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We present the first hybrid measurement of the average muon number in air showers at ultrahigh
energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on
174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of
the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated
reference profile of the lateral muon density distribution at the ground until it fits the data. A 10" eV
shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m
above sea level, contains on average (2.68 & 0.04 4 0.48(sys)) x 107 muons with energies larger than
0.3 GeV. The logarithmic gain dIn N, /dIn E of muons with increasing energy between 4 x 10'® eV and
5 x 10" eV is measured to be (1.029 + 0.024 4 0.030(sys)).

DOI: 10.1103/PhysRevD.91.032003

I. INTRODUCTION

Understanding the mass composition of ultrahigh
energy cosmic rays at Earth is fundamental to unveil their
production and propagation mechanisms. The interpreta-
tion of observed anisotropies [1,2] and of features in the
flux relies on it, such as the break in the power law
spectrum around 4 x 10'8 eV, and the flux suppression
above 4 x 10 eV [3].

Ultrahigh energy cosmic rays can only be observed
indirectly through air showers. The mass composition of
cosmic rays can be derived from certain air shower
observables, but the inference is limited by our theoretical
understanding of the air shower development [4]. Air
shower simulations require knowledge of hadronic inter-
action properties at very high energies and in phase space
regions that are not well covered by accelerator experi-
ments. The systematic uncertainty of the inferred mass
composition can be reduced by studying different observ-
ables (see, e.g., [5]). The slant depth X, of the shower
maximum is a prominent mass-sensitive tracer, since it can
be measured directly with fluorescence telescopes.

The number of muons in an air shower is another
powerful tracer of the mass. Simulations show that the
produced number of muons, N, rises almost linearly with
the cosmic-ray energy E, and increases with a small power
of the cosmic-ray mass A. This behavior can be understood
in terms of the generalized Heitler model of hadronic air
showers [6], which predicts

where ¢, is the critical energy at which charged pions decay
into muons and f =~ 0.9. Detailed simulations show further
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dependencies on hadronic-interaction properties, like the
multiplicity, the charge ratio and the baryon antibaryon pair
production [7,8].

To use the muon number N, as a tracer for the mass A,
the cosmic-ray energy E has to be independently measured
event by event with a small systematic uncertainty. By
taking the logarithm of Eq. (1) and computing the deriva-
tive, we obtain the logarithmic gain of muons with
increasing energy

dinA
dlnE’

dlnNﬂ_
dlnE

p+(1=p) (2)

which carries additional information on the changes in the
mass composition and is invariant to systematic offsets in
the energy scale. The dependency of the muon number N,
on the mass of cosmic rays is complementary to other
mass-sensitive observables such as the depth of the shower
maximum, X,,,. If both observables are combined, the
internal consistency of hadronic interaction models can be
tested.

We present the average number of muons in inclined
showers above 4 x 10'® eV measured with the Pierre
Auger Observatory [9], which is located in Mendoza
province, Argentina. The Pierre Auger Observatory was
completed in 2008 and covers an area of 3000 km?. It is a
hybrid instrument to detect cosmic-ray induced air show-
ers, which combines a surface detector array (SD) of 1660
water-Cherenkov stations [10] placed on a triangular grid
with 1.5 km spacing with a fluorescence detector (FD) [11].
Due to their cylindrical volume, the surface detectors are
sensitive to inclined and even horizontal particles [12,13].
On dark nights, which correspond to a duty cycle of about
13%, the longitudinal shower development and the calo-
rimetric energy of the shower are measured by the FD. It
consists of 27 telescopes with UV filters located at four
sites around the SD array, each monitoring a 30° x 28°
patch of the sky.
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Extensive air showers with zenith angles exceeding 62°
are characterized at the ground by the dominance of
secondary energetic muons, since the electromagnetic
component has been largely absorbed in the large atmos-
pheric depth crossed by the shower. Such inclined showers
provide a direct measurement of the muon number at the
ground [14]. The muon number in less inclined air showers
has also been explored [15,16], but the measurement is in
this case complicated by the need to separate the electro-
magnetic and the muonic signals in surface detectors. The
unique features of showers around 60° zenith angle further
led to the derivation of the muon production depth from the
arrival times of signals in the SD [17], which is another
powerful observable to study the mass composition and
hadronic interaction models.

