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Abstract. This article presents a short review of the main progresses achieved at the GANIL 

facilities during the last thirty years in the field of ion-atom and ion-diatomic molecule 

collisions. Thanks to the wide range of projectile energies and species available on the different 

beam lines of the facility, elementary processes such as electron capture, ionization and 

excitation have been extensively studied. Beside primary collision mechanisms, the relaxation 

processes of the collision partners after the collision have been another specific source of 

interest. Progresses on other fundamental processes such as Young type interferences induced 

by ion-molecule collisions or shake off ionization resulting from nuclear beta decay are also 

presented. 

1. Introduction 

For the electronic structures of atoms and molecules, precise theoretical knowledge and high-

resolution experimental data are available. But the complete understanding of dynamic processes in 

atomic collisions remains a challenge, due to large theoretical problems in describing time-dependent 

many-particle reactions, and to experimental difficulties in performing complete experiments in which 

all relevant quantities are accessible. Elementary collisions involving ions, atoms and molecules play 

an important role in many gaseous and plasma environments, where they provide both the heating and 

cooling mechanisms. The study of such collisions is thus not only of fundamental importance, it is also 

essential for the understanding of large-scale systems such as astrophysical plasmas, planetary 

atmospheres, gas discharge lasers, semiconductor processing plasmas, and fusion plasmas. Collisions 

between ions and atoms (or simple molecules) give also access to the elementary processes 

responsible for energy transfer in ion-matter and ion-biological molecule collisions. Complete 

knowledge of these elementary processes is thus of primordial importance for ion induced 

modification of materials as well as for radiolysis, radiotherapy and biological damages due to 

radiation exposure. 
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For inelastic collisions involving energy exchange between the collision partners, three 

elementary processes can be distinguished: electron capture (or charge exchange), excitation, and 

ionization. The relative importance of these processes depends strongly on the collision regime that is 

linked not only to the projectile velocity, vp, compared to the (classical) orbital velocity of the (active) 

target electron, ve, but also to the collision asymmetry, i.e. the ratio Zp/Zt (Zp and Zt are the projectile 

and target atomic numbers, respectively). Therefore the collision strength parameter K = (ve/vp)(Zt/Zp) 

defines the collision regime such as the strong interaction regime (K>>1) where electron capture is by 

far the most probable process, the perturbative regime (K<<1) where ionization and excitation 

dominate, and the intermediate regime (K 1) where the three processes compete, leading to many 

collision channels, and in which both bound and continuum states have to be taken into account for the 

accurate calculation of the cross sections. Of course those collision regimes can be described in terms 

of collision energy only, provided ZpZt. The GANIL facility of Caen, France, has the very unique 

feature of covering most of the energy range of interest: the ARIBE experimental hall can provide ion 

beams from very low (a few eV/q) to low (25 keV/q) energy, IRRSUD delivers ion projectiles in the 

range of 0.1 to 1 MeV/A, and by using one or two of the main cyclotrons CSS1 and CSS2, energies 

from 4 to 100 MeV/A are accessible. In addition, the SPIRAL1 target-ion source assembly provides 

low energy radioactive ions, making available the study of the electron cloud rearrangement following 

nuclear reactions. The GANIL is thus, for more than thirty years, a privileged experimental center to 

study dynamic processes with atomic and molecular targets. 

The goal of the present article is to list the main advances in the field achieved thanks to the 

GANIL beams and to the CIMAP through the CIRIL user facility. The first section will be dedicated 

to experiments using atomic targets and the second section will present results obtained with small 

molecules and rare gas dimers. In the last section we will also discuss other fundamental dynamical 

processes involving ions, atoms and molecules, in which collision is the tool to reveal specific effects. 

The reader should be warned that this article is not an exhaustive review of ion-atom and ion-molecule 

collisions, what would be well beyond the scope of the present work. It is only focused on experiments 

performed at GANIL in the domain, with different techniques, and different specific scientific 

motivations that are not always naturally linked to each other. 

2. Achievements in ion-atom collisions 

2.1. In the strong interaction regime 

Charge exchange in low-energy ion-atom collisions has been extensively studied for decades. 

Concurrent advances in experimental and theoretical techniques have led to a satisfying knowledge of 

the underlying dynamics, which is reviewed in textbooks such as [1]. However, the interest in this 

fundamental process has never faded out since charge exchange plays an important role in 

astrophysical and Tokamak plasma environments [2, 3], ion-induced radiation damage to biological 

cells [4, 5], and many other current applications. 

2.1.1. Single electron capture.  

 Photon spectroscopy experiments 

Single electron capture leads to the population of excited states n of the scattered projectile ions. 

These excited states are below the first ionization limit of the scattered ion, thus leading to its decay by 

photon emission.  The detection of photons emitted by the projectile and the measurement of their 

energy carry information on both, the spectroscopy of the resulting scattered ion, and the capture 

process itself. 

The populated energy levels n depend mainly on the charge of the projectile and on the target 

ionization potential [6]. For this process, the photon spectroscopy in the range 200-600 nm is a good 

tool to observe Δn=1 and Δn=2 transitions [7, 8]. With the help of Hartree Fock calculations [9], it is 

then possible to get spectroscopic information about the energy structure of the ions produced during 

the collision. In the particular case of the Ar
8+

 (1s
2
2s

2
2p

6
), a large set of targets has been used : He, H2, 
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Li, Cs(6s) and Cs(6p) leading to the population of Ar VIII (1s
2
2s

2
2p

6
n) with n=4 to 14 [8-12]. For 

this Ar VIII ion, many new energy levels and fine structure values have been determined [8]. 

Photon spectroscopy in the 200-800 nm is powerful enough to observe lines from each n 

configuration inside a same n level. The emission cross sections have been determined from the line 

intensities and the spectroscopic response of the optical system. The production cross sections for each 

n populated level can then be determined from the emission cross sections and the branching ratios of 

the emission levels in order to take into account the cascade effects on the populated levels. An 

example is shown in figure 1 for the Ar
8+

-Li(2s) collision [13]. It was shown that the final n 

distributions are not statistically distributed: states with large  values are strongly populated, but also 

states with low  values ( = 0, 1, 2). In most cases, the experimental production cross sections are in 

fair agreement with those obtained using the Classical trajectory Monte Carlo (CTMC) method 

(figure 1) [13-15]. [13, 14, 15]. 

At GANIL, special attention was focused on the projectile energy dependence of the production 

cross sections: for states with large angular momenta, no dependence has been observed, but, for a 

given n state (n = 8, 9 and  = 0, 1, 2), the ncross sections increase with decreasing projectile 

energy. These results have then been analyzed in terms of dynamical couplings by using calculations 

of the electronic energies of the one-electron (Ar
7+

-Li)
+
 system. The ndistributions result from both 

the primary capture process and the post-collisional effects: these two processes depend not only on 

the relative importance of the radial and rotational couplings but also on the Stark mixing and on the 

projectile–core-electron effect. In the case of fully stripped ions colliding with lithium atoms (O
8+

–Li), 

all nsublevels (n fixed) are affected by the Stark effect due to the Li
+
 residual ion. The population of 

states with large values is then favored and only states with large values are populated by single-

electron capture. In the case of Ar
8+

–Li collisions, the presence of the projectile core electrons lifts the 

degeneracy of the Ar
7+

(n) states with low values (<4) and only the states with high values are 

affected by the Stark effect. The ncross sections for <4 are strongly affected by the core-electron 

effect at low energy. It leads to the enhancement of the population of states with low values. The 

evolution of the ndistributions with the projectile velocity depends on the evolution of the dynamical 

couplings: the effect of the projectile core electrons vanishes at high energies [16, 17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 8-distribution for X
8+

-Li(2s) (X = Ar, O) collisions (projectile energy of 0.5 keV.amu
-1

) 

[13]. 

