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Background: The relativistic Hartree-Fock-Bogoliubov (RHFB) theory has recently been developed and it provides a unified
and highly predictive description of both nuclear mean fieldand pairing correlations. Ground state properties of finitenuclei
can accurately be reproduced without neglecting exchange (Fock) contributions.

Purpose: Finite-temperature RHFB (FT-RHFB) theory has not yet been developed, leaving yet unknown its predictions for
phase transitions and thermal excitations in both stable and weakly bound nuclei.

Method: FT-RHFB equations are solved in a Dirac Woods-Saxon (DWS) basis considering two kinds of pairing interactions:
finite or zero range. Such a model is appropriate for describing stable as well as loosely bound nuclei since the basis states have
correct asymptotic behaviour for large spatial distributions.

Results: Systematic FT-RH(F)B calculations are performed for several semi-magic isotopic/isotonic chains comparing the
predictions of a large number of Lagrangians, among which are PKA1, PKO1 and DD-ME2. It is found that the critical
temperature for a pairing transition generally follows therule Tc = 0.60∆(0) for a finite-range pairing force andTc = 0.57∆(0)
for a contact pairing force, where∆(0) is the pairing gap at zero temperature. Two types of pairing persistence are analysed:
type I pairing persistence occurs in closed subshell nucleiwhile type II pairing persistence can occur in loosely boundnuclei
strongly coupled to the continuum states.

Conclusions: This first FT-RHFB calculation shows very interesting features of the pairing correlations at finite temperature
and in finite systems such as pairing re-entrance and pairingpersistence.

PACS numbers: 05.70.Ce, 21.60.Jz, 24.10.Pa, 64.60.Ht

I. INTRODUCTION

The thermodynamical properties of excited nuclei have
drawn over the last decades a renewed attention due to the
advanced accurate measurements of level densities at low ex-
citation energies [1–5]. Pairing correlations play an essential
role in many Fermion systems and have thus a strong influ-
ence on nuclear structure at low excitation energies [6–10].
Pairing correlations in finite systems such as nuclei or Wigner-
Seitz cells, and in infinite ones such as in neutron star mat-
ter, may exhibit different behaviors reflected in the specific
heat and the level density [11–15]. Moreover, the phase tran-
sition is a complex and rich phenomenon, where pairing re-
entrance in asymmetric matter, in odd-nuclei, rotating nuclei,
and even in doubly magic nuclei close to the drip line may
occur [6, 14, 16, 17]. The interplay between temperature and
shell effects in superfluid systems, giving rise to re-entrance
or its opposite phenomenon — suppression, still remains to
be studied.

The competition between temperature and pairing correla-
tions in nuclei at low excitation energies has been studied for
several decades, with the pioneering works based on finite-
temperature BCS (FT-BCS) theory [18] and finite-temperature
Hartree-Fock-Bogoliubov (FT-HFB) theory [19]. It was pre-
dicted that the critical temperatureTc for pair correlation
quenching could be expressed, as in uniform matter, as a
function of the average pairing gap at zero temperature∆(0)
following the relations:Tc = 0.57∆(0) for a constant pairing
force [18]. The more evolved Bogoliubov approach has later
been applied to finite nuclei confirming the existence of such
relations betweenTc and∆(0). For the simplified degenerate
model, the relation was found to beTc = 0.50∆(0) [19], while

in rare earth transition nuclei the interplay with deformation
induces shape transitions in the superfluid phase, leading to
the ratioTc/∆(0)=0.57 for protons and 0.63 for neutrons [20].
In addition, pairing correlations are expected to play an im-
portant role in the decay of compound nuclei formed in heavy
ion collisions, as illustrated in the seminal work presented in
Ref. [21]. More recently, the BCS and HFB approaches have
been extended to self-consistent mean field models in order
to improve the description of the pairing transition in spheri-
cal nuclei [22–24], as well as in deformed nuclei where shape
transitions have been predicted [25–29]. In summary, the ratio
Tc/∆(0) lies in the interval 0.50−0.60, where the uncertainty
originates mainly from the detailed level structure of spherical
and deformed nuclei which depends itself on models.

It is worth noticing that in most of the quoted studies, the
calculations were performed either on the harmonic oscilla-
tor basis, or within the non-relativistic framework. Due to
the limitation of the harmonic oscillator basis in giving an
appropriate asymptotic behavior of the single particle (s.p.)
wave functions, the nucleon densities at large distance con-
verge very slowly with respect to the size of the basis. The
situation becomes even more serious in the weakly bound nu-
clei close to the drip line [30, 31]. Nowadays a realistic frame-
work is to perform the calculations in an appropriate basis that
can provide a reasonable description of both the overall and
asymptotic behaviors of the density profiles, for instance the
Woods-Saxon (WS) basis [32, 33]. In some applications, the
small component of the Dirac spinors were usually neglected
in determining the relativistic Hartree-Bogoliubov (RHB)and
finite-temperature RHB (FT-RHB) pairing tensor [24, 34]. We
therefore present, in this paper, the first fully RHFB calcu-
lations at finite temperature (FT-RHFB): both the large and
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small components of the Dirac spinors contribute to the pair-
ing channel, and the contributions of the Fock terms are natu-
rally included. In addition, the Dirac WS (DWS) basis [32] is
employed to better describe weakly bound nuclei.

This paper is organized as follows. The general formalism
of the FT-RHFB theory is outlined in Sec. II. In Sec. III, we
compare the results obtained with different covariant density
functional (CDF) models [35–40] using the finite- and zero-
range pairing interactions [41, 42]. Systematic FT-RHFB cal-
culations are performed for several isotopes/isotones. More-
over, the questions of pairing persistence and re-entrancephe-
nomena with increasing temperature are addressed. Finally,
the main conclusions are drawn in Sec. IV.

II. GENERAL FORMALISM AND NUMERICAL DETAILS

We briefly recall here the general features of RHFB the-
ory and thermodynamics, then their generalization to the finite
temperature case.