We measure the muon number in inclined air showers
using the relative scale factor N,y which relates the
observed muon densities at the ground to the average
muon density profile of simulated proton-induced air
showers of fixed energy 10" eV. This approach follows
from developments that have been introduced to recon-
struct inclined showers, taking into account the rich spatial
structure of the muon distributions at the ground. The scale
factor N, is independent of the zenith angle and details of
the location of the observatory [18,19] and can be also used
as an estimator of the muon number. These developments
led to the first limit on the fraction of cosmic photons in the
EeV energy range [20] and to an independent measurement
of the energy spectrum of cosmic rays [21].

II. RECONSTRUCTION OF THE
MUON NUMBER

Inclined showers generate asymmetric and elongated
signal patterns in the SD array with narrow pulses in time,
typical for a muonic shower front. Events are selected by
demanding space-time coincidences of the signals of
triggered surface detectors which must be consistent with
the arrival of a shower front [10,22]. After event selection,
the arrival direction (6, ¢) of the cosmic ray is determined
from the arrival times of this front at the triggered stations
by fitting a model of the shower front propagation. The
achieved angular resolution is better than 0.6° above
4 % 10'8 eV [23].

Once the shower direction is established, we model the
muon density p, at the ground point 7 as

Pu(F) = Nigpy10(F: 6. @), (3)

where p,, 19 is the parametrized ground density for a proton
shower simulated at 10" eV with the hadronic interaction
model QGSJETII-03 [24]. An example is given in Fig. 1. It
was shown in detailed studies [25,26] that the attenuation
and shape of p, o depend very weakly on the cosmic-ray
energy E and mass A for showers with 6 > 60°, so the
factorization in Eq. (3) is a good approximation for showers
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MC: p QGSJET 1103 o
E =10"YeV 99
0 =80°

=07 1350 . 45°

205° : 315°

270°

FIG. 1. Expected number of muon hits per SD station as
predicted by the reference profile p,, 9, for & = 80°and ¢ = 0°,in
cylindrical coordinates around the shower axis. The radial density
roughly follows a power law in any given direction. The
quadrupole structure is generated by charge separation in Earth’s
magnetic field. The weaker dipole structure is caused by
projection effects and muon attenuation. Early (late) arriving
particles are on the right (left) side in this projection.

above 10'® eV. It was also shown that the lateral shape
of p, 19 is consistently reproduced by different hadronic
interaction models and air shower simulation codes. The
lateral shape at the ground is mainly determined by
hadronic interactions at beam energies of up to a few
hundred GeV, in which models are constrained by data
from fixed target experiments. The strong zenith angle
dependence is factorized out into p,, 19 in Eq. (3), so that the
scale factor N g at a given zenith angle is a relative measure
of the produced number of muons N, addressed in Eq. (1).

The scale factor N9 is inferred from measured signals
with a maximum-likelihood method based on a probabi-
listic model of the detector response to muon hits obtained
from GEANT4 [27] simulations with the Auger Offline
software framework [28]. A residual electromagnetic signal
component is taken into account based on model predic-
tions (typically amounting to 20% of the muon signal) [29].
The procedure is described in full detail in Ref. [30].

The reconstruction approach was validated in an end-
to-end test with three sets of simulated events. The first set
consists of 100,000 proton and 100,000 iron showers
generated with AIRES [31], using QGSJeTO1 [32].
Showers following an E~2% energy spectrum and an
isotropic angular distribution were simulated at a relative
thinning of 107°. The second (third) set consists of 12,000
proton and 12,000 iron showers generated using CORSIKA
[33], with QGSJETII-04 [34] (Epos LHC [35]), with the
same thinning and angular distribution and an E~! energy
spectrum. Showers have subsequently undergone a full
simulation of the detector, with random placement of
impact points in the SD array. Simulated and real events
were reconstructed with the same procedure.
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FIG. 2 (color online). Average relative deviation of recon-
structed muon content N9 from the true muon content Rf,/lc (as
defined in the text) for proton and iron showers. The shaded area
indicates the systematic uncertainty of N9. The solid black line
represents a second order polynomial adjusted to describe the
mean bias.

