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Pairing phase transition: A Finite-Temperature Relativistic Hartree-Fock-Bogoliubov study
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Background: The relativistic Hartree-Fock-Bogoliubov (RHFB) theorgshrecently been developed and it provides a unified
and highly predictive description of both nuclear mean fatd pairing correlations. Ground state properties of finitelei
can accurately be reproduced without neglecting exchapgek] contributions.

Purpose: Finite-temperature RHFB (FT-RHFB) theory has not yet beevebtbped, leaving yet unknown its predictions for
phase transitions and thermal excitations in both statdensakly bound nuclei.

Method: FT-RHFB equations are solved in a Dirac Woods-Saxon (DWSislmonsidering two kinds of pairing interactions:
finite or zero range. Such a model is appropriate for desggibiable as well as loosely bound nuclei since the basesshate
correct asymptotic behaviour for large spatial distribos.

Results: Systematic FT-RH(F)B calculations are performed for sgveemi-magic isotopjsotonic chains comparing the
predictions of a large number of Lagrangians, among whiehRi{A1, PKO1 and DD-MEZ2. It is found that the critical
temperature for a pairing transition generally follows thke T = 0.60A(0) for a finite-range pairing force and = 0.57A(0)
for a contact pairing force, wher®(0) is the pairing gap at zero temperature. Two types of pgipersistence are analysed:
type | pairing persistence occurs in closed subshell nudghéie type Il pairing persistence can occur in loosely boandlei
strongly coupled to the continuum states.

Conclusions: This first FT-RHFB calculation shows very interesting featuof the pairing correlations at finite temperature
and in finite systems such as pairing re-entrance and paigrgistence.

PACS numbers: 05.70.Ce, 21.60.Jz, 24.10.Pa, 64.60.Ht

I. INTRODUCTION in rare earth transition nuclei the interplay with deforioat
induces shape transitions in the superfluid phase, leading t

The thermodynamical properties of excited nuclei havetherati_o_Tc/A(O)_:OB? for protons and O.63forneutr0[2Q].
addition, pairing correlations are expected to play an im

drawn over the last decades a renewed attention due to tH@

advanced accurate measurements of level densities at low e&ortant.rc_)le in the.decay of c_ompound _nuclei formed in _heavy
citation energied [115]. Pairing correlations play an sag 100 collisions, as illustrated in the seminal work presdrite

role in many Fermion systems and have thus a strong ianuRef' [21]. More recently, the_ BCS and HF.B approache_s have
ence on nuclear structure at low excitation enerdies [6-10P€eN extended to self-consistent mean field models in order
Pairing correlations in finite systems such as nuclei or \&lign 0 ||mpr?\{%§|j4escnptlol? of .ch pfa|r|ngdtrans||t|_onh|n sphhe
Seitz cells, and in infinite ones such as in neutron star mat&' NUC'e! h g aswe d‘.”‘sé élc_)rzmge | nucier w erﬁ;} ape
ter, may exhibit direrent behaviors reflected in the specific ransitions have been predicted|[ . In summary, the ra

heat and the level density J1115]. Moreover, the phase tran! ¢/A(0) lies in the interval (50— 0.60, where the uncertainty

sition is a complex and rich phenomenon, where pairing repriginates mainly from the detailed level structure of spda

entrance in asymmetric matter, in odd-nuclei, rotating&iuc and deformed nuclei which depends itself on models.

and even in doubly magic nuclei close to the drip line may |t is worth noticing that in most of the quoted studies, the
occur [6/14] 16, 17]. The interplay between temperature andalculations were performed either on the harmonic oscilla
shell dfects in superfluid systems, giving rise to re-entranceor basis, or within the non-relativistic framework. Due to
or its opposite phenomenon — suppression, still remains tehe limitation of the harmonic oscillator basis in giving an
be studied. appropriate asymptotic behavior of the single particle.}s.
The competition between temperature and pairing correlawave functions, the nucleon densities at large distance con
tions in nuclei at low excitation energies has been studied f verge very slowly with respect to the size of the basis. The
several decades, with the pioneering works based on finitesituation becomes even more serious in the weakly bound nu-
temperature BCS (FT-BCS) theofy[18] and finite-tempematur clei close to the drip line [30, 81]. Nowadays a realistiariea
Hartree-Fock-Bogoliubov (FT-HFB) theorly [19]. It was pre- work is to perform the calculations in an appropriate bdsis t
dicted that the critical temperatufg; for pair correlation can provide a reasonable description of both the overall and
guenching could be expressed, as in uniform matter, as asymptotic behaviors of the density profiles, for instaree t
function of the average pairing gap at zero tempera(®  Woods-Saxon (WS) basis [32./33]. In some applications, the
following the relations:T; = 0.57A(0) for a constant pairing small component of the Dirac spinors were usually neglected
force [18]. The more evolved Bogoliubov approach has latein determining the relativistic Hartree-Bogoliubov (RH&)d
been applied to finite nuclei confirming the existence of sucHinite-temperature RHB (FT-RHB) pairing tensor|[24, 34]. We
relations betweefi. andA(0). For the simplified degenerate therefore present, in this paper, the first fully RHFB calcu-
model, the relation was found to fig = 0.50A(0) [19], while  lations at finite temperature (FT-RHFB): both the large and
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small components of the Dirac spinors contribute to the-pairwith the RHF model. It provides a unified and self-consistent
ing channel, and the contributions of the Fock terms are-natudescription of both particle-holepf) and particle-particle
rally included. In addition, the Dirac WS (DWS) basdisl[32] is (pp) channels, at the mean field level.
employed to better describe weakly bound nuclei.

This paper is organized as follows. The general formalism
of the FT-RHFB theory is outlined in Secl II. In S&c] I, we B. Thermodynamics and statistical mechanics
compare the results obtained witHfdrent covariant density

functional (CDF) model%%hm using the finite- and zero-  The thermodynamical properties of a system are calculated
range pairing interaction 42]. Systematic FT-RHFB ca here in the canonical ensemble. For a statistitdiody sys-
culations are performed for several isotofseones. More- tem at finite temperatur€, the equilibrium state is obtained

over, the questions of pairing persistence and re-entfaimee  from the variational principle applied to the grand canahic
nomena with increasing temperature are addressed. Finallyotential [19,[21)47],

the main conclusions are drawn in Sed. IV.
QT,A)=F-AN=E-TS-aN, (3)

whereF is the free energ\ys the entropyE the total energy,
andA the associated Lagrange multiplier. Namely, the varia-
tion

We briefly recall here the general features of RHFB the-
ory and thermodynamics, then their generalization to theefin 0Q=0 (4)
temperature case.