A. RHFB framework

The relativistic Hartree-Fock (RHF) theory [35, 40, 43] is
designed to describe bulk and s.p. nuclear properties. The rel-
evant degrees of freedom are the isospin doublet nucleon field
ψn(p), the meson fields which mediate the nuclear interactions
(two isoscalar fieldsσ andω, two isovector fieldsρ andπ),
and the photon field (A) that accounts for the electro-magnetic
interaction. A general effective Lagrangian is constructed in
terms of various currents or densities: (ψ̄τΓψ) whereτ ∈ {1, τττ}
(1 stands for the isoscalar quantities and the isospin Paulima-
trix τττ corresponds to the isovector ones), andΓ denotes the
Dirac matrices{1,γµ,γ5γµ,σµν}. Applying the standard vari-
ations of the Lagrangian, one may obtain the field equations
for nucleon, meson and photon fields (resp. the Dirac, Klein-
Gordon and Proca equations), and the continuity equations
leading to the Hamiltonian. With the creation and annihilation
operators (c†,c) defined from stationary solutions of the Dirac
equation, the effective HamiltonianH is formally expressed
in the second quantized form as

H =
∑

i j

c†i c jTi j +
1
2

∑

i jkl ;φ

c†i c†j clckV
φ

i jkl , (1)

whereTi j represents the Dirac kinetic energy, and the two-
body termsVi jkl correspond to different types of meson- (or
photon-) nucleon couplings denoted byφ. In the mean-field
approximation, the energy functionalE is obtained by taking
the expectation value of the HamiltonianH on a Slater de-
terminant, where both the Hartree and Fock terms are consid-
ered. The RHFB theory [44–46] is deduced by incorporating
the Bogoliubov transformation
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(2)

with the RHF model. It provides a unified and self-consistent
description of both particle-hole (ph) and particle-particle
(pp) channels, at the mean field level.

B. Thermodynamics and statistical mechanics

The thermodynamical properties of a system are calculated
here in the canonical ensemble. For a statisticalN-body sys-
tem at finite temperatureT, the equilibrium state is obtained
from the variational principle applied to the grand canonical
potentialΩ [19, 21, 47],

Ω(T,λ) = F −λN = E−TS−λN, (3)

whereF is the free energy,S the entropy,E the total energy,
andλ the associated Lagrange multiplier. Namely, the varia-
tion

δΩ = 0 (4)

defines the density operatorD with trace equal to 1, and the
grand partition functionZ, respectively read as:

D = Z−1exp{−β(H−λN)}, (5a)

Z = Tr[exp{−β(H−λN)}], (5b)

whereN is the particle number operator, andβ = T−1. As
it is conventional, the temperatureT is given in energy units.
For arbitrary operatorO, the thermal average over the excited
states populated at finite temperature is defined as:

〈O〉 = Tr(DO), (6)

where the trace is taken over all possible excited states. At
finite temperature, the total energy, entropy and number of
particles are therefore expressed as

E = 〈H〉 = Tr(DH), (7a)

S = −〈lnD〉 = −Tr(DlnD), (7b)

N = 〈N〉 = Tr(DN). (7c)

C. Extension to finite temperature

The FT-RHFB theory is a straightforward generalization
of the RHFB theory that readily incorporates a statistical en-
semble of excited states. At the finite-temperature mean field
level, the density operator is approximated by [19]:

D =
∏

α

[

fαNα+ (1− fα)(1−Nα)
]

, (8)

where fα is the Fermi-Dirac distribution

fα = 〈Nα〉 =
1

1+eβEα
. (9)

Notice that, forT = 0 we havefα = 0 for all statesα. The
quasiparticle energyEα is obtained as the solution of the FT-
RHFB equations, see Eq. (11).
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In spherically symmetric systems the Dirac-Bogoliubov
spinor can be written as

ψUα (rrr) =
1
r
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ψVα(rrr) =
1
r













iGVa(r)

FVa(r)σσσ · r̂rr













Y
l
jm(r̂rr)χ 1

2
(τ), (10b)

whereGU and FU correspond to the radial parts of the up-
per and lower components, respectively,Y l

jm(r̂rr) is the spinor
spherical harmonics, andχ 1

2
(τ) is the isospinor. Here, the

subindexα= (a,m)= (n, l, j,m) contains the quantum numbers
n (number of nodes of the upper componentGU(V)), l (orbital
angular momentum), andj,m (total angular momentum and
its projection to thezaxis).

The minimization ofΩ with respect toD leads to the FT-
RHFB equations,
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which are formally identical to the RHFB equations [44–46].
The Dirac Hamiltonianh(rrr,rrr′) contains the kinetic energyhK ,
the direct local potentialhD, and exchange non-local potential
hE,

hK(rrr ,rrr′) =
[

ααα · ppp+βM
]

δ(rrr −rrr′), (12a)

hD(rrr ,rrr′) =
[

ΣT (rrr)γ5+Σ0(rrr)+βΣS(rrr)
]

δ(rrr −rrr′), (12b)

hE(rrr ,rrr′) =




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

YG(rrr ,rrr′) YF(rrr,rrr ′)

XG(rrr ,rrr′) XF(rrr ,rrr′)













. (12c)

In the above expressions, the local self-energiesΣS, Σ0, and
ΣT contain the contributions from the Hartree (direct) terms
and the rearrangement terms, which depend directly on vari-
ous local quasiparticle densities. They are the vector, scalar
and tensor densities, respectively,

ρv(r) =
1

4πr2

∑

a

ĵ2a
{

[

G2
Va

(r)+F2
Va

(r)
]

(1− fa)

+
[

G2
Ua

(r)+F2
Ua

(r)
]

fa
}

, (13a)

ρs(r) =
1

4πr2

∑

a

ĵ2a
{

[

G2
Va

(r)−F2
Va

(r)
]

(1− fa)

+
[

G2
Ua

(r)−F2
Ua

(r)
]

fa
}

, (13b)

ρt(r) =
1

4πr2

∑

a

ĵ2a
{

2GVa(r)FVa(r)(1− fa)

+2GUa(r)FUa(r) fa
}

. (13c)

Notice that, at the limitT = 0, where fa = 0 Eqs. (13a)-
(13c) give back the usual expressions [45]. The nonlocal
self-energiesXG(F) andYG(F) come from the Fock (exchange)
terms,

X(φ)
Ga

(r, r′) =
∑

b

T
φ

ab ĵ2b
[

(gφFVb)rR
XG
ab (mφ; r, r′)(gφGVb)r′(1− fb)

+(gφFUb)rR
XG
ab (mφ; r, r

′)(gφGUb)r′ fb
]

, (14a)

X(φ)
Fa

(r, r′) =
∑

b

T
φ

ab ĵ2b
[

(gφFVb)rR
XF
ab (mφ; r, r

′)(gφFVb)r′ (1− fb)

+(gφFUb)rR
XF
ab (mφ; r, r

′)(gφFUb)r′ fb
]

, (14b)

Y(φ)
Ga

(r, r′) =
∑

b

T
φ

ab ĵ2b
[

(gφGVb)rR
YG
ab (mφ; r, r′)(gφGVb)r′(1− fb)

+(gφGUb)rR
YG
ab (mφ; r, r′)(gφGUb)r′ fb

]

, (14c)

Y(φ)
Fa

(r, r′) =
∑

b

T
φ

ab ĵ2b
[

(gφGVb)rR
YF
ab (mφ; r, r′)(gφFVb)r′ (1− fb)

+(gφGUb)rR
YF
ab (mφ; r, r′)(gφFUb)r′ fb

]

. (14d)

In these expressions,T
φ

ab denotes the isospin factors:δab for
isoscalar channels and 2− δab for isovector channels,̂j2b =
2 jb+1 is the degeneracy number of the corresponding energy
level, gφ represents the coupling constants, andRab denote
the multipole expansions of meson propagators. Eq. (14) is a
generalization at finite temperature of the expressions given in
Ref. [45].

