 40 GeV [33].

Backgrounds for this analysis include events from the produc-
tion of W + light parton jets, Z/γ ∗+ jets, tt̄ , single top quark, dibo-
son V V (V = W , Z ) and QCD multijets in which a jet is misiden-
tified as a muon. The W + c and W + b signal and the background 
processes excluding multijet are simulated using a combination of
alpgen [7] and pythia [8] MC event generators with pythia pro-
viding parton showering and hadronization. We use pythia with 
CTEQ6L1 [34] PDFs. alpgen generates multi-parton final states us-
ing tree-level matrix elements (ME). When interfaced with pythia, 
it employs the MLM scheme [7] to treat ME partons produced from 
showering in pythia. For the signal process, we also use the sherpa

MC generator [35] that matches partons from the leading-order ME 
with up to two real parton emissions to the parton-shower jets ac-
cording to the CKWK matching scheme [36]. The generated events 
are processed through a geant-based [37] simulation of the D0 
detector geometry and response. To accurately model the effects of 
multiple pp̄ interactions and detector noise, events from random 
pp̄ crossings with a similar instantaneous luminosity spectrum as 
in data are overlaid on the MC events. These MC events are then 
processed using the same reconstruction code as for the data. The 
MC events are also weighted to take into account the trigger effi-
ciency and small observed differences between MC and data in the 
distributions of the instantaneous luminosity and of the z coordi-
nate of the pp̄ collision vertex.

The V + jets processes are normalized to the total inclusive W
and Z -boson cross sections calculated at NNLO (next-to-next-to-
leading order) [38]. The Z -boson pT distribution is modeled to 
match the distribution observed in data [39], taking into account 
the dependence on the number of reconstructed jets. To repro-
duce the W -boson pT distribution in simulated events, we use 
the product of the measured Z -boson pT spectrum times the ratio 
of W to Z -boson pT distributions at NLO [39,40]. The NLO + NNLL
(next-to-next-to-leading log) calculations are used to normalize 
tt̄ production [41], while single top quark production is normalized 
to NNLO predictions [42]. The NLO W W , W Z , and Z Z production 
cross section values are obtained with the mcfm program [43]. 
The multijet background contribution is estimated from data us-
ing the “matrix method” [30]. For the final states studied here the 
multijet background is small (� 2%) and arises mainly from the 
semileptonic decays of heavy quarks in which the muon satisfies 
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the isolation requirements. To reduce the contribution from tt̄ pro-
duction that increases with jet pT , we restrict the scalar sum of all 
the jet pT values (HT ) to be less than 175 GeV. This requirement 
reduces the tt̄ fraction by a factor 1.5–2, depending on jet pT , and 
has signal efficiency greater than 95% except in the highest PT bin 
where it falls to 82%. The tt̄ fraction after the HT cut varies be-
tween 5 and 20% with increasing jet pT .

Identification of b and c jets is crucial for this measurement. 
Once the inclusive W + jets sample is selected, at least one jet is 
required to be taggable, i.e. it must contain at least two tracks each 
with at least one hit in the SMT, pT > 1 GeV for the highest-pT
track and pT > 0.5 GeV for the next-to-highest pT track. These 
criteria ensure sufficient information to classify the jet as a heavy-
flavor candidate and have a typical efficiency of about 90%. Light 
parton jets (those resulting from light quarks or gluons) are sup-
pressed using a dedicated artificial neural network (b-NN) [44] that 
exploits the longer lifetimes of heavy-flavor hadrons relative to 
their lighter counterparts. The inputs to the b-NN include several 
characteristic quantities of the jet and associated tracks to provide 
a continuous output value that tends towards one for b jets and 
zero for the light jets. The b-NN input variables providing most of 
the discrimination are the number of reconstructed secondary ver-
tices (SV) in the jet, the invariant mass of charged particle tracks 
associated with the SV (MSV), the number of tracks used to recon-
struct the SV, the two-dimensional decay length significance of the 
SV in the plane transverse to the beam, a weighted combination 
of the tracks’ transverse impact parameter significances, and the 
probability that the tracks associated with the jet originate from 
the pp̄ interaction vertex, which is referred to as the jet lifetime 
probability (JLIP). The jet is required to have a b-NN output greater 
than 0.5. For jet pT in a range between 20 and 150 GeV this se-
lection is (36–47)% efficient for b-jets and (8–11)% efficient for c
jets with relative systematic uncertainties of (4.2–6.5)% for both 
the b jets and c jets. The systematic uncertainty is obtained from a 
comparison of the heavy flavor tagging efficiencies in data and MC 
as described in [44]. Only 0.2–0.4% of light jets are misidentified as 
heavy-flavor jets and comprise 7% to 15% of the final sample, with 
a larger fraction at lower jet pT . In addition to the b-NN output, 
we obtain further information by combining the MSV and JLIP vari-
ables, which provide good discrimination between b, c, and light 
quark jets due to their different masses [45,46]. We form a single 
variable discriminant DMJL = 1