IIl. GENERAL FORMALISM AND NUMERICAL DETAILS

defines the density operat@r with trace equal to 1, and the
grand partition functioZ, respectively read as:

A. RHFB framework D = Z texp—B(H - AN)}, (5a)
Z = Tr[exp{—B(H — AN)}], (5b)
The relativistic Hartree-Fock (RHF) theoty [35] 40] 43] is . _ .
designed to describe bulk and s.p. nuclear properties.athe r Where N is the particle number operator, agd= T™". As
evant degrees of freedom are the isospin doublet nucleeh fieft i conventional, the temperatufeis given in energy units.
Yn(p), the meson fields which mediate the nuclear interaction§0r arbitrary operatad, the thermal average over the excited
(two isoscalar fieldsr andw, two isovector fieldp andx),  States populated at finite temperature is defined as:
and the photon fieldX) that accounts for the electro-magnetic B
interaction. A generalfective Lagrangian is constructed in (©0)=Tr(DO), ©)

terms of various currents or densitiegr[y) wherer € {17} \nere the trace is taken over all possible excited states. At
trix 7 corresponds to the isovector ones), dhdenotes the  particles are therefore expressed as

Dirac matriceq1,y,,ysyu, o). Applying the standard vari-
ations of the Lagrangian, one may obtain the field equations E =(H)=Tr(DH), (7a)
for nucleon, meson and photon fields (resp. the Dirac, Klein- S =—(nD) = -Tr(DInD), (7b)
Gordon and Proca equations), and the continuity equations N = (N} = TH(DN) (70)
leading to the Hamiltonian. With the creation and annifolat h h ’
operators¢', ) defined from stationary solutions of the Dirac
equation, the #ective HamiltonianH is formally expressed

in the second quantized form as C. Extension to finite temperature

1 The FT-RHFB theory is a straightforward generalization
_ FoT Tt ¢
H= Z G CiTij + 2 Z Gi CjGi%kVijy- (1) of the RHFB theory that readily incorporates a statistical e
. ki semble of excited states. At the finite-temperature meaah fiel
whereT;; represents the Dirac kinetic energy, and the two-evel, the density operator is approximatediby [19]:

body termsVij correspond to dierent types of meson- (or
photon-) nucleon couplings denoted by In the mean-field

approximation, the energy functionélis obtained by taking

the expectation value of the Hamiltonig on a Slater de- wheref, is the Fermi-Dirac distribution
terminant, where both the Hartree and Fock terms are consid-

ered. The RHFB theory [44-46] is deduced by incorporating f, = (Ny) = _1
the Bogoliubov transformation 1+€fEa

R Notice that, forT = 0 we havef, = O for all statesa. The
@ _ Yy Yyl c© ) guasiparticle energk, is obtained as the solution of the FT-
o) \wv wu)lc RHFB equations, see Eq.{11).

D =] [falNe + (1= f)(A-N)] (8)

9)



3

In spherically symmetric systems the Dirac-Bogoliubov +(g¢FUb)r%§§(w;r,r’)(g¢GUb)r/ fb], (14a)
spinor can be written as @ 652 X ,
X,y = T0 T (@sFvo)r 23 (it 1)(GoF e (1 o)

Yu, () = %(FiGUa(r) A] D1 (0), (10a) y Xe, .,
Ua(N)o-F g +(9sFup)r Zzg (Mg .1 )(@sFuy)r fo . (14b)
o, (1) = %(Ff(vr)g’ f)@j:n(f))(%(f), aon) YEE = X TaH{ @G A i@ Gw 1
whereGy andFy correspond to the radial parts of the up- +(96GUL ) Z,a8 (M 1.1 )(GsGuy )1 To (14c)

per and lower components, respectiv&@j{m(f) is the spinor YOu 1y =S 2272[(0.Gu ) 2 F (Mo 1 1) (A Ey oo (1 — f
spherical harmonics, ang (v) is the isospinor. Here, the Fa (1) Zb: 2ol (@G 75 (M) (@) (1~ o)
subindexy = (a,m) = (n,l, j, m) contains the quantum numbers \CH ,

n (number of nodes of the upper compon&ugyy)), | (orbital H(0sGuU)r A, (M 7. 1)(GoF U ) fb]' (14d)

angular momentum), angm (total angular momentum and In th ions7® d he i inf . f
its projection to the axis). n these expressionsy, denotes the isospin factors, for

The minimization ofQ with respect taD leads to the FT- isoscalar channels and-25a for isovector channelstZb =

RHFB equations, 2jp+1is the degeneracy number of the corresponding energy

level, g4 represents the coupling constants, &g, denote
fdr’ h(r,r’)  A(r,r’)\(yu(r’) the multipole expansions of meson propagators. [Eq. (14) is a

A1) hir,r’) ) yv() generalization at finite temperature of the expressioregiv

A+E 0 \(4u() Ref. [45].
- ( )( v ) (11) Next, we consider the pairing fielr,r’) of Eq. (11),
0 A-EJ\yy(r) 1
which are formally identical to the RHFB equatiohsl[44—46]. Aa(r,r) =~ Zvé’bp(r,r’)xb(r,r’) (15)
b

The Dirac Hamiltoniam(r,r’) contains the kinetic enerdy*,
the direct local potentidi®, and exchange non-local potential \ith the pairing interactio’/PP and the pairing tensox. If

h®, we take a finite-range pairing force, the pairing tensauill
h(r.r") = [a- p+AM]S(r —r’), (12a) readas
hO(r.r’) = [Z1(F)ys + Zo(r) +BZs(N)]6(r 1), (12b) ka(r.1") = J2{[Gva(N)GUL (") + Fu,(NFu, ()] (16)
hE(r,r) = (YG("") YF(”/)]. (120) HGUL NGV + Fu,(n)Fva ()]} (1- 2.
Xs(r.r’) Xg(r.r) ¢ : R

In the above expressions, the local self-energigszo, and ~ Notice that the temperature dependence of the solution
T contain the contributions from the Hartree (direct) terms(Eai¥u,.¥v,) of the FT-RHFB Eq. [(II1) comes implicitly
and the rearrangement terms, which depend directly on varfirough the quasiparticle densitiggs;, nonlocal potentials
ous local quasiparticle densities. They are the vectotasca X(Y) and pairing tensat.