 

In order to determine the m distributions, the polarization P of the emitted light has been 

measured. The polarization of a transition can be calculated from m capture cross sections into the 

different m Zeeman sublevels of the nupper level, taking the ion beam direction as the quantization 
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axis. Since the spin-orbit coupling is negligible for transitions from levels such as > 2, the formalism 

of Fano and Macek [18] was used. Calculated polarization ratios were obtained from these CTMC 

Zeeman sublevel populations. In order to make a correct comparison between the calculated and the 

experimental results, polarization calculations including radiative cascade effects were performed by 

using the method of Lin and Macek [19]. For the 8-9’ transition for the Ar
8+

-Li system, the high 

positive polarization degrees measured at the highest and lowest energies indicate that sublevels with 

m = 0 are preferentially populated. The decrease of the polarization with the collision energy indicates 

a broadening of the m-distributions, which is also obtained in the CTMC distributions. It is well 

established that the evolution of the m-distributions reflects the energy dependence of the couplings 

involved in the collision [20]. In the present case, the radial and rotational couplings, combined with 

the projectile–core electron effect and the Stark effect of the ionized target are responsible for the final 

nm-distributions. 

 Kinematically complete experiments 

In the 1990s, the development of the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) 

technique [21-23], developed in parallel in Frankfurt (Germany), Manhattan (Kansas, USA) and Caen 

(France), provided new means to study charge exchange processes in low energy collisions. By giving 

access to both the Q-value and projectile scattering angle through the recoil ion momentum 

measurement, this technique is particularly well suited to perform kinematically complete 

experiments. In contrast with energy gain spectroscopy [24], the resolution in Q-value and scattering 

angle is not limited by the transverse emittance and by the energy dispersion of the projectile beam. In 

addition, the recoil ions are collected using an electric field that can be conveniently adjusted to insure 

4detection efficiency. Combined with the high performances of the GANIL ECR source, the high 

detection efficiency of the COLTRIMS technique provided adequate conditions to study collisions 

involving fully stripped highly charged ions with charge states above 8+. The measurement of the final 

n-state dependence of the captured electron in coincidence with the associated scattering angle 

distributions could, for the first time,  be performed in collision systems such as Ar
18+

 + He at 270 keV 

and Ne
10+

 + He at 150 keV. These challenging experiments provided new information about the 

reaction window and impact parameter dependence in single capture processes, and were used to test 

theoretical calculations based on the CTMC and the COBM (Classical Over the Barrier Model) 

methods. The measured n-state distributions were found to be in good agreement with both, the results 

of the CTMC calculations, and the q
0.75

 dependence predicted by the COBM [25, 26]. Soon after, 

improvements of the experimental technique, such as the implementation of an inhomogeneous 

electric field for recoil ion collection, allowed to achieve even higher resolution on the recoil ion 

momentum measurement. By resolving the structures of the projectile scattering angle distributions, 

information about possible interferences between the different capture pathways (Stuckelberg 

oscillations) became available. This detailed information allowed to perform more stringent tests of 

close-coupling calculations using pseudo empirical exchange interaction for C
5+

 + He collisions at 

energies ranging from 9 keV to 90 keV [27]. In particular, the oscillations in scattering angle predicted 

by the calculation for 30 keV collisions were clearly observed in the experimental data. For Ne
10+

 + He 

collisions at 50 keV and 150 keV, the experimental scattering angle distributions obtained in the single 

capture process led to the validation of state-of-the-art close-coupling calculations including double 

capture channels and using wave functions based one-electron diatomic electron orbitals (OEDM) 

[28]. This constituted an important step in preparing detailed studies of the double electron capture 

processes. If the COLTRIMS technique proved to be a powerful tool to understand in more details the 

single electron capture process, it also provided new and valuable experimental results in the case of 

multiple electron capture, as shown in the next sections.  

2.1.2. Double electron capture. When a highly charged ion collides an atomic He target at low 

projectile velocity (v < 1 a.u.), the ion may capture one or two electrons from He. Even in the case of 

collisions involving only two active electrons, the processes responsible for double electron capture 
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(DEC) were under debate during more than ten years [28-50]. Attempts to describe DEC by using 

independent electron models were not fully satisfactory. It has been shown that dynamic correlation 

effects due to the electron-electron interaction – which is not incorporated in these models – may play 

a decisive role during the collision [40-45]. The importance of these processes was found to depend 

strongly on the collision system and the projectile velocity. 

DEC leads to the population of doubly excited states of the projectile ion. The production of 

quasi-equivalent (QE) electron configurations and non-equivalent (NE) electron configurations was 

investigated experimentally by means of Auger electron spectroscopy, in the case of C
6+

, N
7+

, O
8+

 and 

Ne
10+

 + He collisions [28,38-49]. At relatively high projectile velocities ( 0.5 a.u.), QE configurations 

are mainly populated. This can be explained by using independent electron models. A first electron is 

captured and, independently of this electron, the second one is then captured. Here, electron-nucleus 

interaction is the main interaction responsible for such a capture. However, NE configurations are also 

populated, in a less extent, due to electron-electron interaction during the collision. As the projectile 

velocity decreases, the population of NE configurations strongly increases, showing that electron-

electron interaction can play a decisive role during DEC. To identify more precisely the mechanisms 

responsible for the population of non-equivalent electron configurations, close-coupling calculations 

of DEC differential cross sections were performed and compared with experimental distributions [28, 
41]. These calculations were useful to reveal the importance of the electron-electron interaction. Cold 

Target Recoil ion momentum spectroscopy (COLTRIMS) was also used to study the different 

mechanisms responsible for DEC [28, 49]. As an example, differential and doubly-differential cross 

sections for single-electron capture onto the levels n = 3,4,5 and 6 of Ne
9+

(nl) and double-electron 

capture onto series of doubly excited states 3,n and 4,n with n = 4, 5 and 6 of Ne
8+

 were obtained 

(figure 2) [28].  

 

 
Figure 2. Cross sections differential in Q-Value (a) and doubly-differential in Q-Value and 

scattering angle (b) for the double electron capture process in Ne
10+

 + He collisions at 50 keV [28]. 

 

The cross sections were found to be in good agreement with state-of-the-art close-coupling 

calculations based on the use of OEDM orbitals. Population mechanisms for the dominantly populated 

double-capture channels could be deduced. In particular, it was found that even configurations of QE 

electrons can be populated by electron-electron interaction [28]. The population of NE electron 

configurations and its dependence on the collision velocity can also be attributed to post-collisional 

processes. These processes imply a population transfer from QE electron configurations, populated in 

the primary collision process, towards NE electron configurations with similar energy levels [51, 52]. 

The relative contribution of such processes and of the electron-electron interaction could be estimated 

thanks to this joint experimental/theoretical investigation. In addition, the extensive study of DEC 
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from He made possible to derive scaling laws for electron capture in A
q+

 + He collisions at low impact 

velocities [45]. 