2 (MSV/(5 GeV) − ln(JLIP)/20) [45]
and require DMJL > 0.1 to remove poorly reconstructed events and 
reduce the number of light-jet events. The efficiency for signal 
events to pass this selection is 98% for b-jets and 97% for c-jets.

After all selection requirements, 5260 events remain in the data 
sample. We measure the fraction of W + c and W + b events in 
the selected sample by performing a binned maximum likelihood 
fit to the observed data distribution of the DMJL discriminant in 
bins of jet pT , as shown in Fig. 1 for the bin 30 < pjet

T < 40 GeV. 
The templates for W + b and W + c jets are taken from the sim-
ulation. Expected contributions from the background processes are 
subtracted from the DMJL distribution in data before the fit. The 
ratio of the W + light parton jets to W + all jet flavors has been 
estimated using alpgen + pythia MC events taking into account 
the data-to-MC correction factors as described in Ref. [44], and has 
been cross checked in data using looser cuts on b-NN output in 
the range from 0.15–0.3.

The fractions of W + b and W + c events after subtraction 
of background contribution are shown in Fig. 2 as a function of 
jet pT . The relative uncertainties on the fractions obtained from 
the fit range within (7–13)% for W + b and (6–11)% for W + c. 
This includes the uncertainty due to W + b and W + c template 
shapes, studied in a previous analysis [47]. The contributions from 
the background events are varied within uncertainties on their pre-
Fig. 1. (Color online.) Distribution of the DMJL discriminant after all selection crite-

ria (including b-NN output > 0.5) for a representative bin of 30 < pjet
T < 40 GeV. 

The contributions from background events are subtracted from data before the fit. 
The distributions for the c-jet and b-jet templates (with statistical uncertainties) are 
shown normalized to their respective fitted fractions.

Fig. 2. (Color online.) The b- and c-jet fractions (their total sum is normalized to 
1.0) versus jet pT with total uncertainty from the DMJL fit.

dicted cross sections, and these uncertainties are propagated into 
the extracted signal fractions. The uncertainty due to the light par-
ton jets template shape is taken from Ref. [46]. The overall relative 
uncertainties on the subtracted backgrounds range within (4–6)% 
for W + b and (3–4)% for W + c.

We apply corrections to the measured number of signal events 
to account for the detector and kinematic acceptances and selec-
tion efficiencies using simulated samples of W +b(c)-jet events. In 
these calculations, we apply the following selections at the particle 
level: at least one b(c)-jet with pb(c)-jet

T > 20 GeV, |ηb(c)-jet| < 1.5, 
a muon with pμ

T > 20 GeV and |ημ| < 1.7, and a neutrino with 
pν

T > 25 GeV. In the following, we quote our cross section results 
for this restricted phase space as a fiducial cross section.