Next, we consider the pairing field∆(r, r′) of Eq. (11),

∆a(r, r′) = −
1
2

∑

b

Vpp
ab (r, r′)κb(r, r′) (15)

with the pairing interactionVpp and the pairing tensorκ. If
we take a finite-range pairing force, the pairing tensorκ will
read as

κa(r, r′) = ĵ2a
{

[GVa(r)GUa(r
′)+FVa(r)FUa(r

′)] (16)

+[GUa(r)GVa(r
′)+FUa(r)FVa(r

′)]
}

(1−2 fa).

Notice that the temperature dependence of the solution
(Eα;ψUα ,ψVα ) of the FT-RHFB Eq. (11) comes implicitly
through the quasiparticle densitiesρv,s,t , nonlocal potentials
X(Y) and pairing tensorκ.

For practical evaluation of the pairing correlations, an av-
erage pairing gap is introduced and defined as the ratio of the
pairing energy over the pairing tensor,

∆ =
Tr(∆κ)

Trκ
. (17)

This quantity is calculated for neutrons (∆n) and protons (∆p)
separately and it is discussed in detail in the next section.

The total FT-RHFB energyE of the system is calcu-
lated with the microscopic two-body center-of-mass correc-
tion [48]. The entropyS of the system can be evaluated from

S(T) = −
∑

α

[

fα ln fα+ (1− fα) ln(1− fα)
]

, (18)

and the specific heat is defined by

Cv(T) = T
∂S(T)
∂T

∣

∣

∣

∣

N
. (19)

They correspond to the first and second derivative of the free
energyF, respectively.
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The integro-differential FT-RHFB Eq. (11) is solved by us-
ing a DWS basis [32] with a radial cut off R= 26 fm. The
numbers of positive and negative energy states in the basis ex-
pansion for each s.p. angular momentum (l, j) are chosen to
be 36 and 12, respectively. We have verified that this trun-
cation scheme provides sufficient numerical accuracy for the
description of weakly bound nuclei (Pb isotopes).

III. RESULTS AND DISCUSSION

In this section, we compare the predictions based on sev-
eral models which are determined by the model Lagrangian
as well as the pairing interaction. The latter interaction is ei-
ther a finite-range Gogny D1S interaction [41] or a density-
dependent contact interaction (DDCI) of the form [42]:

V(r, r′) = V0
1
2

(1−Pσ)

(

1−
ρ(r)
ρ0

)

δ(r − r′). (20)

Notice that the DDCI requires a regularisation scheme. We
have considered in this study a simple cut-off scheme, defined
to be 100 MeV in quasiparticle space, and the strengthV0 is
adjusted to reproduce the same average pairing gap as that
obtained with the Gogny D1S interaction. These values of
V0 will be given with the results hereafter. The D1S pairing
interaction depends slightly on the mass: A general factorg
is therefore introduced for its strength, as in Refs. [53, 54].
We consider 6 different model Lagrangians which are given
in Table I. Some of the bulk properties of nuclear matter de-
termined by these Lagrangians are also shown. They are gen-
erally compatible with the expected gross properties of finite
nuclei, e.g., the binding energyE/A ≃ 16 MeV, the satura-
tion densityρ0 ≃ 0.15 fm−3, the incompressibility modulus
K ∈ [220,280] MeV, and the symmetry energyJ ∈ [32,39]
MeV.

In the following discussion, the persistence and re-entrance
of the pairing phenomenon will be commented and analysed.
Let us briefly recall the unifying mechanism which is at play
in these various phenomena, recently discussed in Ref. [14].
Due to thermal excitations, s.p. states above the Fermi en-
ergy can be slightly populated while states below the Fermi
energy can be partially depleted. This occurs if the involved
new states are not too far in energy from the last occupied
state, but it should also be not too close, otherwise, these states
would already participate to pairing correlations at zero tem-
perature. The typical shell gap should be around 2 MeV. The
participation of these states at finite temperature gives rise ei-
ther to the persistence of pairing correlations slightly above
the usual critical temperature for nuclei which are alreadysu-
perfluid at zero temperature, or to pairing re-entrance at finite
temperature for nuclei which have weak or no pairing at zero
temperature. The best nuclei, in which such a phenomenon
is expected, are those close to the drip line, as well as those
located at a subshell closure as shown in this section.

In the following subsections, we evaluate the influence of
the model on the pairing properties in hot finite nuclei, tak-
ing 124Sn as an example for testing pairing correlations. The
ratio of the critical temperature over the average pairing gap
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FIG. 1. (Color online) The neutron pairing gaps in124Sn as a func-
tion of temperature, calculated with PKO2 (black) and DD-ME2
(blue) corresponding to differentM∗NR. In the pairing channel, we
compare finite-range D1S (filled circles) and contact DDCI (empty
circles) forces. The analytical results (dashed lines) arealso shown.
Notice that here, we took the factorg = 1 for the Gogny D1S force,
and for the DDCI pairing, we have taken the following values for V0
(in MeV.fm−3): 335 (PKO2), and 342 (DD-ME2) for the RH(F)B
and BCS calculations. For the DDCIx force used in BCS, we took
for V0 (in MeV.fm−3): 526 (PKO2) and 539 (DD-ME2).

at zero temperatureTc/∆n(0) is also studied as a function of
the model, varying either the Lagrangian or the type of pair-
ing interaction. Finally, a more systematic study of the critical
temperature is performed on a set of semi-magic nuclei.