For each MC event we compute the ratio RYC =
N,/N, 19 by counting the total number of muons N, at
the ground in the simulation and dividing by the total
number of muons N, ;9 = [dy [p,odx obtained by
integrating the reference model. We compare this ratio
with the value of Ny obtained from the fit of Eq. (3).

The relative deviation of Ny from RYC is shown in
Fig. 2 to be within 5% for events with RY' > 0.6. This
confirms the factorization hypothesis of Eq. (3), the
approximate universality of the chosen reference profile
and validates the reconstruction method. The largest source
of systematic bias is the remaining model dependence of
the reference profile p,, 19 (7). To get an unbiased estimator,
we correct the measured value N9 for the average bias. We
use a second order polynomial as indicated in Fig. 2 to
reproduce RMC to within 3% for the latest models. We
consequently call the corrected estimator R, in the
following.

We constructed in this way an unbiased estimator of
the total number of muons at the ground that is nearly
independent of model assumptions and the zenith angle of
the shower. The value R, = 1 corresponds to 2.148 x 107
(1.202 x 107, 5.223 x 10°) muons with energies above
0.3 GeV (Cherenkov threshold for muons in water) that
reach the Auger site at an altitude' of 1425 m at a shower
inclination of 60° (70°, 80°). By combining the model
uncertainty with that of the simulated muon response of the

'Altitudes are given with respect to the WGS 84 reference
ellipsoid [36].
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detectors at € > 60° [37], we conservatively estimate the
systematic uncertainty of R, to be 11%.

III. DATA SET AND EVENT SELECTION

We proceed to study the muon content R, of inclined
showers as a function of the cosmic-ray energy E. The
calorimetic energy E.,; of the shower is measured inde-
pendently by the FD in a subset of hybrid events recorded
simultaneously in FD and SD. The total energy E is
computed by adding the average invisible energy (Ei,,),
which has been re-evaluated recently based on data [38].
Since R, is sensitive to the cosmic-ray mass A, we
make sure not to bias the selected sample towards certain
masses by a careful selection of the accepted shower
geometries.

The data set consists of hybrid events with zenith angles
62° < 0 < 80° and at least four triggered stations. Only
events well contained in the SD array are considered; the
station closest to the fitted core and its six adjacent stations
need all be active. The FD measurements have to pass
quality cuts designed to ensure an accurate reconstruction
of arrival direction and longitudinal profile. The cuts are
adapted versions of those used in calibration of events with
6 < 60° [39]. The SD station used in the FD geometrical
reconstruction must be closer to the core than 750 m. Only
events with good atmospheric conditions are considered:
the vertical aerosol optical depth needs to be measured and
has to be less than 0.1; if cloud information is available we
require a cloud coverage below 25% in the field of view, a
distance from the cloud layer to the measured profile larger
than 50 gecm™2, and a thickness of the cloud layer less
than 100 gcm™2. The few remaining longitudinal profiles
affected by clouds are rejected by requiring a small y?-
residual in the Gaisser-Hillas fit, (3> — ngof)/v/2Mdor < 3»
and the parameter X, of the fitted Gaisser-Hillas profile
must be negative.

In addition to the quality selection criteria, a fiducial
cut on the FD field of view is applied to ensure that it is
large enough to observe the depth of shower maximum
with equal probability within the range of plausible
values. This cut also ensures a maximum accepted
uncertainty of the depth of the shower maximum of
150 gcm™2, and a minimum viewing angle of light in the
FD telescope of 25°. Finally, we accept only energies
above 4 x 10'® eV to ensure a trigger probability of 100%
for FD and SD.