The acceptance is defined by the selection requirements in jet 
and muon transverse momenta and pseudorapidities. Correction 
factors to account for small differences between jet-pT and ra-
pidity spectra in data and simulation are estimated, and used as 
weights to create a data-like MC sample. The differences between 
acceptance corrections obtained with standard and corrected MC 
samples are taken as a systematic uncertainty of up to 3% at low 
jet pT . An additional systematic uncertainty of up to 4% is due 
to uncertainties in the jet energy correction and resolution. For 
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Fig. 3. (Color online.) Similar to Fig. 1 but for events selected with b-NN output 
> 0.3. This alternative selection is used as a cross-check of the main results.

20 < pjet
T < 150 GeV the product of acceptance and muon selection 

efficiency varies within (50–65)% with a relative systematic uncer-
tainty of (3–5)%. The systematic uncertainty on the muon selection 
efficiency is about 2% and is obtained from a comparison of the 
muon efficiencies in Z → μμ events in data and MC. Uncertain-
ties on b-jet identification are determined in simulations and data 
by using b-jet-enriched samples [44] and are about (2–5)% per jet. 
The integrated luminosity is known to a precision of 6.1% [48]. 
By summing the uncertainties in quadrature we obtain a final to-
tal systematic uncertainty on the cross section measurements of 
(11–18)% depending on jet pT and final state.

To check the stability of the results, the W +b-jet and W +c-jet 
cross sections have been remeasured using a looser b-NN selection, 
b-NN output > 0.3, and with the light parton jet fraction included 
as an additional fit parameter, thus increasing the data statistics 
and the background fractions. The fractions of b- and c-jets are ob-
tained from the maximum likelihood fit of the light, b- and c-jet 
templates to DMJL distribution in data as shown in Fig. 3. We also 
vary the default HT cut by ±15 GeV and remeasure the cross sec-
tions. In both cross-checks, the default and new cross sections are 
found to be in agreement within uncertainties that include the cor-
relation between the two measurements.

In Figs. 4 and 5 and Tables 1 and 2, we present the W + b-jet 
and W + c-jet differential production cross sections times W →
μν branching fraction for the fiducial phase space defined by 
pμ

T > 20 GeV, |ημ| < 1.7, pν
T > 25 GeV, and with at least one 

b(c)-jet with pjet
T > 20 GeV and |ηjet| < 1.5. The cross sections are 

presented differentially in five pjet
T bins in the region 20–150 GeV. 

The data points are plotted at the value of p jet
T for which the 

value of a smooth function describing the cross section equals 
the averaged cross section in the bin [49]. The cross sections are 
compared to predictions from NLO QCD [43] and two MC genera-
tors, sherpa and alpgen. The NLO predictions are made using the 
MSTW2008 [50] and CT10 [51] PDF sets. We calculate the NLO 
QCD prediction using mcfm with central values of renormalization 
and fragmentation scales μr = μ f = MW and with the b-quark 
and c-quark masses mb = 4.75 GeV and mc = 1.5 GeV, respectively. 
Uncertainties are estimated by varying μr and μ f independently 
by a factor of two in each direction.

The NLO predictions are corrected for non-perturbative effects 
such as parton-to-hadron fragmentation and multiple parton in-
teractions. The latter are evaluated using sherpa and pythia MC 
samples generated using their default settings [8,35]. The overall 
corrections vary within a factor of 0.80–1.1 with an uncertainty 
of � 5% assigned to account for the difference between the two 
MC generators. The ratios of data over the NLO QCD calculations 
Fig. 4. (Color online.) The W +b-jet differential production cross section times W →
μν branching fraction as a function of jet pT . The uncertainties on the data points 
include statistical and systematic contributions added in quadrature. The measure-
ments are compared to the NLO QCD calculations [43] using the MSTW2008 PDF 
set [50] (solid line). The predictions from sherpa [35] and alpgen [7] are shown by 
the dotted and dashed lines, respectively.