A. Study of the ratio Tc/∆n(0)

Since pairing correlations are active only around the Fermi
level, the ratioTc/∆n(0) is expected to be modified by the ef-
fective mass which influences the s.p. level spacing to a large
extent. Notice that here, the effective mass corresponds to the
non-relativistic oneM∗NR instead of the quantityM∗S =M+ΣS
that is named as the Dirac mass [40, 55]. It can indeed be
shown that, in the weak coupling limit of the BCS approxima-
tion, the average pairing gap at the Fermi surface∆F can be
expressed as [56]

∆F ≈ 2ǫF exp
[

2/(NFvpair)
]

, (21)

whereǫF is the Fermi energy,NF = m∗FkF/π
2 is the average

density of state in uniform matter at the Fermi energy, andkF
denotes the Fermi momentum, andvpair is a constant pairing
interaction. It is clear from Eq. (21) that the pairing gap∆F
is quite sensitive to the effective mass at the Fermi energyǫF .
Eq. (21) is obtained in infinite matter and it provides only a
qualitative understanding of the relation between the pairing
force strength and the effective mass. In the following, we
present a quantitatively precise analysis of the correlation be-
tween the critical temperature and the non-relativistic effective
mass in finite nuclei.

Figure 1(a) displays the evolution of the neutron pairing gap
as a function of temperature for124Sn, a good candidate for
studying pairing correlations. We compare two Lagrangians,
PKO2 and DD-ME2 (see Table I) both with two kinds of pair-
ing interactions: the finite-range Gogny D1S force [41] and
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TABLE I. Bulk properties of symmetric nuclear matter at the saturation point: densityρ0 (fm−3), binding energyEB/A (MeV), compression
modulusK (MeV), symmetry energyJ (MeV) and non-relativistic effective massesM∗NR (M) predicted by selected RHF and RH models. The
non-relativistic effective masses in neutron matter are also listed.

Model Interaction Ref.
symmetric matter neutron matter

ρ0 EB/A K J M∗NR M∗NR(ν) M∗NR(π)
PKA1 [43] 0.160 −15.83 229.96 36.02 0.68 0.68 0.70

RHF PKO1 [40] 0.152 −16.00 250.28 34.37 0.75 0.73 0.76
PKO2 [49] 0.151 −16.03 249.53 32.49 0.76 0.75 0.77

DD-ME2 [50] 0.152 −16.14 250.97 32.31 0.65 0.64 0.70
RH PK1r [51] 0.148 −16.27 283.68 37.83 0.68 0.64 0.72

NL3∗ [52] 0.150 −16.30 258.56 38.70 0.67 0.63 0.72

the contact force DDCI [42]. The two Lagrangians PKO2 and
DD-ME2 mostly differ by their non-relativistic effective mass
M∗NR (see Table I), and it is observed that the average pair-
ing gap at zero temperature∆n scales withM∗NR, as expected
from the weak coupling expression (21). Comparing the dif-
ferent types of pairing interaction (finite- or zero-range)for
the same Lagrangian, it is observed in Fig. 1 that the vanishing
of pairing correlations at finite temperature slightly depends
on the type of pairing force, namely, with the zero-range pair-
ing interaction, the critical temperatureTc is slightly lower
than with the finite-range interaction. From Fig. 1, the ratio
Tc/∆n(0) is obtained as 0.60 for D1S, and 0.57 for DDCI. In
Ref. [57], it was shown that the dependence of the pairing gap
on the state around the Fermi energy is qualitatively different
for contact and finite-range interactions. In addition, with a
finite-range interaction, the pairing gap and the pairing ten-
sor have non-local components which cannot be simply ab-
sorbed in the DDCI. The slight increase of the critical tem-
perature with the D1S interaction is therefore an effect of the
finite-range nature of the interaction, dispersing the pairing
effects among more s.p. states. For comparison, and taking
Tc = 0.60∆n(0) (finite-range pairing force) andTc = 0.57∆n(0)
(zero-range pairing forces), the analytical relation [58],

∆n(T) = ∆n(0)

[

1−
( T
Tc

)m
]1/2

Θ(T −Tc) (22)

wherem= 3.32, is plotted for the DD-ME2 model [dashed
lines in Fig. 1(a)]. There is almost no difference between the
analytical model, i.e., Eq. (22), and the numerical calculations
for stable nuclei like124Sn.

Figure 1(b) shows the neutron pairing gap calculated with
the RHF theory plus BCS pairing at finite temperature (FT-
RHF-BCS), using the same DDCI interaction as in the FT-
RHFB calculations shown in Fig. 1(a) and modified one (DD-
CIx) with enhanced pairing strength parameterV0 (see cap-
tion for more details). It is found that, with the same DDCI
pairing interaction, the neutron pairing gaps determined by
the BCS method are reduced to about half of Bogoliubov re-
sults. Such distinct difference is due to the fact that the off-
diagonal couplings, which account for about half of the pair-
ing correlations, are absent in the BCS pairing. As a result,the
strength parameterV0 in BCS calculations is usually larger
than in HFB, see for instance Ref. [59]. We have therefore

readjustedV0 in the RHF-BCS calculation at zero tempera-
ture to obtain the same pairing gap as the RHFB prediction,
leading to the DDCIx interaction in Fig. 1(b). Applying sucha
simple modification of the parameterV0 in 124Sn, the tempera-
ture dependence of the pairing gap predicted by the FT-RHFB
and FT-RHF-BCS frameworks are almost undistinguishable.
However, this is not always true and as we will see that the
above simple renormalization of the pairing strength will not
work towards the drip line where the coupling to continuum
states becomes more and more important.

The critical temperatures is also expected to depend on
the non-relativistic effective mass, see for instance Refs. [22,
25, 60]. The dependence of the ratioTc/∆n(0) on the effec-
tive mass is, however, not very well known. In Fig. 2, we
plot the ratioTc/∆n(0) as a function ofM∗NR in 124Sn, and
we compare the predictions of two pairing interactions (fi-
nite versus zero range). The effective massM∗NR is obtained
with 14 CDFs (the 6 CDFs given in Table I completed with
8 other CDFs: PKO3 [49], PKDD [51], DD-ME1 [61], DD-
MEδ [62], TW99 [63], PK1 [51], NL3 [64] and TM1 [65]).
It is found that the ratioTc/∆n(0) does not depend much on
M∗NR. Similar analyses were also carried out to check the rela-
tions with the incompressibility modulusK and the symmetry
energyJ, but no evidence of correlation is found. The small
fluctuations observed in Fig. 2 are therefore mostly shell ef-
fects. In conclusion, the critical temperature in stable nuclei
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FIG. 2. (Color online) The ratiosTc/∆n(0) in 124Sn as a function
of the non-relativistic effective massM∗NR, calculated using the FT-
RH(F)B theory with 14 parameter sets. In the pairing channelthe
finite-range D1S and the contact force DDCI are employed.
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to the relationTc = 0.60(0.57)∆n(0). The strength parameter of the
pairing interaction is varied to obtain different values of the pairing
gap at zero temperature.

scales very well with the average pairing gap at zero tempera-
ture, the shell effects contributing to a dispersion of less than
4%.