Finally, K-shell vacancy production due to dielectronic excitation has been studied in order to 

give direct experimental evidence for electron correlation [53,54]. The study has been performed for 

collisions between bare N
7+ 

ions and Ne atoms. Projectile velocities ranging from 0.1 to 0.7 a.u. were 

investigated. The method of Auger electron spectroscopy was used to measure cross sections for 

producing a K-shell vacancy in the multi-electron target of Ne. At the low impact velocities 

investigated here, the cross sections were shown to be of the order of 10
-17

 cm
2
. Since single excitation 

or ionization plays a negligible role at velocities as low as a few tenths of an atomic unit, dielectronic 

excitation governed by the electron-electron interaction was shown to be the unique mechanism that is 

responsible for the production of K-shell vacancies in the present collisions. The remarkable feature is 

that the process of dielectronic excitation is likely enough to give rise to relatively large cross sections 

for producing K-shell vacancies in very slow ion-atom collisions. Moreover, it was shown that the 

transfer of spectator electrons creates resonance conditions for the transfer of two active electrons via 

dielectronic excitation. It has been found that dielectronic excitation is particularly favored when 3 

target electrons are transferred into an excited state of the projectile [54]. 

2.1.3. Multiple electron capture with heavy targets. Starting from the 1980s, many experiments have 

been performed with light ions, like C, N, Ne interacting with light targets as H2 and He. As illustrated 

above, using different techniques, they lead to a quite complete understanding of the mechanisms 

involved in the collision [55-61]. At the same time, extended theoretical investigations have been 

developed. They include simple approaches such as the well-known classical over-the-barrier model 

(COB) [62] or the reaction window within the Landau–Zener model [63, 64], and more sophisticated 

coupled state calculations using basis of either atomic or molecular orbitals [65-68].  

However, today, there is still a lack of data for (quasi)symmetric collisions, i.e. highly charged 

ions colliding on many-electron targets whilst it is indeed one of the most common fundamental 

processes in space such as for instance when solar wind collides with comets. Until now, the only 

systematic studies available are restricted to coincidence measurements between charge selected 

projectile and target ions [69,70] where stabilized charge exchange mechanisms are investigated. 

2.1.4. Using COLTRIMS. A preliminary study of multiple capture processes in low energy (105 keV) 

N
7+

 + Ne collision was also attempted using the COLTRIMS technique [71]. The resolution in Q-

value that can be achieved with this technique cannot compete with high resolution electron 

spectroscopy or photon spectroscopy, but the measurement in coincidence of the charge states of both 

the projectile and the recoil ion gives direct access to capture multiplicity and to the stabilization ratios 

of the captured electrons. In this experiment, the branching ratios for configurations populated by the 

single and double capture processes could be clearly resolved and quantified. For the capture of three, 

four and five electrons, the populated configurations could be identified but the associated branching 

ratios could not be accurately determined. However, it was clearly shown that triple-, quadruple-, and 

quintuple-electron capture populate double Rydberg states and prefer to be doubly stabilized, with two 

electrons remaining on the scattered projectile while the others are ejected by Auger emission. With 

more than two active electrons, the number of channels leading to multiple capture becomes too large 

to be treated theoretically within the quasimolecular description and using close coupling standard 

calculations. Only the COBM [63] and a semi empirical model [72] could be used to describe these 

processes and be compared with the experimental results. These models predict a triple-electron 

capture stronger than the quadruple-electron capture, what was found to be in complete disagreement 

with the experimental results. This implies that electon-electron interaction, not included in these 

oversimplified calculations, may play an important role in multiple capture. 

2.1.5. What can be learned from high-resolution x-ray spectra on low energy collisions for (quasi) 

symmetric heavy systems? Using low-resolution x-ray detection technique, experiments have been 
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performed [73-76], allowing to extract a parameter called the ‘hardness ratio’, H, (i.e. the ratio 

between the x-ray intensity of n >2 →1 and 2 →1 transitions) that serves as a reference to diagnose the 

relative abundance of constituents of intergalactic clouds and comets when interpreting astrophysical 

x-ray spectra [77,78]. Nevertheless, neither from ion charge state coincidence measurements nor from 

low-resolution x-ray spectroscopy, information on the partial n electron capture states is accessible. 

Furthermore, in the case of low-resolution x-ray measurements, as discussed recently in [79], the 

effect of single and multiple processes cannot be distinguished.  

Of course, if a highly charged projectile collides with a many-electron target, multiple capture is 

possible and multiply excited projectile states can be formed. This gives rise to a complex de-

excitation cascade that involves both Auger and radiative transitions. Unless one would do a 

“complete experiment" that measures all relevant photon and ion charge state coincidences (and 

possibly Auger electrons as well) it is difficult to obtain complete information on such a collision 

system from measurements alone. Similarly, the predictive power of theoretical calculations is limited 

simply because a full first-principles calculation of the many-electron dynamics is not feasible. 

In a recent experiment performed at the low energy installation ARIBE at GANIL, the 

contribution of single-electron capture has been successfully disentangled from multiple-capture 

processes in the x-ray emission of an Ar projectile colliding with a N or Ar gaseous target at v = 0.53 

a.u. [ 80 ]. By combining low-resolution spectroscopy, using Silicon Drift Detectors (SDD) but 

accurately calibrated in efficiency, with a complete determination of the ion beam-gas target overlap, 

absolute x-ray emission cross section has been extracted: a value of 11.4×10
-15

 cm
2
 ±15 % has been 

found, in agreement with the only previous measurement performed by Tawara et al. [74] but with an 

improvement by more than a factor of 2 in the uncertainty and without referring to any external 

calibration. 

Going a step further and taking full advantages of the high resolving power of a mosaic crystal 

spectrometer, additional information on single- and multi-electron processes have been achieved 

without applying coincidence with target charge-state detection. The whole He-like Ar Lyman series 

from n = 2 to 10 has been resolved as well as the fine structure of n = 2 → 1 transitions (see figure 3) 

[80]. For each n value, the relative 1snp →1s
2
 intensity is obtained showing that the 1s2p →1s

2
 

transition represents almost 90% of the total x-ray emission whatever the gaseous target (Ar or N). 

Resolving also the different 1s2→ 1s transitions allows for a precise determination of the influence of 

metastable states such as the 1s2s 
3
S1 state. It emphasizes that transposition of the commonly used 

hardness ratio, H, measured via 'laboratory ion-atom collisions' towards interpretation of spectra from 

comets and solar winds should be made with caution. Here, having control on the contamination from 

metastable Ar
16+

 ions in the incoming ion beam, an H value of 0.060 ± 0.007 has been found, 

approaching to the statistical limit as expected at a collision velocity of 0.53 a.u..  