The selection is applied to inclined events recorded from
1 January 2004 to 1 January 2013. Out of 29722 hybrid
events, 174 events are accepted. Due to the geometrical
acceptance of the SD and the fiducial cut on the FD field of
view, the zenith angle distribution peaks near 62°. The
average zenith angle is (66.9 £ 0.3)° and the highest energy
in the sample is (48.7 +2.9) x 10'8 eV.
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IV. DATA ANALYSIS

The muon content R, of individual showers with the
same energy E and arrival direction varies. This is caused
by statistical fluctuations in the development of the
hadronic cascade, and, in addition, by random sampling
from a possibly mixed mass composition. We will refer to
these fluctuations combined as intrinsic fluctuations. In the
following, we will make statements about the average
shower, meaning that the average is taken over these
intrinsic fluctuations. Detector sampling adds Gaussian
fluctuations to the observed value of R, on top of that. The
statistical uncertainties of R, and E caused by the sampling
are estimated by the reconstruction algorithms event by
event. We will refer to them as detection uncertainties.

From Eq. (1) we expect that the average number of
produced muons, which is proportional to (R,), and the
cosmic-ray energy E have a relationship that is not far from
a power law. Therefore we fit the parametrization

(R,) = a(E/10" eV)? (4)

"
to the selected data set, using a detailed maximum-
likelihood method that takes the mentioned fluctuations
into account. Intrinsic fluctuations of R, are modeled with a
normal distribution that has a constant relative standard
deviation 6[R,]/R,. This model is found to be in good
agreement with shower simulations. The a parameter of
the fitted curve represents the average muon content
(R,)(10" eV) at 10" eV and the b parameter the loga-
rithmic gain d(InR,)/dInE=dInN,/dInE of muons
with growing energy. The maximum-likelihood method
was validated with a fast realistic simulation of hybrid
events and shown to yield unbiased values for a and b. The
technical aspects will be presented in a separate paper.

The data and results of the fit are shown in Fig. 3. We
obtain

a=(R,)(10" eV) = (1.841 + 0.029 + 0.324(sys)), (5)
b=d(InR,)/dInE = (1.029 £ 0.024 + 0.030(sys)), (6)
o[R,)/R, = (0.136 £ 0.015 + 0.033(sys)).  (7)

At a zenith angle of 67°, this corresponds to (2.68 £ 0.04 £
0.48(sys)) x 107 muons with energies larger than 0.3 GeV
that reach 1425 m altitude in an average 10'° eV shower.

The fitted model agrees well with data. To obtain a
goodness-of-fit estimator, we compute the histogram
of the residuals (R, —(R,))/(R,) and compare it with
its expectation g((Ry - <Rﬂ>)/<RM>) = ff((Rll - <Rﬂ>(E>)/
(R,)(E),E)dE computed from the fitted two-dimensional
probability density function f(R,.E). Histogram and
expectation are shown in the inset of Fig. 3. The
comparison yields a reduced chi-square value y?/ngos =
4.9/10 for the fitted model.
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104 Fit: (Ry,) = a(E/10"eV)?
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FIG. 3. The selected hybrid events above 4 x 10'® eV and a fit
of the power law (R,) = a(E/10" eV)’. The error bars indicate
statistical detection uncertainties only. The inset shows a histo-
gram of the residuals around the fitted curve (black dots) and for
comparison the expected residual distribution computed from the
fitted probability model that describes the fluctuations.

The systematic uncertainty of the absolute scale
(R,)(10" eV) of 18% combines the intrinsic uncertainty
of the R,-measurement (11%) and the uncertainty of the
Auger energy scale (14%) [38]. The systematic uncertainty
of the logarithmic gain d(InR,)/dInE of 3% is derived
from variations of the FD selection cuts (2%), variations of
the bias correction of R, within its systematic uncertainty
(1%), variations of the distribution assumptions on the
intrinsic R,-fluctuations (1%) and by assuming a residual
zenith-angle dependence of the ratio R,/E that cannot be
detected within the current statistics (0.5%). The third
parameter o[R,]/R,, the relative size of the intrinsic
fluctuations, is effectively obtained by subtraction of the
detection uncertainties from the total spread. Its systematic
uncertainty of 40.033 is estimated from the variations
just described [£0.014(sys) in total], and by varying
the detection uncertainties within a plausible range
[£0.030(sys)].