and tensor densities, respectively, For pra_lc_tical eva;tlu_ation of the pairing correlations, an av
1 erage pairing gap is introduced and defined as the ratio of the
ou(r) = yoee Z E{[G\Z/a(r) + F\Z,a(r)](l— fa) pairing energy over the pairing tensor,
e o _
r(Ak
+[G3, (1) + F3, (0] fa). (13a) A= (17)
1 2(1~2 2 i ity i
ps(N) = —= > JA[GE (r)—F& (N](A- fa) This quantity is calculated for neutrons,) and protons4,)
° 4nr? Za: a{ Va Va b separately and it is discussed in detail in the next section.
2 (2 The total FT-RHFB energ\e of the system is calcu-
+1Gu, (0~ Fu, 0] fa}’ (13b) lated with the microscopic two-body center-of-mass correc
1 . i
o) = yo=s Z E{ZGVa(r)FVa(r)(l— £2) tion [48]. The entropys of the system can be evaluated from
a
S(T)=- folnfy+(1-f)In(1-f,)|, (18)
+2Guy, (N)Fu, (1) fa)- (13c) za: | ]

Notice that, at the limitT = 0, wheref, = 0 Egs. [I3g)- and the specific heat is defined by
(I34d) give back the usual expressiohs! [45]. The nonlocal
self-energieXg(r) andYgF) come from the Fock (exchange) Cu(T) = TaS(T) (19)

terms, oT IN

Xg')(r, 1) = Z %%Ig[(g¢Fvb)r@;€(%; r1')(9sGv,)r(1- fp) ~ They correspond to the first and second derivative of the free
a 5 energyF, respectively.



The integro-diferential FT-RHFB Eq[{11) is solved by us- 20T 71— 71 —
e integro-diferentia q[(11) is solved by us [ 11 FERHFBCS ]

ing a DWS basis [32] with a radial cutfoR = 26 fm. The
numbers of positive and negative energy states in the basis e |
pansion for each s.p. angular momentdnj)(are chosento < 45
be 36 and 12, respectively. We have verified that this trun<
cation scheme provides ficient numerical accuracy for the :‘ 0.8
description of weakly bound nuclei (Pb isotopes).

16 |

| —o—DDCI
I - - - Analytical
M (a)
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In this section, we compare the predictions based on sev-
eral models which are determined by the model Lagrangiag|g, 1. (Color online) The neutron pairing gaps'#Sn as a func-
as well as the pairing interaction. The latter interact®®it  tion of temperature, calculated with PKO2 (black) and DD-ME
ther a finite-range Gogny D1S interaction![41] or a density-(blue) corresponding to flerentMy. In the pairing channel, we

dependent contact interaction (DDCI) of the fotml [42]: compare finite-range D1S (filled circles) and contact DD@hgey
1 ) circles) forces. The analytical results (dashed lineskyése shown.
N\ (] _ Pl e Notice that here, we took the factgr= 1 for the Gogny D1S force,

v(r.r= V02(1 Po) (1 00 )5(r r). (20) and for the DDCI pairing, we have taken the following values\fy

(in MeV.fm=3): 335 (PKO2), and 342 (DD-ME2) for the RH(F)B

Notice that the DDCI requires a regularisation scheme. Wend BCS calculations. For the DDCIx force used in BCS, we took
have considered in this study a simple citstheme, defined for Vg (in MeV.fm=3): 526 (PKO2) and 539 (DD-ME2).
to be 100 MeV in quasiparticle space, and the streigtfs
adjusted to reproduce the same average pairing gap as that . . .
obtained with the Gogny D1S interaction. These values ofit Z&ro temperaturé:/An(0) is also studied as a function of
Vi will be given with the results hereafter. The D1S pairing "€ Model, varying either the Lagrangian or the type of pair-
interaction depends slightly on the mass: A general fagtor N interaction. Finally, a more systematic study of théical
is therefore introduced for its strength, as in Refs| [53, 54 temperature is performed on a set of semi-magic nuclei.
We consider 6 dferent model Lagrangians which are given
in Table[l. Some of the bulk properties of nuclear matter de-
termined by these Lagrangians are also shown. They are gen-
erally compatible with the expected gross properties ofefini ) - ] ) )
nuclei, e.g., the binding energg/A ~ 16 MeV, the satura- Since pairing correla_uons are active only afqund the Fermi
tion densitypo ~ 0.15 fm~3, the incompressibility modulus Ieve_I, the rat|0TC_/An(0) is expected to be modlfleo_l by the ef-
K € [220,280] MeV, and the symmetry energye [32,39] fective mass which influences tr_le s.p. level spacing to @&larg
MeV. extent. Notice that here, théfective mass corresponds to the

In the following discussion, the persistence and re-entran Non-relativistic oneMy ; instead of the quantitilg = M +Xs
of the pairing phenomenon will be commented and analysedhat is named as the Dirac mass|[40, 55]. It can indeed be
Let us briefly recall the unifying mechanism which is at play Shown that, in the weak coupling limit of the BCS approxima-
in these various phenomena, recently discussed in Reéf. [14§ion, the average pairing gap at the Fermi surfagecan be
Due to thermal excitations, s.p. states above the Fermi erfXpressed a5 [56]
ergy can be slightly populated While.states bellow the Fermi Ar ~ 2er exp[2/(NeVpai) . (21)
energy can be partially depleted. This occurs if the invidlve
new states are not too far in energy from the last occupietvhereer is the Fermi energyNg = m*;k,:/n2 is the average
state, but it should also be not too close, otherwise, thagess  density of state in uniform matter at the Fermi energy, land
would already participate to pairing correlations at zemm+  denotes the Fermi momentum, angd;, is a constant pairing
perature. The typical shell gap should be around 2 MeV. Thénteraction. It is clear from Eq[{21) that the pairing gap
participation of these states at finite temperature gisesei-  is quite sensitive to thefiective mass at the Fermi energy.
ther to the persistence of pairing correlations slightlipxab  Eq. (21) is obtained in infinite matter and it provides only a
the usual critical temperature for nuclei which are alresty  qualitative understanding of the relation between theimgir
perfluid at zero temperature, or to pairing re-entrance aefin force strength and theffective mass. In the following, we
temperature for nuclei which have weak or no pairing at zer@resent a quantitatively precise analysis of the coridtie-
temperature. The best nuclei, in which such a phenomenamveen the critical temperature and the non-relatividfiective
is expected, are those close to the drip line, as well as thoseass in finite nuclei.
located at a subshell closure as shown in this section. Figure(a) displays the evolution of the neutron pairing ga

In the following subsections, we evaluate the influence ofas a function of temperature fé#Sn, a good candidate for
the model on the pairing properties in hot finite nuclei, tak-studying pairing correlations. We compare two Lagrangians
ing 124Sn as an example for testing pairing correlations. ThePKO2 and DD-ME2 (see Taklk 1) both with two kinds of pair-
ratio of the critical temperature over the average pairiag g ing interactions: the finite-range Gogny D1S forcel [41] and