In order to check whether the ratioTc/∆n(0) is still con-
stant for larger pairing strength, we have artificially varied
the pairing interaction strength and correlated the critical tem-
peratureTc with the neutron pairing gap∆n(0) at zero tem-
perature. Figures 3(a) and 3(b) respectively show the re-
sults calculated with the pairing interactions D1S and DDCI
using the PKO1 Lagrangian, where the average pairing gap
∆n(0) goes from 100 keV up to about 3.5 MeV. At low pair-
ing gap, the ratiosTc/∆n(0) are consistent with the analytic
ones (dashed lines) as expected, until small deviations emerge
beyond∆n(0)∼ 2.5 MeV, where the continuum contributions
become sizable (filled squares). These results are consistent
with previous findings [24] based on a separable version of
the Gogny D1S pairing force [66] and RH Lagrangian with
PC-PK1 point coupling [67]. A simple calculation in infinite
matter with a contact pairing interaction gives a correction to
the ratio [68]

Tc

∆(0)
≈ 0.57

[

1−
1

4ω2
D

∆(0)2
]

, (23)

where ωD represents the pairing window. According to
Eq. (23), the next-to-leading order correction has a negative
sign, at variance with our results in124Sn, see Fig. 3. Notice
that for the DDCI pairing interaction, the pairing window is
about 100 MeV. The correction to the linear approximation of
Eq. (23) is therefore very small: for the maximal pairing gap
considered in this work (∆(0)≈ 4.0 MeV), the correction rep-
resents no more than a few percent of the linear leading term.

In Fig. 3, the increase of the critical temperature for∆n(0)>
2.0 MeV reveals an enhancement of the thermal pairing cor-
relations, as well as an the important role played by the con-
tinuum states. We remind that the next-to-the-leading order
correction appearing in the simple expression in uniform mat-
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FIG. 4. Contributions, in124Sn, of the continuum states to the pair-
ing numberÑcon (a) and to the neutron numberNcon (b), normalized
to their value at zero temperature, as a function of the temperature
T/0.6∆(0). The results correspond to PKO1 Lagrangian and D1S
pairing interaction.

ter (23) is negative. However Fig. 3 shows a continuous en-
hanced continuum effect with respect to the pairing gap∆n(0).
To better stress the increasing contribution of the continuum
states and their role in the pairing correlations, we have intro-
duced the following two quantities: the cumulative occupation
number of the neutron continuum statesNcon,

Ncon=
∑

a,ǫa≥0

∫

4πr2ρa(r)dr, (24)

and the cumulative pairing-occupation number of the neutron
continuum states̃Ncon,

Ñcon=
∑

a,ǫa≥0

∫

4πr2κa(r)dr. (25)

Here the continuum statesa are determined in theT = 0
canonical basis, for simplicity [25, 47], with s.p. energyǫa
above the continuum threshold. The increasing role of the
continuum states at finite temperature is illustrated in Fig. 4
where the contributions to the pairing numberÑcon [plot (a)]
and to the neutron numberNcon [plot (b)] from the continuum
states in124Sn, normalized to their values at zero temperature,
are shown. Results with a weak pairing (∆n(0)= 1.3 MeV) and
with a stronger pairing (∆n(0)= 3.0 MeV) are compared. Even
if in the latter case the pairing is slightly larger than the ex-
pected value in finite nuclei, its inclusion in our analysis helps
to understand the role of the continuum states. For the weak
pairing case, the continuum effects are very small, see Fig. 3,
and bothNcon and Ñcon drop to zero at the expected value
Tc = 0.6∆(0), see Fig. 4. For the strong pairing case, a clear
correlation is observed in Fig. 4 between the increase of the
occupation of the continuum states at finite temperatureNcon
[see plot (b)] and the persistence of the pairing numbersÑcon
[see plot (a)]. The persistence of pairing correlations below
the critical temperature modifies also the critical temperature,
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culated in FT-RHFB with PKA1 and the Gogny pairing interaction
D1S.

and it is observed in Fig. 4(a) a larger value of the quantity
T/0.6∆(0) where pairing correlations in the continuum space
drops to zero in the case of strong pairing compared to the
weak one. Coming back to Fig. 3, we now understand bet-
ter the correlation between the slight deviations ofTc from
the analytical behaviors and enhanced continuum effects for
∆(0)& 2.5 MeV. Since the presence of resonance states in the
continuum is a typical feature of finite systems, the increase
observed in Fig. 3, which is different from the prediction of
Eq. (23), is then expected only in finite systems. Anticipating
the results shown in the next figures, a similar enhancement
of pairing correlations in other nuclei will also be observed,
revealing here also the role of the resonant states.

B. Evolution of the critical temperature in isotopic and
isotonic chains

In this subsection, we perform a systematic analysis of the
evolution of the pairing gaps and critical temperature along
isotopic and isotonic chains of semi-magic nuclei. Through
this extensive analysis, we have access to various s.p. config-
urations going from stable nuclei towards weakly bound drip
line nuclei, and we probe the pairing correlations inside vari-
ous major shells. We consider three models, PKA1 and PKO1
(RHF) and DD-ME2 (RH) which have different symmetry en-
ergies and non-relativistic effective masses, see Table I. Antic-
ipating our results, we will see that these models lead to rather
different predictions for the pairing gap∆.

Our results are shown for PKA1 (Fig. 5), PKO1 (Fig. 6)
and DD-ME2 (Fig. 7) models, with the pairing channel de-
scribed by the D1S interaction. In Figs. 5-7, we have repre-
sented isotopic (Ni, Sn and Pb) and isotonic (N = 50, 82, and
126) average pairing gap evolution as a function ofN (for iso-
topes) andZ (for isotones). The isotopic and isotonic chains
are bounded by the drip lines predicted by each of the con-
sidered models and determined by the two-nucleon separation
energy. These drip lines are consistent, within a few units un-
certainties, with predictions given by other models obtained
with Skyrme forces [69, 70], Gogny forces [71, 72] and RH
Lagrangians [54, 73]. We have calculated the average pair-
ing gap at zero temperature (filled black circles) defined from
Eq. (17), and compared the calculated critical temperature
(filled blue circles) with the approximate relation, i.e., 0.6∆(0)
(green curves). The arch structure of the results shown in
Figs. 5-7 reflect the presence of magic numbers where pair-
ing correlations completely vanish.