At 0 = 67°, the average zenith angle of the data set,
R, =1 corresponds to N, = 1.455 x 107 muons at the
ground with energies above 0.3 GeV. For model compar-
isons, it is sufficient to simulate showers at this zenith angle
down to an altitude of 1425 m and count muons at the
ground with energies above 0.3 GeV. Their number should
then be divided by N, = 1.455 x 107 to obtain RY'°, which
can be directly compared to our measurement.

Our fit yields the average muon content (R,,). For model
comparisons the average logarithmic muon content,
(InR,), is also of interest, as we will see in the next
section. The relationship between the two depends on
shape and size of the intrinsic fluctuations. We compute
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(InR,) numerically based on our fitted model of the
intrinsic fluctuations:

(InR,)(10"° eV) = A “InRN(R,)dR,
=0.601 +0.0167 0087 (sys),  (8)

where N (R,) is a Gaussian with mean (R,) and spread
o[R,] as obtained from the fit. The deviation of (In R,) from
In(R,) is only 2% so that the conversion does not lead to a
noticeable increase in the systematic uncertainty.

Several consistency checks were performed on the data
set. We found no indications for a seasonal variation, or for
a dependence on the zenith angle or the distance of the
shower axis to the fluorescence telescopes.

V. MODEL COMPARISON AND DISCUSSION

A simple comparison of our data with air showers
simulated at the mean zenith angle 6 = 67° with the
hadronic interaction models QGSJEeTII-04 and Epros
LHC is shown in Fig. 4. The ratio (R,)/(E/10" eV)
cancels most of the energy scaling, and emphasizes the
effect of the cosmic-ray mass A on the muon number. We
compute the ratio from Eq. (4) (line), and alternatively by a
binwise averaging of the original data (data points). The

2.4

2.2 — - —

2.0 1 -
£ 18] M
) b i
o el TS~ L
2 1] TeelTss o
— — — e
= . el
M o14] — Tl Fe
~
= STl
E 12, e

® Augerdata R
104 ~°° Eros LHC
[l QGSJET 11-04
e A10‘19A * 1020
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FIG. 4 (color online). ~Average muon content (R,) per shower
energy E as a function of the shower energy E in double
logarithmic scale. Our data is shown bin by bin (circles) together
with the fit discussed in the previous section (line). Square
brackets indicate the systematic uncertainty of the measurement;
the diagonal offsets represent the correlated effect of systematic
shifts in the energy scale. The grey band indicates the statistical
uncertainty of the fitted line. Shown for comparison are theo-
retical curves for proton and iron showers simulated at 6 = 67°
(dotted and dashed lines). Black triangles at the bottom show the
energy bin edges. The binning was adjusted by an algorithm to
obtain equal numbers of events per bin.
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two ways of computing the ratio are visually in good
agreement, despite minor bin-to-bin migration effects that
bias the binwise method. The fitting approach we used for
the data analysis avoids the migration bias by design.

Proton and iron showers are well separated, which
illustrates the power of (R,) as a composition estimator.
A caveat is the large systematic uncertainty on the absolute
scale of the measurement, which is mainly inherited from
the energy scale [38]. This limits its power as a mass
composition estimator, but we will see that our measure-
ment contributes valuable insights into the consistency of
hadronic interaction models around and above energies of
10" eV, where other sensitive data are sparse.

A hint of a discrepancy between the models and the data
is the high abundance of muons in the data. The measured
muon number is higher than in pure iron showers, sug-
gesting contributions of even heavier elements. This
interpretation is not in agreement with studies based on
the depth of shower maximum [40], which show an average
logarithmic mass (InA) between proton and iron in this
energy range. We note that our data points can be moved
between the proton and iron predictions by shifting them
within the systematic uncertainties, but we will demonstrate
that this does not completely resolve the discrepancy. The
logarithmic gain d(InR,)/dInE of the data is also large
compared to proton or iron showers. This suggests a
transition from lighter to heavier elements that is also seen
in the evolution of the average depth of shower maximum.