A. Study of the ratio T¢/An(0)



TABLE I. Bulk properties of symmetric nuclear matter at thagusation point: densityg (fm=2), binding energyEg/A (MeV), compression
modulusK (MeV), symmetry energy (MeV) and non-relativistic £ective massebly , (M) predicted by selected RHF and RH models. The

non-relativistic &ective masses in neutron matter are also listed.

symmetric matter

neutron matter

Model Interaction Ref. 50 =7 K 3 VT M =0) RG]
PKA1 [43] 0.160 -1583 229.96 36.02 0.68 0.68 0.70

RHF PKO1 [40] 0.152 -16.00 250.28 34.37 0.75 0.73 0.76
PKO2 [49] 0.151 -16.03 249.53 32.49 0.76 0.75 0.77
DD-ME2 [50] 0.152 -1614 250.97 32.31 0.65 0.64 0.70

RH PK1r [51] 0.148 -1627 283.68 37.83 0.68 0.64 0.72
NL3* [52] 0.150 -1630 258.56 38.70 0.67 0.63 0.72

the contact force DDCL[42]. The two Lagrangians PKO2 andreadjustedVy in the RHF-BCS calculation at zero tempera-

DD-MEZ2 mostly difer by their non-relativisticfective mass

ture to obtain the same pairing gap as the RHFB prediction,

My (see Tablgll), and it is observed that the average pairteading to the DDClx interaction in Figl 1(b). Applying sugh
ing gap at zero temperature, scales withMg ., as expected simple modification of the parametés in 1245n, the tempera-
from the weak coupling expressidn{21). Comparing the dif-ture dependence of the pairing gap predicted by the FT-RHFB
and FT-RHF-BCS frameworks are almost undistinguishable.
the same Lagrangian, it is observed in Eig. 1 that the vamishi However, this is not always true and as we will see that the
above simple renormalization of the pairing strength wilt n
on the type of pairing force, namely, with the zero-range-pai work towards the drip line where the coupling to continuum
states becomes more and more important.
The critical temperatures is also expected to depend on

ferent types of pairing interaction (finite- or zero-randm)
of pairing correlations at finite temperature slightly dege

ing interaction, the critical temperatuiig is slightly lower
than with the finite-range interaction. From Hig. 1, theaati

Tc/An(0) is obtained as 0.60 for D1S, and 0.57 for DDCI. In the non-relativistic fiective mass, see for instance R

(22,

Ref. [57], it was shown that the dependence of the pairing gaps,[60]. The dependence of the rafig/An(0) on the &ec-
tive mass is, however, not very well known. In Fig. 2, we
plot the ratioT¢c/Aq(0) as a function ofMj 5 in 124Sn, and
finite-range interaction, the pairing gap and the pairing te we compare the predictions of two pairing interactions (fi-

on the state around the Fermi energy is qualitativeffedent
for contact and finite-range interactions. In addition,hnat

sor have non-local components which cannot be simply abnite versus zero range). Théective massMy is obtained

sorbed in the DDCI. The slight increase of the critical tem-with 14 CDFs (the 6 CDFs given in Tatlle | completed with
8 other CDFs: PKOZ [49], PKDO [51], DD-ME
MES [62], TW99 [63], PK1 [51], NL3[64] and TM1[[65]).
effects among more s.p. states. For comparison, and takingis found that the ratidl./An(0) does not depend much on
My r- Similar analyses were also carried out to check the rela-
tions with the incompressibility modulus and the symmetry
energyd, but no evidence of correlation is found. The small
fluctuations observed in Fif] 2 are therefore mostly shell ef
fects. In conclusion, the critical temperature in stableleiu

perature with the D1S interaction is therefore #ieet of the
finite-range nature of the interaction, dispersing theipgir

T¢ = 0.60Ax(0) (finite-range pairing force) antt = 0.57A,(0)
(zero-range pairing forces), the analytical relation [58]

T\m 12
(M = 8eO)1- ()] o(T-T)

(22)
wherem = 3.32, is plotted for the DD-ME2 model [dashed
lines in Fig[d(a)]. There is almost nofférence between the
analytical model, i.e., Eq{22), and the numerical caltoies
for stable nuclei liké?*Sn.

Figure[1(b) shows the neutron pairing gap calculated with=z
the RHF theory plus BCS pairing at finite temperature (FT-~,
RHF-BCS), using the same DDCI interaction as in the FT-—

RHFB calculations shown in Fifj] 1(a) and modified one (DD-
CIx) with enhanced pairing strength parame¥gr(see cap-
tion for more details). It is found that, with the same DDCI
pairing interaction, the neutron pairing gaps determingd b
the BCS method are reduced to about half of Bogoliubov re
sults. Such distinct dlierence is due to the fact that th&-o

1], DD-

070 —r——T———T7— s 618' —
- '*Sn (14 CDF's) o DDCI ]
0.65 N < N ]
N Vg
P R o
060f , 8 e g . . ° o,
r pre—r o o o
055F %p oo @om 0% @& ° ESE
WD P I N o OO0V
PPNV S FSRCRSE
0.50 L 1 . 1 . 1 . 1 1 1 1 1

064 066 068 0.70 0.72 0.74 0.76

MNR (

M)

diagonal couplings, which account for about half of the pair FIG. 2. (Color online) The ratio3¢/An(0) in 124Sn as a function
of the non-relativistic fective massMy g, calculated using the FT-
strength parametey in BCS calculations is usually larger RH(F)B theory with 14 parameter sets. In the pairing chartinel
than in HFB, see for instance Ref. [59]. We have therefordinite-range D1S and the contact force DDCI are employed.

ing correlations, are absent in the BCS pairing. As a rethdt,
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FIG. 3. (Color online) The critical temperatufige (left axes, blue ] . . L
circles) and the occupation number of continuum staigs (right 0.0 04 0.8 1.2
axes, black squares) at zero temperaturé?fi$n as a function of T/0.60A(0)

neutron pairing gap calculated from PKO1 FT-RHFB with Gogny
D1S (a) and DDCI (b) pairing forces. The dashed lines comedp o i124g . .
to the relationTc = 0.60(057)An(0). The strength parameter of the FIG. 4. Contributions, i n, of the continuum states to the pair-

pairing interaction is varied to obtainftérent values of the pairing N9 humbercon (@) and to the neutron numblieon (b), normalized
gap at zero temperature. to their value at zero temperature, as a function of the teatpe

T/0.6A(0). The results correspond to PKO1 Lagrangian and D1S
pairing interaction.

scales very well with the average pairing gap at zero tempera
ture, the shell fects contributing to a dispersion of less than
4%.