From the analysis of the n = 7−10 →1 line intensities, single-electron capture is found to occur 

preferentially in n = 8–9 with a relative n-distribution {Pn} in agreement with the well-known 

Landau-Zener model [64]. In particular, {Pn} is found to be independent on the -sublevel distribution 

population {P}. The accurate knowledge of the Bragg-spectrometer transmission enables also to 

evaluate the absolute value of the single-electron capture cross section. In this case, the result is 

influenced by the choice of {P} and lies between single= 4.6 10
−15

 cm
2
 (flat distribution) and 

12.8 10
−15

 cm
2
 (statistical distribution). This result can be satisfactorily compared to the value of about 

8 10
−15

 cm
2
 obtained by Ali et al [70] from coincidence measurements of projectile–target charge 

exchange for Ar
17+

on Ar at v = 0.6 a.u., and is, as well, in good agreement with the classical over-

barrier model [63]. 
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Figure 3. High-resolution spectra of Ar

16+
x-ray transitions observed with an argon target in single 

collision condition. The He-like Ar 1snp→ 1s
2
 with n up to 10 are visible. For n = 2, transitions from 

1s2p 
3
P1,

3
P2,

1
P1 to the ground level are partially resolved. In addition, M1 1s2s 

3
S1 → 1s

21
S0 and Li-

like Ar 1s2s2p 
4
P1/2,3/2→ 1s

2
2s 

2
S1/2 transitions are observed and well resolved from the 1s2p He-like 

transitions [80]. 

 

 

 

Figure 4. Experimental and calculated x-ray 

intensities for 1snp → 1s
2
 transitions in Ar

16+
 

following capture in Ar
17+

-Ar collisions at 

0.53 a.u. 
 

 

 

 

 

With the knowledge of {Pn}, the multi-electron capture contribution can also be estimated 

through the comparison between the experimental data and the expected intensities of the n = 2 − 6 →1 

lines from single-electron capture using a cascade code. Those findings initiated new theoretical 

developments based on a two-center basis generator method (TC-BGM), in the independent electron 

model approximation, but including projectile states up to the 10
th
 shell in the basis [81]. They confirm 

that levels of n  7 are populated only by single-capture (see figure 4), although at variance with 

experimental data for n=8 and 10 that is possibly due to the limited basis set used in the TG-BGM 

calculations. Besides, the theoretical results that include the multiple capture contributions are in very 

good agreement with the experimental data, while those which ignore them yield considerably lower 
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intensities [82]. This demonstrates quite clearly the important role of the multiple capture processes in 

this type of collision systems and allows even quantifying its influence. 

2.2. In the perturbative regime 

For electron transitions occurring in fast ion-atom collisions, where the projectile velocity is much 

greater than the velocity of the active bound electron, the collision interaction is weak so that 

perturbative methods can be used to treat the collision dynamics [83]. The emission of slow electrons 

in soft collisions at large impact parameter is usually attributed to three-body effects between the 

projectile, the electron, and the target ion. On the other hand, for larger momentum transfer, two-body 

interactions involving binary-encounter processes become important. The two- and three-body 

processes are analogous to Compton scattering and photo-absorption, respectively. Because of their 

similarity to photon induced interactions, excitation and ionization by ions traveling near relativistic 

speeds (v ~ 100 a.u.) are expected to occur mainly by dipole (l=1) transitions. Due to the uncertainty 

principle l. = 1 ( is the emission angle relative to the beam direction), the angular momentum 

transfer affects the angular distribution of the emitted electrons. Low-order multipole transitions 

produce a broad angular distribution and vice versa.  

In addition to single electron transitions, excitation and ionization can be part of a multi-electron 

transition. In fast ion-atom collisions, two-electron transitions can be caused by separate nucleus-

electron (n-e) interactions, or by an n-e interaction followed by an electron-electron (e-e) interaction  

(e.g.  reference [84] and references therein). In the former case, the process is referred to as TS2 (two-

step with two projectile interactions), and in the latter case it is called TS1 (two-step with one 

projectile interaction). The TS1 process implies dynamic electron correlation which generally falls 

into two categories, corresponding to whether the first electron is emitted slowly or suddenly. For slow 

emission, subsequent excitation or ionization of a second electron involves the mutual scattering of 

two electrons, i.e., it is dielectronic in nature. On the other hand, sudden emission can result in a 

subsequent electron transition due to the change in potential seen by the second active electron as the 

excited system relaxes [85]. This latter type of transition is a “mean-field” effect referred to as a shake 

process.  

During the past decades, ionization and excitation of helium by fast ions and photons have 

attracted much interest (see e.g. [86]) due to the insight it provides into dynamic correlation effects. At 

CIRIL, we mostly focused on the ionization and excitation of the three-electron atom of lithium. In 

contrast to He in which initial-state correlation is strong (both electrons initially occupy the same 

orbital), the Li atom has the advantage that, for double ionization, initial-state correlation is small. 

Furthermore, an important reason for investigating excitation in Li is the fact that both single- and 

double-K-shell vacancy production can be measured in the same experiment via Auger-electron 

emission (this is not possible for He).  

As a first step, we investigated the cross-section ratio for double-to-single ionization for collisions 

of 95-MeV/u N
7+

 with He and Li target atoms [87]. The measured values for Li and He were found to 

be about equal (~ 0.3 %). Double ionization of He is dominated by e-e interactions such as shake-off 

and initial-state correlation. On the other hand, though double ionization of Li is dominated by n-e 

interactions (TS2), the contribution of the shake-off process is not negligible. After removal of one of 

the 1s electrons of Li, the probability for shake-off is ~ 0.38 % for the ejection of either the 1s or 2s 

electron [87].  

Besides total cross sections, we measured doubly differential cross sections for single ionization 

in collisions of 95 MeV/u Ar
18+

 with atomic Li for electron emission energies ranging from 3 to 

1000 eV and emission angles ranging from 25° to 155° relative to the beam direction [88-90]. The 

high projectile velocity provided by the GANIL facility made possible the separation of two- and 

three-body processes in both angular and energy distributions of the ejected electrons. Emission of the 

1s electron was shown to be mainly influenced by three-body effects [88]. The cross section for three-

body collisions rapidly decreases with the electronic energy transfer so that two-body effects dominate 

at high electron emission energies [88,89]. Remarkably large contributions from two-body collisions 
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were also observed for the low-energy emission of the 2s electrons [89,90]. We moreover 

demonstrated that the node in the Li 2s wave function manifests itself in the angular spectra [88,90].  

In parallel to ionization process studies, we devoted much attention to single and double 

excitation, as well as to excitation plus ionization processes. We investigated single-K-shell excitation 

and double-K-shell vacancy production in lithium by 95-MeV/u Ar
18+

 [91-93] and 60-MeV/u Kr
34+

 

impact [94]. To separate TS1 and TS2 contributions, it was useful to vary the projectile charge-over-

velocity ratio, q/v, since transition amplitudes for TS1 and shake depend linearly on q/v, whereas the 

transition amplitude for TS2 depends on (q/v)
2
 [95]. Single-K-shell excitation was found to take place 

essentially by dipole transitions, leading to the excited states 1s2snp 
2
P. However, in the case of 

double K-shell-vacancy production, monopole transitions play a significant role, providing evidence 

for the e-e interaction. High-resolution Auger electron spectra showed that discrete doubly vacant K-

shell states are predominantly formed from ionization plus excitation, giving rise to the 2sns 
1,3

S and 

2snp 
1,3

P states of Li
+
. The shake-up and dielectronic manifestations of the electron-electron 

interaction were shown to be the only mechanisms for creating the observed 2sns 
1,3

S states. For 

q/v < 2 a.u. the formation of the 2snp 
1,3

P states was found to be mediated only by the dielectronic 

process, permitting this aspect of the electron-electron interaction to be separately identified and its 

contribution characterized for the first time [93-96].  