We will now quantify the disagreement between model
predictions and our data with the help of the mass
composition inferred from the average depth (X,..) of
the shower maximum. A valid hadronic interaction model
has to describe all air shower observables consistently. We
have recently published the mean logarithmic mass (In A)
derived from the measured average depth of the shower
maximum (X,,.c) [40]. We can therefore make predictions
for the mean logarithmic muon content (InR,) based on
these (InA) data, and compare them directly to our
measurement.

We consider QGSJET01, QGSJETII-03, QGSJETII-04,
and Epos LHC for this comparison. The relation of (X .x)
and (InA) at a given energy E for these models is in good
agreement with the prediction from the generalized Heitler
model of hadronic air showers,

<Xmax> = <Xmax>p +fE<1nA>v (9)

where (X.), is the average depth of the shower maxi-
mum for proton showers at the given energy and fr an
energy-dependent parameter [4,41]. The parameters
(Xmax), and fg were computed from air shower simula-
tions for each model.

We derive a similar expression from Eq. (1) by
substituting N, , = (E/£.)P and computing the average
logarithm of the muon number
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(InN,) =(InN,), + (1 - f)({InA) (10)

(InN,)g. = (In Nﬂ>p

p=1= In56 ' (11)

Since N, « R,, we can replace InN, by InR,. The same
can be done in Eq. (2), which also holds for averages due to
the linearity of differentiation.

We estimate the systematic uncertainty of the approxi-
mate Heitler model by computing f from Eq. (11), and
alternatively from d(InR,),/dInE and d(InR,)g./dInE.
The three values would be identical if the Heitler model was
accurate. Based on the small deviations, we estimate
0Oys|f] = 0.02. By propagating the systematic uncertainty
of 3, we arrive at a small systematic uncertainty for the
predicted logarithmic muon content of oy [(In R,)] < 0.02.

With Egs. (9)—(10), we convert the measured mean depth
(Xmax) into a prediction of the mean logarithmic muon
content (InR,) at & = 67° for each hadronic interaction
model. The relationship between (X,,,,) and (InR,) can be
represented by a line, which is illustrated in Fig. 5. The
Auger measurements at 10'° eV are also shown. The
discrepancy between data and model predictions is shown
by a lack of overlap of the data point with any of the
model lines.

The model predictions of (InR,) and d(InR,)/dInE
are summarized and compared to our measurement in
Figs. 6-7, respectively. For QGSJETII-03, QGSJETII-04,
and Epos LHC, we use estimated (InA) data from
Ref. [40]. Since QGSJETO1 has not been included in that
reference, we compute (InA) using Eq. (9) [4] from the

1.0 ‘ ‘ ‘ : : :
© Epos LHC E=10YeV,0 = 67°
o QGSJET 11-04

0.8 < QGSJET 11-03 —
¥ QGSJETO1

0.6 [ ] Auger

data

680 700 720 740 760 780 800 820
<Xmax> / gcm_z

FIG. 5 (color online). Average logarithmic muon content
(InR,) (this study) as a function of the average shower depth
(Xmax) (obtained by interpolating binned data from Ref. [40]) at
10" eV. Model predictions are obtained from showers simulated
at @ = 67°. The predictions for proton and iron showers are
directly taken from simulations. Values for intermediate masses
are computed with the Heitler model described in the text.
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FIG. 6 (color online). Comparison of the mean logarithmic
muon content (InR,) at 10" eV obtained from Auger data with
model predictions for proton and iron showers simulated at
6 = 67°, and for such mixed showers with a mean logarithmic
mass that matches the mean shower depth (X, ,.) measured by
the FD. Brackets indicate systematic uncertainties. Dotted lines
show the interval obtained by adding systematic and statistical
uncertainties in quadrature. The statistical uncertainties for proton
and iron showers are negligible and suppressed for clarity.

latest (X.) data [40]. The systematic uncertainty of
the (InR,) predictions is derived by propagating the sys-
tematic uncertainty of (InA) [£0.03(sys)], combined with
the systematic uncertainty of the Heitler model [+0.02(sys)].
The predicted logarithmic gain d(InR,)/dIn E is calculated
through Eq. (2), while dlnA/dInE is obtained from
a straight line fit to (InA) data points between 4 x 108
and 5x 10" eV. The systematic uncertainty of the
d(InR,)/dIn E predictions is derived by varying the fitted
line within the systematic uncertainty of the (InA) data
[£0.02(sys)], and by varying B within its systematic
uncertainty in Eq. (2) [£0.005(sys)].