In order to check whether the rati./An(0) is still con-
stant for larger pairing strength, we have artificially eaki

ter (23) is negative. However Figl 3 shows a continuous en-
hanced continuumfiect with respect to the pairing gap(0).

To better stress the increasing contribution of the comtinu
states and their role in the pairing correlations, we hatrein

theergtilrner':'g Ivr\]/f?r: iﬁgogeslj:?;r?tha?r?: cog;la(lge)datthge?:;nfen;_ duced the following two quantities: the cumulative occigrat
P ¢ P 9 gafn number of the neutron continuum stabdg,

perature. Figurek]3(a) anfll 3(b) respectively show the re-

sults calculated with the pairing interactions D1S and DDCI 3 2
using the PKO1 Lagrangian, where the average pairing gap Neon = Z 4t pa(r)dr, (24)
An(0) goes from 100 keV up to about 3.5 MeV. At low pair- a€a20

ing gap, the ratio§¢/An(0) are consistent with the analytic and the cumulative pairing-occupation number of the neutro
ones (dashed lines) as expected, until small deviationsgame continuum stateBleon,
beyondAn(0) ~ 2.5 MeV, where the continuum contributions

become sizable (filled squares). These results are comisiste Neon = Z Arr2ia(r)dr. (25)
with previous findings|[24] based on a separable version of

the Gogny D1S pairing forcé [66] and RH Lagrangian with
PC-PK1 point coupling [67]. A simple calculation in infinite Here the continuum states are determined in thd = 0
matter with a contact pairing interaction gives a correctin  canonical basis, for simplicity [25, 7], with s.p. energy

a,ea>0

the ratio [68] above the continuum threshold. The increasing role of the
continuum states at finite temperature is illustrated in [Big
Te 1 2 where the contributions to the pairing numidég,, [plot (a)]
A(0) ~ 0'57[1_ 740) ] (23) and to the neutron numbakqn [plot (b)] from the continuum

D . ; .
states int?4Sn, normalized to their values at zero temperature,

where wp represents the pairing window. According to are shown. Results with a weak pairirdg,(0) = 1.3 MeV) and
Eq. (23), the next-to-leading order correction has a negati with a stronger pairingX,(0) = 3.0 MeV) are compared. Even
sign, at variance with our results 14*Sn, see FidJ3. Notice if in the latter case the pairing is slightly larger than the e
that for the DDCI pairing interaction, the pairing window is pected value in finite nuclei, its inclusion in our analysis
about 100 MeV. The correction to the linear approximation ofto understand the role of the continuum states. For the weak
Eq. (23) is therefore very small: for the maximal pairing gappairing case, the continuunffects are very small, see Fig. 3,
considered in this workA(0) ~ 4.0 MeV), the correction rep- and bothNgon and Neon drop to zero at the expected value
resents no more than a few percent of the linear leading ternil; = 0.6A(0), see Figl 4. For the strong pairing case, a clear
In Fig.[3, the increase of the critical temperatureAgf0) > correlation is observed in Fifl 4 between the increase of the
2.0 MeV reveals an enhancement of the thermal pairing coreccupation of the continuum states at finite temperatssg
relations, as well as an the important role played by the confsee plot (b)] and the persistence of the pairing numBiss
tinuum states. We remind that the next-to-the-leadingrorde[see plot (a)]. The persistence of pairing correlation®wel
correction appearing in the simple expression in unifornt-ma the critical temperature modifies also the critical tempers



2.0 [T e
r (a) Ni '(d) N=50 ]
16 » ° A (0) 4+ ApO) .
R TAS L
S 1.2 | I| ’ ‘./ \ o0 - I..I./ \ .“ ]
AR Tt ERATEGE
— L "y 3 " od ! Vo v ]
_ O.S—W' ° [N P L .V“G\-”: v ]
s _ MW F A »,.\ ]
Ly | I v
04fF o ooea0 JF 0 Lo
SR o " F W 0.64(0) %
o N ! o " 1
o) ) IS U BN B SUA i Y S T TS
20 30 40 50 60 70 20 30 40 50
1.6 [y e T [
L ™, () sn 1[(e) N=82 |
L , . 1}
_12f . S Ka
® ! i o a [[1 e ae
= Y \ .9. cl1bine
2 08 ' SIS RS
= ) 1 ! | g ! |
2 'q‘l' 1:‘ I',:S‘lﬁ:
0.4 % 10 ]
[ b o
L h 4L ",' W
00 Ledeveirennendiinennninennnn ] b i Leviilons
16 50 60 70 80 90 100110120 30 40 50 60 70
6 T [T
I (c) Po {[ () N=126 ]
1.2 ows™ ™ 1T
> L
)
= L
IS IR ¢
< r 11 .l 'ﬂ !
0.4 - W d Vv v
- L 1E 1
W PKA1&DIS [ ¥ b
ool i rd (R

100 120 140
N

FIG. 5. (Color online) Comparison a@f(0) (black circles), G0A(0)
(green curves) andl¢ (blue circles) in the even-even Ni, Sn, Pb iso-
topes (left panels) anil = 50, 82, 126 isotones (right panels), cal-
culated in FT-RHFB with PKA1 and the Gogny pairing interanti

D1s.

160

180 50 60 70 80 90 100

z

B. Evolution of the critical temperature in isotopic and
isotonic chains

In this subsection, we perform a systematic analysis of the
evolution of the pairing gaps and critical temperature glon
isotopic and isotonic chains of semi-magic nuclei. Through
this extensive analysis, we have access to various s.p.geonfi
urations going from stable nuclei towards weakly bound drip
line nuclei, and we probe the pairing correlations inside-va
ous major shells. We consider three models, PKA1 and PKO1
(RHF) and DD-ME2 (RH) which have flerent symmetry en-
ergies and non-relativistidiective masses, see Tallle |. Antic-
ipating our results, we will see that these models lead teerat
different predictions for the pairing gap

Our results are shown for PKAL (Figl 5), PKO1 (Fig. 6)
and DD-MEZ2 (Fig[¥) models, with the pairing channel de-
scribed by the D1S interaction. In Figs$[b-7, we have repre-
sented isotopic (Ni, Sn and Pb) and isotorc<£ 50, 82, and
126) average pairing gap evolution as a functiohdfor iso-
topes) and (for isotones). The isotopic and isotonic chains
are bounded by the drip lines predicted by each of the con-
sidered models and determined by the two-nucleon separatio
energy. These drip lines are consistent, within a few umits u
certainties, with predictions given by other models ol#din
with Skyrme forces|[69, 70], Gogny forcés [71] 72] and RH
Lagrangians [54, 73]. We have calculated the average pair-
ing gap at zero temperature (filled black circles) definethfro
Eq. (I7), and compared the calculated critical temperature
(filled blue circles) with the approximate relation, i.e68(0)
(green curves). The arch structure of the results shown in
Figs.[BET reflect the presence of magic numbers where pair-
ing correlations completely vanish.