The PKA1 model (Fig. 5) is the most complete RHF version
of the CDF theory. It contains theρ-N Lorentz tensor coupling
which is known to enhance the spin-orbit splitting [43, 74, 75]:
in many cases the subshell structure is found to be closer to
the experimental data than those predicted by other models
without theρ-N Lorentz tensor coupling, such as the RH ap-
proaches shown in Fig. 7. These subshell structures are clearly
visible in Figs. 5-7 since they induce a partial quenching ofthe
pairing gap for the associated submagic numbers. Going to-
wards the drip lines, a reduction of the pairing gaps is often
observed, revealing the presence of closed-shell nuclei ator
near the drip lines. For the neutron drip line, it is the case of
Sn and Pb isotopes, and for the proton drip line, it is observed
for N = 50.

We first discuss the pairing properties of finite nuclei at
zero temperature, which are influenced by the underlying s.p.
structure around the Fermi energy. For the Ni isotopes, a sub-
shell closure atN = 40 is predicted with PKA1 and PKO1 La-
grangians, as expected from experiments [76], while DD-ME2
shows a more pronounced shell closure. For neutron rich Ni
isotopes, PKA1 indicates another subshell closure atN = 62
which is not seen with PKO1 or DD-ME2. It is, however,
beyond the present experimental limits. For the Sn isotopes,
a decrease of the pairing gap induced by subshell closure is
observed atN = 64 with PKO1 and DD-ME2 Lagrangians,
but not with PKA1. For Pb, a small decrease of the pairing
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FIG. 6. (Color online) The same as in Fig. 5, but calculated inthe
FT-RHFB theory with the effective interaction PKO1.

gap is observed atN = 138 with PKA1 and atN = 146 with
PKO1 and DD-ME2. On the isotonic side, we observe a sub-
shell closure atZ = 40 for N = 50 with PKA1 Lagrangian,
but not with PKO1 or DD-ME2. ForN = 82 isotones, PKA1
predicts a well marked shell closure atZ = 40 and a subshell
closure atZ = 34 andZ = 64, while atZ = 58 PKO1 predicts
a shell closure and DD-ME2 only a subshell closure. Finally,
for N = 126, PKO1 and DD-ME2 indicate a reduction of the
pairing gap atZ = 92, which is not confirmed by experimen-
tal data [77] and is not present with PKA1 Lagrangian. We
will see below that these structures can have an impact on the
thermal properties.

Turning now to the thermal properties of these isotopes and
isotones, the comparison of the calculated critical temperature
Tc and the approximate relation 0.60∆(0) shown in Figs. 5-
7 exhibits some interesting features. The critical tempera-
ture Tc and the approximate relation 0.60∆(0) are identical
in most cases with some exceptions. In heavy nuclei (Pb and
N = 126), there are no strong deviations between these two
quantities, but they are however more marked in lighter nu-
clei. Moreover, the cases where the exact and the approximate
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FIG. 7. (Color online) The same as in Fig. 5, but calculated inthe
FT-RHB theory with the effective interaction DD-ME2.

values ofTc differ are correlated with either the presence of a
subshell closure, or with the proximity of the drip lines. In
the case of subshell closure, the effect of the temperature is to
”wash out” the decrease of the pairing correlations. This can
be understood as the consequence of the thermal occupation
probabilities which overcome small shell gaps. Close to the
neutron drip lines, the more pronounced effects are observed
in Ni and Sn isotopes. This is also due to the thermal occupa-
tion of close-by resonant states as discussed in Refs. [14, 78].
In the non-relativistic Skyrme Hartree-Fock plus BCS (SHF-
BCS) approach, an enhancement of the critical temperature
was found in140Sn using SkT6 [22]. We do not confirm
this enhancement in140Sn with the models used in this work.
However, it is interesting to notice that the origin of such an
enhancement found in Ref. [22] is also related to the existence
of a subshell closure.

Let us finish this subsection with some general remarks
concerning the nuclei which do not manifest any enhancement
of the critical temperature. For the Pb isotopes, as shown in
Figs. 5-7, we have not observed any marked enhancement of
the critical temperature near the drip line as in the case of
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to be 326 (DDCI) and 537 (DDCIx).

Sn isotopes. Comparing Pb and Sn, since the pairing gap for
these isotopes is decreasing near the drip line, one could have
expected to observe an enhancement of the critical tempera-
ture in Pb as it is observed in Sn. For instance, the last oc-
cupied state in the drip line nucleus266Pb is indeed found to
be well bound (ǫ3d3/2 < −2.0 MeV), and the lowest s.p. reso-
nanceǫ2h11/2 is found to be above 1.5 MeV. There is therefore
a rather strong gap in the neutron rich Pb isotopes (N = 184)
which prevents the large coupling to the continuum. For the
isotonic chains, we do not find any pairing persistence phe-
nomenon around the drip line. This can be related to the well
developed shell closures atZ = 50,82 and 92 for proton-rich
nuclei, which quench the coupling to continuum states, as it
would have been expected in such exotic nuclei. In addition,
the coupling to the continuum is weaker for protons since the
Coulomb barrier tends to localize the proton density in the
nuclear interior [79]. For these reasons, the persistence phe-
nomenon is strongly quenched in the proton channel.

C. Pairing persistence in68Ni and 174Sn

In this subsection, we analyze in more details the tempera-
ture dependence of the pairing gap for two representative nu-
clei, 68Ni and 174Sn. On the one hand,68Ni is an isotope
which is slightly more neutron rich than the five stable iso-
topes58−64Ni. As shown in the previous subsection,68Ni is
considered as a subshell isotope [54, 80, 81], and as a conse-
quence, the pairing gap at zero temperature is either reduced
or strongly quenched depending on the model, see Figs. 5-7.
On the other hand,174Sn is a very neutron-rich isotope at or
close to the neutron drip line, where the continuum effects are
expected to be remarkable [14, 15, 57, 82]. However, since
174Sn is close to the potentially doubly magic176Sn (Z=50,
N=126), a gap is expected to be present in the s.p. struc-
ture between bound and resonant states. These two nuclei are
therefore representative of quantum systems for which pair-
ing at zero temperature is weakened by the presence of a gap

above the Fermi energy and where a finite amount of tempera-
ture allows to overcome the gap and provokes an enhancement
of pairing correlations, giving rise to pairing persistence.