The four hadronic interaction models fall short in
matching our measurement of the mean logarithmic muon
content (InR,). QGSJETII-04 and Epos LHC have been
updated after the first LHC data. The discrepancy is smaller
for these models, and Epos LHC performs slightly better
than QGSJETII-04. Yet none of the models is covered by
the total uncertainty interval. The minimum deviation is
1.40. To reproduce the higher signal intensity in data, the
mean muon number around 10" eV in simulations would
have to be increased by 30 to 80%][}](sys)%]. If on the
other hand the predictions of the latest models were close
to the truth, the Auger energy scale would have to be
increased by a similar factor to reach agreement. Without a
self-consistent description of air shower observables, con-
clusions about the mass composition from the measured
absolute muon content remain tentative.
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FIG. 7 (color online). Comparison of the logarithmic gain
d(InR,)/dInE between 4 x 10'® and 5 x 10" eV with model
predictions in the same style as in Fig. 6.

The situation is better for the logarithmic gain
d(InR,)/dIn E. The measured value is higher than the
predictions from (In A) data, but the discrepancy is smaller.
If all statistical and systematic uncertainties are added in
quadrature, the deviation between measurement and
(InA)-based predictions is 1.3 to 1.46. The statistical
uncertainty is not negligible, which opens the possibility
that the apparent deviation is a statistical fluctuation. If we
assume that the hadronic interaction models reproduce the
logarithmic gain of real showers, which is supported by the
internal consistency of the predictions, the large measured
value of d(InR,)/dInE disfavors a pure composition
hypothesis. If statistical and systematic uncertainties are
added in quadrature, we observe deviations from a pure
proton (iron) composition of 2.2¢ (2.60).

VI. CONCLUSIONS

We presented the first measurement of the mean muon
number in inclined air showers with 0 > 62° between
4 x 10" and 5 x 10" eV and its logarithmic gain with
energy, based on data from a hybrid detector. We explored
the sensitivity of the muon number to the cosmic-ray mass
composition and challenged predictions of the muon
number from hadronic interaction models. We observe a
muon deficit in simulations of 30 to 80%1](sys)% at
10" eV, depending on the model. The estimated deficit
takes the mass composition of cosmic rays into account, by
comparing our measurement to the average muon number
in simulated air showers which match the average depth of
shower maximum observed in the data.

Model predictions of the logarithmic gain of muons with
rising energy are within the uncertainties compatible with
the measured value. The high gain of muons favors a
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transition from lighter to heavier elements in the considered
energy range. The hypothesis of a constant proton compo-
sition, supported by measurements of the depth of shower
maximum by the Telescope Array [42] in the northern
hemisphere, is disfavored with respect to our result at the
level of 2.2¢.

Our measurement of the muon number combined with
measurements of the depth of shower maximum provides
important insights into the consistency of hadronic inter-
action models. The hadronic and muonic components of
air showers are less well understood than the electromag-
netic component, but all three are physically connected.
Improvements in the description of the muonic component
will also reduce the systematic uncertainty in the simulation
of the other components.

This result is compatible with those of independent
studies for showers with 8 < 60° [15], in which different
methods have been used to derive the fraction of the signal
due to muons at 1000 m from the shower core using the
temporal distribution of the signals measured with the
SD array.

We have demonstrated how the mass composition of
cosmic rays can be inferred from the muon number
measured at the ground. To fully explore this potential,
the apparent muon deficit in air shower simulations needs
to be resolved and the uncertainty of the muon measure-
ment further reduced. The main contributions are the
systematic uncertainties in the simulated response of the
Auger SD to inclined muons, and the systematic uncer-
tainty in the absolute energy scale. We expect to reduce
both of them in the future, which will significantly enhance
the constraining power of the muon measurement on the
mass composition.
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