The PKA1 model (Fid.J5) is the most complete RHF version
of the CDF theory. It contains theN Lorentz tensor coupling
which is known to enhance the spin-orbit splittihgl [43,[72); 7
in many cases the subshell structure is found to be closer to
the experimental data than those predicted by other models
without thep-N Lorentz tensor coupling, such as the RH ap-
proaches shown in Figl 7. These subshell structures andyclea
visible in Figs[H-V¥ since they induce a partial quenchinief
pairing gap for the associated submagic numbers. Going to-
wards the drip lines, a reduction of the pairing gaps is often
observed, revealing the presence of closed-shell nuclei at
near the drip lines. For the neutron drip line, it is the cafse o
Sn and Pb isotopes, and for the proton drip line, it is obgkrve

and it is observed in Fidl 4(a) a larger value of the quantityfor N = 50.

T/0.6A(0) where pairing correlations in the continuum space We first discuss the pairing properties of finite nuclei at
drops to zero in the case of strong pairing compared to theero temperature, which are influenced by the underlying s.p
weak one. Coming back to Figl 3, we now understand betstructure around the Fermi energy. For the Ni isotopes, a sub

ter the correlation between the slight deviationsTgffrom
the analytical behaviors and enhanced continutiieces for

shell closure aN = 40 is predicted with PKA1 and PKOL1 La-
grangians, as expected from experiments [76], while DD-ME2

A(0) > 2.5 MeV. Since the presence of resonance states in thehows a more pronounced shell closure. For neutron rich Ni
continuum is a typical feature of finite systems, the inceeasisotopes, PKAL indicates another subshell closurd at62
observed in Fig.13, which is fierent from the prediction of which is not seen with PKO1 or DD-ME2. It is, however,

Eq. (23), is then expected only in finite systems. Anticipgti

beyond the present experimental limits. For the Sn isotopes

the results shown in the next figures, a similar enhancemerat decrease of the pairing gap induced by subshell closure is
of pairing correlations in other nuclei will also be obsatye observed alN = 64 with PKO1 and DD-ME2 Lagrangians,
revealing here also the role of the resonant states.

but not with PKAL. For Pb, a small decrease of the pairing
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FIG. 6. (Color online) The same as in Hig. 5, but calculatethen  FIG. 7. (Color online) The same as in Fid. 5, but calculatethan
FT-RHFB theory with the £ective interaction PKO1. FT-RHB theory with the ffective interaction DD-ME2.

gap is observed &l = 138 with PKA1 and alN = 146 with ~ values ofT. differ are correlated with either the presence of a
PKO1 and DD-MEZ2. On the isotonic side, we observe a subsubshell closure, or with the proximity of the drip lines. In
shell closure aZ = 40 for N = 50 with PKAL1 Lagrangian, the case of subshell closure, thféeet of the temperature is to
but not with PKO1 or DD-ME2. FoN = 82 isotones, PKA1 "wash out” the decrease of the pairing correlations. This ca
predicts a well marked shell closurezat 40 and a subshell be understood as the consequence of the thermal occupation
closure aZ = 34 andZ = 64, while atZ = 58 PKO1 predicts probabilities which overcome small shell gaps. Close to the
a shell closure and DD-MEZ2 only a subshell closure. Finallyneutron drip lines, the more pronouncetkets are observed
for N = 126, PKO1 and DD-ME?2 indicate a reduction of the in Ni and Sn isotopes. This is also due to the thermal occupa-
pairing gap aZ = 92, which is not confirmed by experimen- tion of close-by resonant states as discussed in Refs. 14, 7
tal data [7/7] and is not present with PKA1 Lagrangian. Weln the non-relativistic Skyrme Hartree-Fock plus BCS (SHF-
will see below that these structures can have an impact on tH8CS) approach, an enhancement of the critical temperature
thermal properties. was found in'4%Sn using SkT6/[22]. We do not confirm

Turning now to the thermal properties of these isotopes anthis enhancement iH%Sn with the models used in this work.
isotones, the comparison of the calculated critical teaupee ~ However, it is interesting to notice that the origin of such a
Tc and the approximate relation8DA(0) shown in Figs[J5- €nhancementfound in Ref. [22] is also related to the existen
[7 exhibits some interesting features. The critical tempera0f a subshell closure.
ture T¢ and the approximate relation8DA(0) are identical Let us finish this subsection with some general remarks
in most cases with some exceptions. In heavy nuclei (Pb andoncerning the nuclei which do not manifest any enhancement
N = 126), there are no strong deviations between these twof the critical temperature. For the Pb isotopes, as shown in
quantities, but they are however more marked in lighter nuFigs.[BET, we have not observed any marked enhancement of
clei. Moreover, the cases where the exact and the approximathe critical temperature near the drip line as in the case of
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FIG. 8. (Color online) The neutron pairing gap<SfiNi as a function
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above the Fermi energy and where a finite amount of tempera-
ture allows to overcome the gap and provokes an enhancement
of pairing correlations, giving rise to pairing persistenc

We first show the temperature dependence of the pairing
gap for®8Ni in Fig.[B(a), calculated with the FT-RHFB model
where we consider the PKO1 Lagrangian in the mean field
channel and either Gogny D1S or DDCI interaction in the
pairing channel. The analytical model is also shown for ref-
erence. Itis found that the predictions #(T) do not prac-
tically depend on the pairing force. The critical temperatu
predicted by the FT-RHFB approach is increased with respect
to the reference analytical model: the FT-RHFB pairing gaps
vanish around = 0.90 MeV, which is 025 MeV higher than

of temperature, calculated by FT-RHFB with Gogny D1S and DDC the expected value (66 MeV). The pairing gap predicted by

pairing forces, and by FT-RHF-BCS with DDCI pairing forceo T
evaluate the persistence provoked by the subshell, thgtmadlre-
sults are also shown. The pairing strenggh(in MeV.fm=3) is fixed
to be 326 (DDCI) and 537 (DDCIXx).