At high energy, for which the perturbative regime is reached, the high resolution measurements 

allowed by the COLTRIMS technique have led to experiments for testing the available theories on the 

few-body problem of the spatial and temporal evolution of mutually interacting particles. One of the 

most commented results has been obtained on the LISE beam line of GANIL by a collaboration 

between MPIK, Heidelberg and CIMAP. It was devoted to single and double ionization of He by 100 

MeV/u C
6+

. GANIL was the only place in the world to perform this experiment thanks to the available 

beam intensities but also to the fast bunch suppressor which could provide 1 ns ion bunches every 2 

s. Unique experimental results have been obtained concerning the double ionization [ 97 ], but 

surprising results on single ionization [ 98 ] have led to a 10-year-lasting discussion about the 

disagreement between experiment and theory (figure 5). This controversy is still open and new 

experiments are planned at GANIL to give a final and satisfactory answer to this disagreement. 

 

 

Figure 5. Electron angular 

distribution of helium single 

ionization induced by 100 

MeV/u C
6+

 [ 99 ] for fixed 

momentum transfer q (q=0.75 

u.a.) and electron kinetic energy 

(E=6.5 eV). Experimental 

results on the left, 3DW-theory 

on the right side. 

2.3. In the intermediate regime  

While significant progresses have been achieved when the perturbation induced by the target-atom is 

either very low or very high, as described above for instance, the full description of the dynamics of 

ions colliding with neutral targets in the so-named intermediate regime (i.e. K1, as defined in the 

introduction of this paper) is still lacking. Indeed, for this domain, cross sections of single-electron 

processes (capture, ionization or excitation) are of the same order of magnitude and interferences 

between all these channels cannot be neglected [100,101]. On the other hand, the role of target 

electrons as active partners, via capture-channel coupling and direct target electron – projectile 

electron interaction is not well known despite several attempts for a few specific cases (see for 

instance [102-105] and even recently [106,107]). The theoretical description of such many-electron 

systems is very complex and up to now these effects are not well taken into account even by the most 
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sophisticated approaches. Furthermore, multiple processes, involving more than one electron of the 

projectile and of the target as well, start to play a role and raise much debate question even today. 

Experimentally, disentangling the different channels involved is also a challenge [108,109] and this 

collision regime remains to be explored in details whereas it corresponds to the collision domain of 

major interest for applications since the ion stopping power is maximum.  

 Performing an experiment on the medium energy line (SME; Sortie Moyenne Energie) at 

GANIL, with high intensity beam of Ar
16+

 at a fixed velocity, vp= 23 a.u. (13.6 MeV/u), but using 

gaseous neutral targets from He to Xe, the whole range from the perturbative regime to the strong 

interaction regime was able to be spanned. In addition, taking full advantage of the spin selectivity in 

the population of the projectile excited states via the different processes involved, the single-capture 

(SE), filling only singlet states from the fundamental heliumlike Ar
16+

 state 
1
S0, has been fully 

distinguished from the capture-ionization (CI) process, which populates triplet states as well. The 

same argument holds for double-excitation (DE) versus capture-excitation-ionization (CEI). Of course 

this type of measurements requires resolving the different final-state configurations that are separated 

only by a few eV. By using a high-resolution and high-transmission spectrometer, specifically 

designed for this experiment, cross sections of all the different processes mentioned above have been 

determined, including the excitation-ionization (EI) which produces hydrogenlike Ar excited states 

[110]. 

 

 

 

 

 

 

 

Figure 6. Single and multiple processes cross 

sections in n=2 for Ar
16+
Zt collisions at vp= 23 

a.u. (13.6 MeV/u) 

 

 

 

 

 

 

 

 

 

 As shown in figure 6, all the processes, including both target-electrons – via capture channels – 

and projectile ones increase more rapidly than those involving only projectile electrons: CI for 

instance, which is negligible for He target (i.e. in the perturbative regime) reaches 54% of SE for Xe 

(i.e. when hitting the strong interaction regime). Nowadays, none of the available (even the most 

sophisticated) theories are able to reproduce those results on the full range of dynamics investigated 

here, although significant developments have been made. Only scaling laws reproducing the general 

relative behavior of the multiple processes compared to SE have been extracted [111, 112]. It is also 

worth mentioning that, even if the observed saturation of the “pure” single-excitation process, when 

the perturbation induced by the target-atom increases, is well predicted by the most recent models, 

disagreement by almost a factor of 2 was revealed starting from symmetric collisions [110]. This 

variance has been assigned to the role of the target-electrons, like the so-called anti-screening effect 

(direct projectile electron – target electron interaction), and the interferences with the capture channels 

which increases for high Zt. More generally, those results demonstrated the crucial role of target 
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electrons when an ion interacts with neutral matter in the intermediate collision regime, which 

undeniably deserves further detailed experimental investigations. 

2.3.1. Multiple ionization in the intermediate regime. The ionization process induced by swift heavy 

ion collisions on atomic targets is certainly the process which provided the main motivation to develop 

the COLTRIMS technique at beginning of the 90’s [113-115]. Indeed, the ultimate goal was to get 

access to the scattering angle of the projectile, and hopefully to the impact parameter. As for fast 

collisions, the projectile scattering angle is too small to be measured directly, the idea was to infer it 

from the high resolution measurement of the recoiling target momentum. As mentioned above, the 

three pioneering groups working on this high resolution technique were the IKF, Frankfurt, Germany 

(H. Schmidt-Böcking), KSU, Manhattan, Kansas (C.L. Cocke) and CIMAP, Caen, France (A. 

Cassimi). The first results obtained with this technique have appeared in 1994 and have already 

evidenced the role of the electrons on the momentum balance. Their momentum has been shown to 

balance nearly exactly the target ion momentum making fast ion ionization resemble to 

photoionization. 

 One of the first COLTRIMS experiment performed at GANIL was aiming at the determination 

of the momentum vector of recoiling Ar and He target atoms ionized by Xe
44+

 (6.7 MeV/A) impact. 

From the angle of emission and recoil velocity distributions of each recoil ion charge state q (q = 1 to 

7 for argon ions, q = 1 and 2 for helium ions), it was deduced that the recoil ions are mostly emitted 

backward with respect to the projectile beam direction (figure 7). This behaviour has been attributed to 

the electrons which are mainly emitted in the forward direction and thus prove, in the case of single 

and multiple-ionization, the importance of the role played by the electrons in the momentum balance 

of such a collision. Moreover, such a backward recoil ion emission proves that the interaction between 

the projectile and the ejected electrons on one hand and the interaction between the projectile and the 

target on the other hand, may not be considered as independent. As a consequence it could be stated 

that the two body collision model underestimates the kinetic energy deposited on the target nucleus 

[116]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Experimental (dots) and calculated 

(lines) d /dpr// for Ar multiple ionization 

[116].  
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3. Collisions with diatomic species 

3.1. Collisions with diatomic covalent molecules 

3.1.1. Low energy collisions. Over the last decades, much work has been devoted to the study of slow 

collisions between highly charged ions and molecules [117-122]. Comparison between the collision 

time and the different molecular characteristic times (vibration, rotation) suggests a two-step picture 

for molecular fragmentation. In a first step, electron removal takes place on a fixed-in-space molecule 

and the transient molecular ion has the equilibrium internuclear distance of the neutral molecule. Then, 

in a second step, nuclear motion starts and is driven by the fragmentation dynamics. Pioneering 

calculations for the system Xe
54+

 + H2 by means of the classical trajectory Monte Carlo method [123] 

suggested two main sources for the kinetic energy of each H
+
 fragment: the recoil energy Er induced 

by the projectile on the center of mass of the ionized target, and the fragmentation energy Ef due to a 

pure Coulombic dissociation. At high projectile velocities (vp ≥ 0.5 a.u.), the quantity Er is negligible 

compared to Ef, so that the energy of the protons (~ 9.5 eV) originates only from the Coulomb 

explosion of the molecule at the Franck-Condon limit. In contrast, at low impact velocities (vp ≤ 0.1 

a.u.), both slow and fast protons were predicted [123], resulting from the vector addition of the 

collisional momentum transfer to the center of mass of the molecule and the one due to the two-body 

Coulomb dissociation. 