We first show the temperature dependence of the pairing
gap for68Ni in Fig. 8(a), calculated with the FT-RHFB model
where we consider the PKO1 Lagrangian in the mean field
channel and either Gogny D1S or DDCI interaction in the
pairing channel. The analytical model is also shown for ref-
erence. It is found that the predictions for∆n(T) do not prac-
tically depend on the pairing force. The critical temperature
predicted by the FT-RHFB approach is increased with respect
to the reference analytical model: the FT-RHFB pairing gaps
vanish aroundT = 0.90 MeV, which is 0.25 MeV higher than
the expected value (0.65 MeV). The pairing gap predicted by
FT-RHF-BCS is shown in Fig. 8(b). Surprisingly, the pair-
ing gap is zero if the same DDCI pairing interaction is used.
An increase of the pairing strengthV0 is therefore necessary.
It is also interesting to observe that the DDCIx pairing inter-
action, whereV0 is increased to match with the zero temper-
ature pairing gap obtained with FT-RHFB case, reproduces
almost exactly the temperature dependence of the FT-RHFB
case and predicts as well an increase of the critical tempera-
ture with respect to the analytical model. The nucleus68Ni is
a typical example of pairing persistence at finite temperature
in closed subshell (N = 40) nuclei. We hereafter name this
phenomenon type I pairing persistence. Other examples of
similar behavior are:90Ni (PKA1), 114Sn (PKO1, DD-ME2),
220Pb (PKA1),230Pb (DD-ME2) for the neutron pairing gap,
and 90Zr (PKA1, PKO1 and DD-ME2),140Ce (DD-ME2),
146,190Gd (PKA1) for the proton pairing gap.

We turn now to the analysis of the results in174Sn. As
stated above, this is a nucleus where pairing correlations are
slightly weakened due to the proximity of shell closure. A
small amount of temperature is expected to reorganize the
level occupancy around the Fermi energy, opening more space
below the Fermi energy, and producing a non-zero occupancy
of the first levels above the Fermi energy which are in the
continuum. Most of the occupied states in the continuum are
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FIG. 9. (Color online) The neutron pairing gaps in174Sn as a func-
tion of temperature, calculated with PKO1 and NL3∗, using Gogny
D1S and DDCI pairing forces. The results of the analytical model are
also shown. The pairing strengthV0 (in MeV.fm−3) is: 333 (DDCI
with PKO1), 317 (DDCI with NL3∗) and 596 (DDCIx with PKO1
and BCS framework).
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resonance states, but it is interesting to notice that a small
number of them are also non-resonant states [83]. Without
the participation of these non-resonant states, the asymptotic
behavior of the density would be ill-defined and present an
unexpected gas component, as it is also observed in the BCS
theory [57]. The Bogoliubov transformation couples all states
in a sub-(l, j) space and a truncation among these states breaks
the unitarity of this transformation. To avoid the presenceof
non-physical gas component in the density profile, it is there-
fore important to couple all states in the continuum within the
Bogoliubov transformation.

Figure 9(a) displays the evolution of the neutron pairing
gap as a function of temperature in174Sn with different La-
grangians and pairing forces. The results are very weakly
affected by the choice of the pairing interaction. The effect
induced by the choice of Lagrangian is also very small. We
find a systematic increase of the critical temperature (Tc ≈

0.65− 0.70 MeV) with respect to that expected from the an-
alytical relation (Tc ≈ 0.47 MeV), independently of the con-
sidered model. In addition, for temperatureT > 0.2 MeV, an
increase of the pairing gap is observed, which can also be re-
lated to the thermally induced contribution of the continuum
states. We compare these results to the ones obtained with the
FT-RHF-BCS framework shown in Fig. 9(b). As already dis-
cussed, the DDCI interaction predicts a reduced pairing gap
in BCS compared to RHFB. On the other side, the DDCIx
interaction where the pairing strength is increased to match
theT = 0 predictions of RHFB leads to an overestimation of
the critical temperature compared to the FT-RHFB case. It
shows that, in this case of dripline nucleus, the RHFB calcula-
tion cannot be simply reproduced by a BCS calculation where
the pairing strength is just increased. Since the coupling to
the continuum plays a dominant role in the persistence phe-
nomenon in174Sn, we hereafter call it type II phenomenon.
From our results, it is also expected to occur in Ni and Sn
neutron-rich nuclei, Ni (N > 54∼ 60) and Sn (N > 100).

D. Entropy and specific heat

We now focus on the entropyS and specific heatCv which
are the first and second derivatives of the free energyF
with respect to the temperature, and thus sensitive to thermal
changes of the ground state, see for instance Ref. [84] and
Refs. therein. To test the sensitivity of these quantities to the
choice of different models, we select two Sn isotopes,120Sn
and 160Sn. The former is a good example of a stable well-
paired nucleus, while the latter is yet far from actual nuclear
experiments but represents an extreme case with large isospin
asymmetry.

In Fig. 10 are shown the entropyS and the specific heatCv
as functions of the temperature calculated by the RHF func-
tionals PKO1 and PKO2, the RH ones with the non-linear
self-couplings PK1r and NL3∗, and the RH one with density-
dependent meson-nucleon couplings DD-ME2. In the pairing
channel, the value of the scaling factorg (see first paragraph of
section III), is slightly modified to give identical pairinggaps
at zero temperature for the different models. In Fig. 10(a), the
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FIG. 10. (Color online) Entropy and specific heat in120Sn as a func-
tion of temperature, calculated using the FT-RH(F)B and FT-RH(F)
theories.

entropy calculated with the pairing correlations [labelled by
FT-RH(F)B] is compared to that neglecting the pairing cor-
relations [labelled by FT-RH(F)]. At low temperature, if the
pairing effects are ignored, the entropy is found to be largely
model-dependent, i.e., the model with smaller non-relativistic
effective mass (see Table I), which leads to larger s.p. level
spacing on the average, presents smaller entropy. As the tem-
perature increases, and also as the pairing correlations are
switched on, the entropy becomes less model-dependent.