Fig. 5. (Color online.) The W +c-jet differential production cross section times W →
μν branching fraction as a function of jet pT . The uncertainties on the data points 
include statistical and systematic contributions added in quadrature. The measure-
ments are compared to the NLO QCD calculations [43] using the MSTW2008 PDF 
set [50] (solid line). The predictions from sherpa [35] and alpgen [8] are shown by 
the dotted and dashed lines, respectively.

and of the various theoretical predictions to the NLO QCD calcula-
tions are presented in Figs. 6 and 7. The measured W + b-jet cross 
sections are systematically above the NLO QCD predictions for all 
jet pT bins. The W + c-jet data agree with the NLO QCD predic-
tions at small pT but disagree at higher pT as the contribution 
from qq̄′ → W + g (g → cc̄) events increases.

In addition to measuring the W + b-jet and W + c-jet cross-
sections, we calculate the ratio σ(W + c)/σ (W + b) in jet pT

bins. In this ratio, many experimental systematic uncertainties can-
cel. Also, theory predictions of the ratio are less sensitive to the 
scale uncertainties and effects from missing higher-order terms 
that impact the normalizations of the cross sections. The remaining 
uncertainties are caused by largely anti-correlated uncertainties 
coming from the fitting of c-jet and b-jet DMJL templates to data, 
and by other uncertainties on the b- and c-jet fractions discussed 
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Table 1
The W + b-jet production cross sections times W → μν branching fraction, dσ/dpjet

T , together with statistical uncertainties (δstat) and total systematic uncertainties (δsyst). 
The column δtot shows total experimental uncertainty obtained by adding δstat and δsyst in quadrature. The last three columns show theoretical predictions obtained using 
NLO QCD with MSTW PDF set, and two MC event generators, sherpa and alpgen.

pjet
T bin (GeV) 〈pjet

T 〉 (GeV) dσ/dpjet
T (pb/GeV)

Data δstat (%) δsyst (%) δtot (%) NLO QCD sherpa alpgen

20–30 24.3 9.6 × 10−2 2.4 17.8 18.0 6.5 × 10−2 3.9 × 10−2 3.9 × 10−2

30–40 34.3 4.0 × 10−2 2.9 13.6 13.9 3.0 × 10−2 2.0 × 10−2 2.0 × 10−2

40–50 44.3 2.5 × 10−2 3.6 14.4 14.8 1.6 × 10−2 1.1 × 10−2 1.1 × 10−2

50–70 57.2 1.2 × 10−2 3.4 15.2 15.6 7.4 × 10−3 5.5 × 10−3 5.2 × 10−3

70–150 81.7 2.2 × 10−3 4.5 17.7 18.3 1.4 × 10−3 1.0 × 10−3 9.3 × 10−4

Table 2
The W + c-jet production cross sections times W → μν branching fraction, dσ/dpjet

T , together with statistical uncertainties (δstat) and total systematic uncertainties (δsyst). 
The column δtot shows total experimental uncertainty obtained by adding δstat and δsyst in quadrature. The last three columns show theoretical predictions obtained using 
NLO QCD with MSTW PDF set, and two MC event generators, sherpa and alpgen.

pjet
T bin (GeV) 〈pjet

T 〉 (GeV) dσ/dpjet
T (pb/GeV)

Data δstat (%) δsyst (%) δtot (%) NLO QCD sherpa alpgen

20–30 24.2 4.1 × 10−1 3.7 17.0 17.4 4.1 × 10−1 2.1 × 10−1 2.4 × 10−1

30–40 34.2 2.6 × 10−1 4.6 11.0 11.9 1.8 × 10−1 9.2 × 10−2 1.1 × 10−1

40–50 44.2 1.5 × 10−1 5.8 11.9 13.2 9.2 × 10−2 4.6 × 10−2 5.9 × 10−2

50–70 57.0 8.4 × 10−2 5.3 12.1 13.2 3.9 × 10−2 2.0 × 10−2 2.6 × 10−2

70–150 80.7 1.3 × 10−2 6.9 15.6 17.1 6.1 × 10−3 3.1 × 10−3 3.8 × 10−3
Fig. 6. (Color online.) The ratio of W + b-jet production cross sections to NLO pre-
dictions with the MSTW2008 PDF set [50] for data and theoretical predictions. The 
uncertainties on the data include both statistical (inner error bar) and total uncer-
tainties (full error bar). Also shown are the uncertainties on the theoretical QCD 
scales. The ratio of NLO QCD predictions with CT10 [51] to those obtained with 
MSTW2008 as well as the predictions given by sherpa [35] and alpgen [7] are also 
presented.