However, it has been recognized that a two-step picture is too simple [124-127]. Firstly, the 

fragmentation dynamics depends strongly on the primary electronic processes. In the case of multi-

electron molecular targets, we have shown that electron capture can lead to the formation of inner-

shell vacancies [128, 129], and thus to the excitation of the molecular target. By performing high-

resolution kinetic-energy-release measurements on CO dissociation [125], the first experimental 

evidence that excitation of the molecular target affects the fragmentation dynamics has been provided, 

thus leading to significant deviations from the Coulomb explosion model. Secondly, the fragment ions 

may also be influenced by the outgoing projectile ion [124-127]. The influence of the projectile is 

similar to the well-known Post-Collision Interaction (PCI) which affects the energy spectra of Auger 

electrons emitted from a projectile in the field of an ionized target. The fragment energy shift due to 

this effect is expected to depend on the projectile charge, the projectile velocity and the orientation of 

the molecular target before the collision.  

To get further insight into the post-collision interaction with the projectile, much effort has been 

devoted to investigate the fragmentation of H2 in collisions involving O
5+ 

and Xe
23+

 projectiles which 

strongly differ in charge, and occurring in a wide range of impact velocities (from 0.02 to 0.5 a.u.) 

[130, 131]. The energy distribution of the fragments was recorded at several angles with respect to the 

beam direction. The analysis of the spectra, combined with a classical scattering calculation, has 

shown that the projectile interacts strongly with each fragment. The lower the collision velocity, the 

lower the number of slow protons detected at forward angles (< 90°) [130, 131], since slow protons 

are repulsed in backward directions due to the Coulomb force induced by the projectile. Furthermore, 

at projectile velocities lower than 0.1 a.u., the energy distribution of the fragments exhibits two groups 

of peaks centered at energies which differ from the expected energy at the Franck-Condon limit 

(E = 9.5 eV): (i) slow fragments (E ≤ 10 eV) are formed in soft collisions involving large impact 

parameters (b > 1 a.u.), while (ii) fast fragments originate from hard collisions between the projectile 

and one of the target protons [131].  This study provided the first experimental evidence that the 

relative contribution of hard collisions to double capture events increases when decreasing the 

projectile velocity [131]. We observed the same feature for electron capture following O
5+

 impact on 

an atomic target of helium [132], thus showing its generality. 

At CIRIL, besides studies with the homonuclear H2 target, investigations involving heteronuclear 

and multi-electron molecular species led to other important achievements and findings. For collisions 

of He
2+

 (11 keV/u) and O
7+

 (4 keV/u) on the CO molecule, the dependence of the capture process on 

the initial orientation of the molecule has been investigated by measuring in coincidence the full 
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momentum vector of the two fragments of the dissociated molecule and the projectile charge state 

[122]. In that study, the KER (Kinetic Energy Release) distribution for each fragmentation channel 

was obtained for each outgoing projectile charge state associated not only to single capture, but also to 

both stabilized and autoionizing double capture processes [122]. In the case of 98-keV N
7+

 + HCl 

collisions, peak structures in the energy distribution of H
+
 fragments ejected from HCl molecules 

made possible the identification of excitation and multi-electron capture channels [133]. For collisions 

of 30-keV N
6+

 and O
7+

 ions with water and methane molecules, the angular distribution of the 

fragment ions revealed nucleus-nucleus binary collision effects, with the indication of an interplay 

between Coulomb explosion and binary collision mechanisms [134, 135]. An unexpected anisotropy 

has been found for the angular distribution of H
+
 emission from water [134, 135], which could be 

attributed to orientation sensitivity of some of the capture channels [134-137]. 

More recently, it has been shown that negative hydrogen ions (H
–
) can be formed in molecular 

collisions under much more general conditions than ever expected, via a previously unrecognized 

process [ 138 , 139 ]. H
–
 formation has been observed in collisions between a positively-charged 

molecular ion (7-keV OH
+
) and a neutral target (argon atom or acetone molecule). By measuring both 

energy and angular distributions of the emitted anions, it has been shown that H
−
 ions can be created 

via quasi-elastic two-body collisions involving a large momentum exchange between a heavy atomic 

center and the active H center. Hence, fragile atomic systems such as negative hydrogen ions are 

formed not only in soft collisions involving negligible momentum transfer, but also in hard core-core 

collisions via double electron grabbing by fast hydrogen fragments. For 7-keV OH
+
 + Ar, a striking 

finding is that negative and positive hydrogen ions are emitted with very similar angular dependences 

[140]. Though the electron capture process is complex, the relative population of the different final 

charge states of the outgoing fragments can be described by simple statistical laws. 

3.1.2. Medium and high energy collisions. The availability of new position sensitive detectors with the 

capability of multi-particle detection has opened the way to the study of the molecule fragmentation 

dynamics. The CIMAP has been one of the first laboratories to use this technique for the study of ion 

induced molecular fragmentation and took advantage of the quality GANIL ion beams [141]. As for 

COLTRIM spectroscopy, this imaging technique allows to measure momenta of all fragments 

becoming a multi-particle 4 spectrometer. 

Opposite to ion-atom collisions, large momenta (up to 100 a.u.) are imparted to the molecular 

fragments. In this latter case, the momenta reflect the dynamics of the fragmentation process rather 

than the collision dynamics as it is the case for atomic targets. Indeed, they give access, with high 

resolution, to the Kinetic Energy Release (usually noted KER which is the sum of all fragments kinetic 

energy) allowing identification of the molecular excited states before the molecule dissociation. Figure 

8 shows that, depending on the projectile velocity governing the dominant process (electron capture at 

low velocity and ionization at high velocity), the populated excited states of the CO dication are 

clearly different [142]. This was the first time that molecular excited states could be separated, proving 

the limit of the so called Coulomb explosion model which assumes that the KER is given by the 

Coulomb repulsion between the fragments starting at the neutral molecule atom position and holding 

their final charge state. 

In the case of ion-molecule collisions, the target has a structure which adds new degrees of 

freedom such as the orientation of the molecule with regard to the beam direction. Dealing with fast 

projectile ions, the collision duration is much shorter (10
-17

 s) than the dissociation (10
-14

 s) and the 

rotation (10
-11

 s) times. This leads to two main features of this process: 

- The atto-second interaction duration allows to study the free fragmentation process, without any 

influence of the projectile Coulomb field. 

- As the rotation lasts longer than the fragmentation process, the fragment momenta keep memory 

of the molecule orientation at the instant of the interaction with the projectile which can thus 

be reconstructed.  
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These features have allowed to study the dependence of collision processes on the molecule 

orientation [141]. Strong effects have been observed and interpreted by geometric models [143, 144, 

145, 146] evidencing that orientation effects become important for processes happening at impact 

parameters of the same order of the size of the target molecule such as inner-shell processes or 

multiple ionization. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of the kinetic 

energy release distributions for the C
+
 + 

O
+
 fragmentation channel induced by 

11.4 MeV u
−1

 O
7+

 (full curve) and 4 

keV u
−1

 O
7+

 (dotted curve) projectiles 

[142]. 

