Skip to Main content Skip to Navigation
New interface
Conference papers

Introduction to the HEPML Workshop and the HiggsML challenge

Balazs Kégl 1, 2, 3, 4 David Rousseau 2 Cécile Germain 3 Isabelle Guyon 4 Glen Cowan 5 
1 AppStat
LAL - Laboratoire de l'Accélérateur Linéaire
4 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We first describe the HiggsML challenge (the problem of optimizing classifiers for discovery significance, the setup of the challenge, the results, and some analysis of the outcome). In the second part we outline some of the application themes of machine learning in high-energy physics.
Complete list of metadata
Contributor : Sabine Starita Connect in order to contact the contributor
Submitted on : Wednesday, January 7, 2015 - 3:11:26 PM
Last modification on : Sunday, June 26, 2022 - 12:02:34 PM


  • HAL Id : in2p3-01100982, version 1



Balazs Kégl, David Rousseau, Cécile Germain, Isabelle Guyon, Glen Cowan. Introduction to the HEPML Workshop and the HiggsML challenge. HEPML workshop at NIPS14 - Neural Information Processing Systems Conference, Dec 2014, Montreal, Canada. ⟨in2p3-01100982⟩



Record views