above. Experimental results as well as theoretical predictions for 
the ratios are presented in Table 3 and Fig. 8. The systematic 
uncertainties on the ratio vary within (11–17)%. Theoretical scale 
uncertainties, estimated by varying the renormalization and factor-
ization scales by a factor of two in the same way for the σ(W +b)

and σ(W + c) predictions, are also significantly reduced. Specifi-
cally, residual scale uncertainties are typically (0.5–4.6)% for NLO 
QCD, which indicates a much smaller dependence of the ratio on 
the higher-order corrections. The ratio σ(W + c)/σ (W + b) for 
p jet

T > 30 GeV is reasonably consistent with theoretical predictions 
except for sherpa.

In summary, we have performed the first measurement of the 
differential cross section as a function of pjet

T for the W +b-jet and 
W + c-jet final states with W → μν decay at 

√
s = 1.96 TeV, in 
Fig. 7. (Color online.) The ratio of W + c-jet production cross sections to NLO pre-
dictions with the MSTW2008 PDF set [50] for data and theoretical predictions. The 
uncertainties on the data include both statistical (inner error bar) and total uncer-
tainties (full error bar). Also shown are the uncertainties on the theoretical QCD 
scales. The ratio of NLO QCD predictions with CT10 [51] to those obtained with 
MSTW2008 as well as the predictions given by sherpa [35] and alpgen [7] are also 
presented.

a restricted phase space of pμ
T > 20 GeV, |ημ| < 1.7, pν

T > 25 GeV

and with b(c) jets with the pT range 20 < pjet
T < 150 GeV and 

|ηjet| < 1.5. These are the first measurements of W + b/c cross 
sections that are sensitive to the gluon splitting processes. The 
measured W + b-jet cross section is higher than the predictions in 
all pT bins and is suggestive of missing higher order corrections. 
The measured W + c-jet cross section agrees with NLO prediction 
for the low pjet

T (20–30 GeV), but disagrees towards high pjet
T . The 

disagreement may be due to missing higher order corrections and 
an underestimated contribution from gluon splitting g → cc̄ also 
observed earlier at LEP [52], LHCb [53], ATLAS [54] and D0 exper-
iments [47,55], and/or possible enhancement in the strange quark 
PDF as suggested by CHORUS [56], CMS [19] and ATLAS [18] data 
according to a recent PDF fit performed by ABKM group [57].
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Table 3
The σ(W + c)/σ (W + b) cross section ratio in bins of c(b)-jet pT together with statistical uncertainties (δstat), total systematic uncertainties (δsyst). The column δtot shows 
total experimental uncertainty obtained by adding δstat and δsyst in quadrature. The last three columns show theoretical predictions obtained using NLO QCD with the
MSTW2008 PDF set, and two MC event generators, sherpa and alpgen.

pjet
T bin (GeV) 〈pjet

T 〉 (GeV) Ratio σ(W + c)/σ (W + b)

Data δstat (%) δsyst (%) δtot (%) NLO QCD sherpa alpgen

20–30 24.3 4.3 2.9 13.3 13.6 6.2 5.4 6.2
30–40 34.3 6.6 3.6 12.7 13.2 6.1 4.7 5.7
40–50 44.3 6.1 4.6 13.9 14.7 5.8 4.2 5.4
50–70 57.1 7.2 4.2 13.8 14.4 5.3 3.7 4.9
70–150 81.2 5.7 5.4 17.5 18.3 4.5 3.0 4.1
Fig. 8. The ratio of the W +c-jet to W +b-jet production cross sections for data and 
theory as a function of jet pT . The uncertainties on the points in data include both 
statistical (inner line) and the full uncertainties (the entire error bar). Predictions 
given by NLO QCD with the MSTW2008 PDF set [50], sherpa [35] and alpgen [7]
are also shown.
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