In fact, at low temperature or without pairing correlations,
the entropy is largely determined by the few states around
the Fermi energy, and the number of the involved states is
essentially determined by the detailed s.p. spectrum which
depends on the models, therefore leading to model-dependent
entropy. Both temperature and pairing correlations can dis-
perse the particle over the states beyond the Fermi level. As
the temperature increases, and/or as the pairing correlations
are enhanced, more s.p. states will get involved to contribute
to the entropy, and the average properties such as the den-
sity of states will become dominant, instead of a few states
in the FT-RH(F) cases. Compared to distinctly different s.p.
spectra around the Fermi surface, the dispersions of the non-
relativistic effective masses (see Table I) between the models
are less remarkable. Even though, in Fig. 10(a) it is clearly
shown that the FT-RH(F)B results are grouped by the values
of the effective masses whenT & 1 MeV which correspond
to different average densities of states. As expected, the ef-
fect of the pairing correlations is clearly visible below the
critical temperature (Tc ≈ 0.8 MeV), inducing a strong reduc-
tion of the entropy [see Fig. 10(a)] and singular behaviors of
the specific heat around the critical temperature as shown in
Fig. 10(b). Just above the critical temperature, we can notice
that the specific heat is not linear inT, as expected from the
Fermi gas model [85, 86], and the linear dependence seems
to be found at slightly larger temperature (T > 1.5 MeV). The
non-linearity of the specific heat aroundTc might be related
to shell effects.

The results thus clearly show that the pairing correlations
contribute to thes-shaped behavior of the specific heat, as



11

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100
 FT-RH(F)B
 FT-RH(F)

T (MeV)

S
(a)

160Sn

 PKO1
 PKO2
 PK1r
 NL3*
 DD-ME2

T (MeV)

C
V

(b)

FIG. 11. (Color online) The same as in Fig. 10, but for160Sn.

it has already been inferred from the analysis of thermal ex-
cited nuclei in laboratory experiments [8, 10, 86]. A realis-
tic description of the smooths-shaped behavior in finite nu-
clei requires a more elaborated modelling, including for in-
stance particle number projection [7, 87–89]. It is however
shown in Ref. [29] that the smooths-shaped behavior may
be even washed out in some rare earth nuclei. The results
presented in Fig. 10 should not be compared directly to the
semi-experimental data.

The situation for the neutron-rich nucleus160Sn is more
complex as shown in Fig. 11. The model dependence of en-
tropy at low temperature is reduced compared to the case of
120Sn. Only PKO2 predictions differ from the other models.
The predictions for the critical temperature, associated to the
discontinuity in the specific heat of Fig. 11, vary among the
modellings to a much larger extent than what was found in
120Sn.160Sn is located in the region where pairing persistence
is expected to appear, see Figs. 5-7. Since this phenomenon
is strongly related to the position of resonance states in the
continuum, we expect to observe deviations among models
predicting different positions of these states. This model de-
pendence therefore reveals our lack of knowledge in extrap-
olating Lagrangians which have been adjusted for less exotic
nuclei.

IV. SUMMARY AND CONCLUSION

In this work, we have developed the first FT-RHFB the-
ory for spherical nuclei. The self-consistent FT-RHFB equa-
tions are solved by using a DWS basis which provides an ap-
propriate asymptotic behavior for the continuum states. We
have performed systematic FT-RHFB calculations for both
stable and weakly bound nuclei and discussed their thermal
properties. The influence of the pairing interaction on the
pairing phase transition is evaluated. It is found that the
critical temperature for a pairing transition generally follows
the ruleTc = 0.60∆(0) with a finite-range pairing force and
Tc= 0.57∆(0) with a contact pairing force. The finite- or zero-

range nature of the pairing force, while generating different
state-dependence pairing gaps, causes only small differences
in our results. We have described the pairing persistence in
two kinds of situations: nuclei at subshell closure (type I), and
nuclei strongly coupled to continuum states which are closeto
the drip line (type II). We have observed that, while a refitting
of the pairing strength could match the FT-RHF-BCS with the
FT-RHFB predictions for the pairing gap in the case I, it is
no longer the true in the case II. This is due to the participa-
tion of the continuum states in the second case which involve
coupling of different nature.

We have also analyzed the influence of the interaction on
the thermal response. The results show clearly that the pair-
ing correlations contribute to thes-shaped behavior of the spe-
cific heat curve, and help to wash out the model dependence.
For stable nuclei the model deviations, to some extent, can
be traced back to the effective mass, since the level structure
only weakly depends on the choice of the CDF. The situation
for exotic nuclei is more complex since it is related to our lack
of knowledge in very exotic nuclei, and the pairing persistence
would have large effects on their thermal property.

In conclusion, we have illustrated the richness and com-
plexity of pairing correlations at finite temperature and infi-
nite systems within the first FT-RHFB calculation. The dis-
cussion of correlations beyond mean-field, induced for in-
stance by particle number projection, is not addressed in this
work. It is however expected that the particle number pro-
jection will contribute to increase the pairing correlations in
the case where they are weak [29], like in the pairing persis-
tence phenomenon discussed in this paper. In future work,
a more quantitative calculation will be necessary to estimate
how strong are these additional correlations and how they
modify the results presented in this work. Another interesting
perspective which is suggested by this work is the possibil-
ity that similar phenomena can be observed in other domains
of physics. For instance, it was studied whether cold atoms
in a double potential could demonstrate pairing persistence as
well [90]. Finally, the application of this formalism for the
prediction of temperature evolution of pairing propertiesin
the crust of neutron stars [11, 91, 92] will be performed in the
near future. There, the thermal modification of pairing cor-
relations could have a large impact on the thermal relaxation
of the crust [12], and could be observed during the quiescent
period of low mass X-ray transients.
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[60] E. Yüksel, E. Khan, K. Bozkurt, and G. Coló, Eur. Phys.J. A
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[62] X. Roca-Maza, X. Viñas, M. Centelles, P. Ring, and P. Schuck,

Phys. Rev. C84, 054309 (2011).
[63] S. Typel and H. H. Wolter, Nucl. Phys. A656, 331 (1999).
[64] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C55, 540

(1997).



13

[65] Y. Sugahara and H. Toki, Nucl. Phys. A579, 557 (1994).
[66] Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B676, 44 (2009).
[67] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C82,

054319 (2010).
[68] G. D. Mahan,Many-Particle Physics (Plenum Press, New York,

2000).
[69] J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen,

A. M. Perhac, and M. Stoitsov, Nature486, 509 (2012).
[70] J. Erler, C. J. Horowitz, W. Nazarewicz, M. Rafalski, and P.-G.

Reinhard, Phys. Rev. C87, 044320 (2013).
[71] S. Hilaire and M. Girod, Eur. Phys. J. A33, 237 (2007).
[72] J. P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire,
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Phys. Rev. A90, 043634 (2014).
[91] F. Grill, J. Margueron, and N. Sandulescu, Phys. Rev. C84,

065801 (2011).
[92] J. Margueron and N. Sandulescu,Neutron Star Crust (World

Scientific, Singapore, 2012), chap. Pairing Correlations and
Thermodynamic Properties of Inner Crust Matter.