FT-RHF-BCS is shown in Fid.]8(b). Surprisingly, the pair-
ing gap is zero if the same DDCI pairing interaction is used.
An increase of the pairing strength is therefore necessary.

It is also interesting to observe that the DDCIx pairing linte
action, wheréVy is increased to match with the zero temper-
ature pairing gap obtained with FT-RHFB case, reproduces

Sn isotopes. Comparing Pb and Sn, since the pairing gap feimost exactly the temperature dependence of the FT-RHFB
these isotopes is decreasing near the drip line, one coull hacase and predicts as well an increase of the critical terapera
expected to observe an enhancement of the critical tempergsre with respect to the analytical model. The nucléi is

ture in Pb as it is observed in Sn. For instance, the last 0ca typical example of pairing persistence at finite tempeeatu

cupied state in the drip line nucled®Pb is indeed found to

in closed subshellN = 40) nuclei. We hereafter name this

be well bound 4, < —2.0 MeV), and the lowest s.p. reso- phenomenon type | pairing persistence. Other examples of
nanceezn,, , is found to be above 1.5 MeV. There is therefore similar behavior are®°Ni (PKA1), 114Sn (PKO1, DD-ME?2),

a rather strong gap in the neutron rich Pb isotopés (184)

220ph (PKAL),%%%Pb (DD-ME2) for the neutron pairing gap,

which prevents the large coupling to the continuum. For theand 90zr (PKA1, PKO1 and DD-ME2)4%Ce (DD-ME?2),
isotonic chains, we do not find any pairing persistence phet46190Gq (PKA1) for the proton pairing gap.
nomenon around the drip line. This can be related to the well \ye turn now to the analysis of the resultsifSn. As

developed shell closures At= 50,82 and 92 for proton-rich

stated above, this is a nucleus where pairing correlatioms a

nuclei, which quench the coupling to continuum states, as ikjightly weakened due to the proximity of shell closure. A
would have been expected in such exotic nuclei. In additiongma|| ‘amount of temperature is expected to reorganize the
the coupling to the continuum is weaker for protons since thgg, g occupancy around the Fermi energy, opening more space

Coulomb barrier tends to localize the

proton density in theye|ow the Fermi energy, and producing a non-zero occupancy

nuclear interior([79]. For these reasons, the persistehee p o the first levels above the Fermi energy which are in the

nomenon is strongly quenched in the proton channel.

C. Pairing persistence inNi and 174sn

continuum. Most of the occupied states in the continuum are

1.0 —————————r —
L L (b) FT-RHF-BCS -
0.8

In this subsection, we analyze in more details the tempera-
ture dependence of the pairing gap for two representative nu> 0.6
clei, 8Ni and 174Sn. On the one hand®Ni is an isotope =
which is slightly more neutron rich than the five stable iso- = 0.4
topes®®-%4Ni. As shown in the previous subsectidiNi is i
considered as a subshell isotoé [54,[80, 81], and as a conse- 02r

quence, the pairing gap at zero temperature is either reduce _ Analytigal ¥l T Apatical |
or strongly quenched depending on the model, see Higs. 5-7. 00 02 04 06 08 00 02 04 06 08 1.0
On the other hand,’“Sn is a very neutron-rich isotope at or T (MeV) T (MeV)

close to the neutron drip line, where the continuufees are

expected to be remarkable [14) 57, 82]. However, since|G. 9. (Color online) The neutron pairing gaps'##Sn as a func-
1745n is close to the potentially doubly madit®Sn =50, tion of temperature, calculated with PKO1 and N|8sing Gogny
N=126), a gap is expected to be present in the s.p. strud>1S and DDCI pairing forces. The results of the analyticatiel@re
ture between bound and resonant states. These two nuclei g0 shown. The pairing strength (in MeV.fm=3) is: 333 (DDCI
therefore representative of quantum systems for which paitvith PKO1), 317 (DDCI with NL3) and 596 (DDCIx with PKO1
ing at zero temperature is weakened by the presence of a g&pd BCS framework).
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resonance states, but it is interesting to notice that alsmal
number of them are also non-resonant states [83]. Without 40 |-
the participation of these non-resonant states, the asfimpt
behavior of the density would be ill-defined and present an 3,
unexpected gas component, as it is also observed in the BCS
theory [57]. The Bogoliubov transformation couples altata ¢
in a sub-(, j) space and a truncation among these states breaks
the unitarity of this transformation. To avoid the preseate
non-physical gas component in the density profile, it isgher 10
fore important to couple all states in the continuum witlhie t
Bogoliubov transformation. oAl 0 PR T T

Figure[®(a) displays the evolution of the neutron pairing 00 05 10 15 20 00 05 10 15 20
gap as a function of temperatureliFf‘Sn with diferent La- T (MeV) T (MeV)
grangians and pairing forces. The results are very weakly
affected by the choice of the pairing interaction. ThEeet FIG. 10. (Color online) Entropy and specific heat#Sn as a func-
induced by the choice of Lagrangian is also very small. Weion of temperature, calculated using the FT-RH(F)B andRFIF)
find a systematic increase of the critical temperatligx(  theories.
0.65-0.70 MeV) with respect to that expected from the an-
alytical relation ¢ ~ 0.47 MeV), independently of the con-
sidered model. In addition, for temperatire- 0.2 MeV, an  entropy calculated with the pairing correlations [labellsy
increase of the pairing gap is observed, which can also be r¢&=T-RH(F)B] is compared to that neglecting the pairing cor-
lated to the thermally induced contribution of the contimuu relations [labelled by FT-RH(F)]. At low temperature, ifeth
states. We compare these results to the ones obtained with thairing efects are ignored, the entropy is found to be largely
FT-RHF-BCS framework shown in Fig] 9(b). As already dis- model-dependent, i.e., the model with smaller non-rekittiv
cussed, the DDCI interaction predicts a reduced pairing gapffective mass (see Tadle 1), which leads to larger s.p. level
in BCS compared to RHFB. On the other side, the DDClxspacing on the average, presents smaller entropy. As the tem
interaction where the pairing strength is increased to matcperature increases, and also as the pairing correlatians ar
the T = 0 predictions of RHFB leads to an overestimation of switched on, the entropy becomes less model-dependent.
the critical temperature compared to the FT-RHFB case. It | fact, at low temperature or without pairing correlations
shows that, in this case of dripline nucleus, the RHFB calcul e entropy is largely determined by the few states around
tion cannot be simply reproduced by a BCS calculation whergne Fermj energy, and the number of the involved states is
the pairing strength is just increased. Since the coupbing tegsentially determined by the detailed s.p. spectrum which
the continuum plays a dominant role in the persistence phejepends on the models, therefore leading to model-dependen
nomenon in~“Sn, we hereafter call it type Il phenomenon. gniropy. Both temperature and pairing correlations can dis
From our results, it is also expected to occur in Ni-and Smyerse the particle over the states beyond the Fermi level. As
neutron-rich nuclei, Nil > 54~ 60) and Snil > 100). the temperature increases, frdas the pairing correlations

are enhanced, more s.p. states will get involved to cort&ibu

to the entropy, and the average properties such as the den-
D. Entropy and specific heat sity of states will become dominant, instead of a few states

in the FT-RH(F) cases. Compared to distinctlyfelient s.p.