 

 

When the target gets larger than diatomic molecules, the fragmentation dynamics starts to become 

more complex due to its many-body nature. Already for tri-atomic molecules such as CO2, internal 

degrees of freedom increase the number of fragmentation scenarios entering into play, the 

fragmentation being either sequential or concerted [141]. This complicated dynamics has been 

accessible thanks to the latest multi-particle imaging techniques available at the end of the 90’s. This 

dynamics can even lead to surprising isotopic effects such as those observed in the case of HDO 

molecules (figure 9) [147] for which the probability of losing the H
+
 fragment is more than 5 times 

higher than for the D
+
 fragment. 

 

 

 

 

 

 

 

 

 

 

Figure 9. Two-body fragmentation 

channels of H2O, D2O and HDO 

mixture showing the the dominant 

OD
+
+H

+
 fragmentation channel of the 

dication HDO
2+

 [148]. 
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3.2. Collisions with rare gas dimers 

Very recently, rare-gas dimer targets have attracted much attention. They are characterized by a large 

internuclear distance and a weak molecular bond, providing a situation where the target can behave 

more like two neighbor independent atoms than like a covalent molecule. Photoionization experiments 

have already shown that new deexcitation channels open up for an ion located in the vicinity of 

another atom [149,150]. The new relaxation process, called inter atomic Coulombic decay (ICD) and 

initially predicted by Cederbaum et al [151], has been observed for biologically relevant systems such 

as water clusters [152] and a vast number of rare-gas clusters [153]. This process is thus an additional 

source of low-energy electrons that can play a role in radiation damage to healthy tissues.  

In this context, the contribution of ICD to the production of low-energy electrons induced by ion 

impact had to be investigated. In ionizing ion-atom collisions at medium and high energy collisions, 

the dominant contribution to the electron energy distribution results from distant collisions with small 

energy transfers which can be approximated by an exponential decay. Recent experiments performed 

at GANIL with 11.37 MeV/u S
14+

 ions colliding on neon dimers have shown a large contribution of 

low-energy electron production unambiguously attributed to ICD [ 154 ]. Combined with 

complementary experiments using He
+
 and He

2+
 projectiles in the 0.1-0.2 MeV/u energy range on 

neon and argon dimer targets, the results suggest that ICD is omnipresent and a major contributor of 

low-energy electron emission in fast ion collisions with loosely bound targets [154]. 

For lower energy collisions between HCIs (highly charged ions) and molecular targets, multiple 

electron capture becomes the dominant primary process. For molecular targets with a strong covalent 

character, for which the valence electronic orbitals are delocalized over the whole molecule, multiple 

ionization leads usually to dissociation into equally charged fragments [155-157]. With rare gas dimer 

targets, if one site of the dimer is multiply ionized, near isolation of the two atoms may lead to weaker 

and slower charge rearrangement. This unique feature may allow to investigate how the electrons are 

captured at the instant of the collision and to study electron dynamics in charge transfer collisions with 

HCIs. In an experiment involving low energy Ar
9+

 projectiles colliding on Ar2, the yields associated to 

the different fragmentation channels Ar
+
 + Ar

+
, Ar

2+
 + Ar

+
, Ar

3+
 + Ar

+
 and Ar

2+
 + Ar

2+
 were precisely 

measured. In contrast with the results previously obtained with covalent molecules, it was shown that 

asymmetric fragmentation channels are favored [158,159]. In addition, the kinetic energy release 

(KER) spectrum of the Ar
+
 + Ar

+
 fragmentation channel allowed to identify one-site double capture 

process populating bound transient states that can only decay through radiative charge transfer (RCT). 

This behavior was interpreted as due to low electron-mobility within the molecular ions resulting from 

the collision. 

This finding motivated a more detailed study of the collision system with the measurement of the 

correlation between the projectile scattering angle and the molecular ion orientation, as a function of 

the fragmentation charge sharing. As illustrated in the figures 10.a and 10.b, the projectile scattering 

angleproj is given by the transverse momentum exchange due to the Coulomb repulsion between the 

collision partners. It is thus closely related to the impact parameter vector 𝑏⃗  in the molecular frame and 

to the final charge on the two sites of the dimer. The experimental results provided clear evidence that 

projectiles distinguish each atom in the target and, that electron capture from near-site atom is favored 

[160]. Monte Carlo calculations based on the classical over-the-barrier model, with dimer targets 

represented as two independent atoms, were compared to the data. These calculations, in good 

agreement with the experimental data, give a new insight into the dynamics of the collision by 

providing, for the different electron capture channels, the two-dimensional probability maps p( 𝑏⃗ ) 

[160]. 
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Figure 10. (Color online) Schematic view of the multiple electron capture from Ar2 by Ar

9+
projectiles 

resulting in the Ar
3+

+ Ar
+
 asymmetric fragmentation channel (a). Representation of the scattering 

angle proj and of the angle of emission Ar3+ of the most charged fragment in the plane transverse to 

the beam axis (b). 

 

4. Probing other fundamental processes 

4.1. Young-type interferences induced by ion-molecule collisions 

Since 2001, many experiments have been devoted to the evidence for oscillations in angular 

distribution and energy distribution of electrons emitted in collisions of highly charged, fast and slow 

ions [161-178] and electrons [179] with H2 molecules. First, structures attributed to interference 

effects in the electron emission spectra from H2, which are similar to those observed in Young’s two-

slit experiment, were observed [161-166]. For ion-induced electron emission the interference 

structures were difficult to observe. Therefore theory has been used to provide guidance in the search 

for the interference phenomena. Fast projectiles have been found to be essential (v > 10 a.u.), since 

they enhance dipole-like transitions which, in turn, are responsible for the interference effects. Various 

features predicted by the model calculations are in accordance with the experimental results: (i) 

interference effects do not cancel when an averaging is performed over the orientation of the H2 

internuclear axis, (ii) interference effects are manifested by a sinusoidal-like oscillation occurring in an 

energy range up to 250 eV. Evidence is provided for the fact that the oscillation frequency of the 

interference pattern varies significantly with the electron ejection angle. The theoretical results based 

on Born approximation confirm this behavior. However, the theory cannot explain the high frequency 

observed at high emission angles [166]. 

A few years later, interferences caused by a single electron impacting on an independent double-

center scatterer, which plays the role of an atomic-size double-slit system, were experimentally 

evidenced for the first time [167-178]. The electron originates from the autoionization of doubly 

excited 2lnl’ (n ≥ 2) configurations of He following a double charge exchange process by He
2+

 ions 

impinging on H2 molecules. Well-defined oscillations could be observed in the angular distribution of 

the electrons emitted towards the receding H protons. The presence of these oscillations provides the 

first experimental demonstration that a single electron interferes with itself [167]. This is analogous to 

the famous “thought” experiment imagined and discussed by Feynman in 1963, in which the quantum 

nature of the electron was illustrated by making it traverse an atomic-size double-slit arrangement. 