We now focus on the entrofy and specific heaf, which ~ spectra around the Fermi surface, the dispersions of the non
are the first and second derivatives of the free endfgy relativistic fective masses (see Table 1) between the models
with respect to the temperature, and thus sensitive to thermare less remarkable. Even though, in Figl 10(a) it is clearly
changes of the ground state, see for instance Réf. [84] arghown that the FT-RH(F)B results are grouped by the values
Refs. therein. To test the sensitivity of these quantitethe ~ Of the efective masses wheh > 1 MeV which correspond
choice of diferent models, we select two Sn isotop¥8sn  to different average densities of states. As expected, the ef-
and169Sn. The former is a good example of a stable well-fect of the pairing correlations is clearly visible beloweth
paired nucleus, while the latter is yet far from actual nacle critical temperatureT ~ 0.8 MeV), inducing a strong reduc-
experiments but represents an extreme case with largdrisosgion of the entropy [see Fi@.10(a)] and singular behavidrs o
asymmetry. the specific heat around the critical temperature as shown in

In Fig.[I0 are shown the entrof/and the specific heg,  Fig.[10(b). Just above the critical temperature, we carceoti
as functions of the temperature calculated by the RHF functhat the specific heat is not linearh as expected from the
tionals PKO1 and PKO2, the RH ones with the non-linear-ermi gas mode( [85, 86], and the linear dependence seems
self-couplings PK1r and NI'3and the RH one with density- to be found at slightly larger temperatuie 1.5 MeV). The
dependent meson-nucleon couplings DD-ME2. In the pairindon-linearity of the specific heat aroufid might be related
channel, the value of the scaling factp(see first paragraph of 10 shell éfects.
sectior{11]), is slightly modified to give identical pairirgaps The results thus clearly show that the pairing correlations
at zero temperature for theffirent models. In Fig.10(a), the contribute to thes-shaped behavior of the specific heat, as

20 -
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L T T T range nature of the pairing force, while generatinfjedent
100 - (@) V4 100 1= (0) 7y state-dependence pairing gaps, causes only snitdreices
g0l 7E$:§:EE;B,-’ ] 80 | Za in our results. We have described the pairing persistence in
Y, V74 two kinds of situations: nuclei at subshell closure (typaihd
60 i y ] 60 i I!' i ] nuclei strongly coupled to continuum states which are dose
%] I 7 | o | i ] the drip line (type I1). We have observed that, while a refiti
40 L Y. i 40 L if ——PKO1 | of the pairing strength could match the FT-RHF-BCS with the
/ ] —.—--PKO2 .. .. . .
| y/ | I B FT-RHFB predlcuo_ns for the pairing gap in the case I,_ it is
0L 1 0L 1 N A no longer the true in the case Il. This is due to the_par_t|C|pa-
L | ./ — Dbb-ME2- tion of the continuum states in the second case which involve
o= . . ., obL v .+ coupling of diferent nature.
00 05 1.0 15 20 00 05 1.0 15 20 We have also analyzed the influence of the interaction on
T (MeV) T (MeV) the thermal response. The results show clearly that the pair
ing correlations contribute to treeshaped behavior of the spe-
FIG. 11. (Color online) The same as in Hig] 10, but¥efisn. cific heat curve, and help to wash out the model dependence.

For stable nuclei the model deviations, to some extent, can
be traced back to theffective mass, since the level structure
it has already been inferred from the analysis of thermal exonly weakly depends on the choice of the CDF. The situation
cited nuclei in laboratory experiments [8,) 10] 86]. A realis for exotic nucleiis more complex since it is related to owkla
tic description of the smootk-shaped behavior in finite nu- ofknowledge in very exotic nuclei, and the pairing persiste
clei requires a more elaborated modelling, including for in would have largeféects on their thermal property.
stance particle number projectidn [7) 87-89]. It is however In conclusion, we have illustrated the richness and com-
shown in Ref.[[29] that the smootkshaped behavior may plexity of pairing correlations at finite temperature andiin
be even washed out in some rare earth nuclei. The resultite systems within the first FT-RHFB calculation. The dis-
presented in Fid. 10 should not be compared directly to theussion of correlations beyond mean-field, induced for in-
semi-experimental data. stance by particle number projection, is not addressedsn th
The situation for the neutron-rich nucle&®Sn is more work. It is however expected that the particle number pro-
complex as shown in FigJl1. The model dependence of erjection will contribute to increase the pairing correlasain
tropy at low temperature is reduced compared to the case dlie case where they are weak![29], like in the pairing persis-
1205, Only PKO2 predictions fier from the other models. tence phenomenon discussed in this paper. In future work,
The predictions for the critical temperature, associabeithié ~ a more quantitative calculation will be necessary to edtma
discontinuity in the specific heat of Fig.J11, vary among thehow strong are these additional correlations and how they
modellings to a much larger extent than what was found irmodify the results presented in this work. Another inténgst
1205, 16031 js located in the region where pairing persistenceperspective which is suggested by this work is the possibil-
is expected to appear, see Figi.]5-7. Since this phenomendy that similar phenomena can be observed in other domains
is strongly related to the position of resonance stateseén thof physics. For instance, it was studied whether cold atoms
continuum, we expect to observe deviations among model# a double potential could demonstrate pairing persistersc
predicting diferent positions of these states. This model dewell [9d]. Finally, the application of this formalism for ¢h
pendence therefore reveals our lack of knowledge in extraperediction of temperature evolution of pairing properties
olating Lagrangians which have been adjusted for less@xotithe crust of neutron stars [11,/91] 92] will be performed ia th
nuclei. near future. There, the thermal modification of pairing cor-
relations could have a large impact on the thermal relaratio
of the crust/[12], and could be observed during the quiescent
IV. SUMMARY AND CONCLUSION period of low mass X-ray transients.

In this work, we have developed the first FT-RHFB the-
ory for spherical nuclei. The self-consistent FT-RHFB equa ACKNOWLEDGMENTS
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