An interesting aspect of electron interferences was also evidenced [174]. Instead of investigating 

the total intensity of undiscerned 2lnl’ (n ≥ 2) autoionization configurations, focus has been put on a 
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single 2s
2 1

S line. Its maximum and linewidth have been determined at angles ranging from 120° to 

160°, where interferences are expected to occur. This detailed analysis revealed well-defined 

oscillations in the angular dependence of both the maximum intensity and the linewidth. In the 

investigated angular range, the maximum oscillates in phase with the total intensity, showing that the 

oscillations of the total intensity are mainly due to the variations of the line maximum. More 

surprisingly, the 2s
2 1

S linewidth was found to strongly oscillate in counter phase with the maximum, a 

fact that can be explained by means of simple theoretical arguments. These results not only provide a 

Feynman-type demonstration of the presence of a nanoscale Young-type interference of single 

electrons but also complete and reinforce the analysis performed previously on the undiscerned 2lnl’ 

(n ≥ 2) configurations. 

4.2. Electron shakeoff in nuclear beta decay 

Electron shakeoff (SO) is a fundamental atomic process resulting from the sudden change of the 

central potential in which a bound electron is ejected into the continuum. This monopole ionization 

may be due to the creation of a vacancy in an atomic inner shell induced by collisions with charged 

particles (see section 2.3.) or by photoionization [180], but also to the change of the nucleus charge in 

nuclear reactions such as nuclear beta decay, nuclear electron capture, internal conversion and alpha 

decay [181]. If the ionization probabilities can usually be calculated in the framework of the sudden 

approximation (SA), the accuracy of the calculation depends on how fast is the potential change 

compared with the relaxation time of the electrons in the new core potential. Nuclear beta decay offers 

ideal conditions since the potential change occurs in less than 10
-18

s, which is the transit time of the 

emitted beta particles through the orbital electron cloud. Calculations of SO probabilities following 

beta decay were first performed using hydrogen like wave functions [182], and later, using more 

sophisticated numerical self-consistent wave functions for many electrons atoms [183]. However, the 

comparison between experiments and calculations is usually difficult because of secondary processes 

such as Auger electron emission that contribute to the final charge state of the daughter ions. Even for 

the simplest case investigated so far, the beta decay of 
6
He atoms, the theoretical double ionization 

probability was overestimated by almost one order of magnitude [184].  

 
Figure 11. (Color online) Top view of the LPC trap setup and representation of a beta decay event 

from 
35

Ar
+
 trapped ions. The recoiling daughter is accelerated between two collimators, enters a free 

flight region and is detected by a microchannel plate detector (MCPPSD). The detection of the beta 

particle provides a start for the recoil ion time of flight measurement, allowing charge state 

identification. The insert shows the structure of the Paul trap. 

 

The LPC trap setup [185,186] has been initially developed to perform in-trap decay precision 

measurements [187] by confining radioactive ions from the SPIRAL target-ion source of GANIL in a 

transparent Paul trap. By implementing a new time-of-flight recoil ion spectrometer (figure 11) with 

the capability to separate the different charge states of the recoil ions resulting from beta decay, the 

setup has been recently used to investigate electron SO processes in the decay of singly charged 

radioactive ions. This new setup allowed, for the first time, to perform a SO measurement in the decay 

of 
6
He

+
 ions. With only one single active electron, electron-electron correlations and secondary 
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relaxation processes are absent, leaving only two possible mechanisms for the daughter ionization: 

direct collision with the beta particle, and the rapid change of both, the nuclear charge and the recoil 

velocity of the daughter nucleus. In this ideal textbook case, the experimental ionization probability 

was measured with a relative precision of the order of 10
-4

 and the result, PSO=0.02339(36), was found 

in perfect agreement with simple mechanical calculations based on the SA [188]. 

Beyond the prototypical 
6
He

+
case, heavier systems such as 

35
Ar

+
 can reveal the role of more 

subtle shakeoff dynamics involving several electrons, and of subsequent relaxation processes such as 

the emission of Auger electrons.  A recent joined experimental/theoretical study of the SO process in 
35

Ar
+
 decay has provided a quite complete picture of ion formation [189] showing, in particular, the 

importance of Auger electrons. The same technique will be applied to 
19

Ne
+
 ions in order to get a Z-

dependent picture of the underlying ionization mechanisms. 

 

5. Conclusions and perspectives 

We have presented in the previous sections a large panel of collision experiments performed at 

GANIL during the three last decades, in the field of ion-atom and ion-molecule interactions. Covering 

a wide range of collision regime, these experiments led to a better understanding for several 

fundamental issues such as, for example, the role of electron-electron interaction in double capture, the 

importance of multiple-capture or-ionization processes depending on the collision regime or the limits 

of the two-step picture in ion-molecule collisions. New relaxation channels have also been evidenced, 

in particular for multi-ionized rare gas dimer targets with the identification of the ICD and RCT 

processes, and for OH
+
 projectile ions leading unexpectedly to the formation of H

-
 ions. This 

experimental activity has given rise to several technological developments, such as the use of state-of-

the-art X-ray spectrometers for the charge exchange process study, new spectrometers as well for the 

detection of molecular fragments, and the development of the recoil ion momentum spectroscopy 

technique. The quality and variety of the collected data have allowed testing and setting the limits of 

various theoretical models and calculations, such as the over-the-barrier model, the Landau-Zener 

model, CTMC calculations but also much more complex calculations such as close coupling based on 

atomic and molecular orbitals or two-center basis generator method. Beside the study of collisions, 

fundamental processes such as Young type interferences with a single electron or shakeoff ionization 

in nuclear beta decay are also part of the wide range of atomic physics topics that could be addressed 

at GANIL. 

Most of these research topics are still very active, with a number of unanswered questions and a 

large place for new discoveries. We have seen that for medium and high energy collisions, the ICD 

process has a sizeable contribution in the emission of low energy electrons. This process can play an 

important role in radiation damage to biological tissues, and it is now necessary to extend its study to 

low energy collisions. Ion-molecule collisions have also been used as a tool to study Young type 

interferences with a single electron. Such collisions can be as well a powerful tool for molecular 

spectroscopy. As in the pioneering experiment performed with H2
+
 ions [190], collision-induced 

fragmentation of exotic molecules such as “trilobite” Rb2 molecules [ 191 ] could yield capital 

information on the internuclear distance and on the molecule vibrational states. For the shakeoff 

ionization induced by nuclear reactions, few experimental data are presently available. Experiments 

involving radioactive ions with a wider range of atomic numbers would complete the present picture 

for this process. Finally, the future installation SPIRAL2 should open up an entirely new experimental 

field: the investigation of ion collisions with very dilute targets. In particular, the very high intensity of 

the high-energy ion beams that will be delivered to the S
3
 spectrometer, coupled to a dedicated low 

energy platform equipped with an ECR source, will enable to study ion-ion collisions in the unknown 

intermediate velocity regime but where nevertheless the energy deposition is optimum. Besides the 

possibility to reach “pure” 3-body systems (bare ions on hydrogenic targets) as a benchmark to test 

theory in the simplest case, we will explore the role of additional electrons, bounded either to the 

target and/or to the projectile –one by one- to quantify the effects of the N-body quantum dynamics. 
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This project [192], apart from its fundamental interest, is also of prime importance for applications 

since it should provide a real breakthrough in the understanding of energy transfers in various plasmas 

(stellar /interstellar or inertial confusion plasmas) and also in the description, at the atomic level, of 

material modifications, including biological materials. 
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