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Abstract. The experimental achievements and the results obtained so far with the LPCTrap device 

installed at GANIL are presented. The apparatus is dedicated to the study of the weak interaction 

at low energy by means of precise measurements of the – angular correlation parameter in 

nuclear  decays. So far, the data collected with three isotopes have enabled to determine, for the 

first time, the charge state distributions of the recoiling ions, induced by shakeoff process. The 

analysis is presently refined to deduce the correlation parameters, with the potential of improving 

both the constraint deduced at low energy on exotic tensor currents (6He1+) and the precision on 

the Vud element of the quark-mixing matrix (35Ar1+ and 19Ne1+) deduced from the mirror transitions 

dataset. 

 

Keywords: Ion trapping, correlation in nuclear  –decay, test of weak interaction, 

shakeoff process. 

 

1 Introduction 

Correlation measurements in nuclear  decays enable to probe the structure of the 

weak interaction, complementarily to high energy physics experiments [1,2]. In 

particular, the study of the angular correlation between the two leptons gives 

access to the parameter a sensitive to the existence of exotic currents, scalar or 
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tensor, beyond the V-A structure of the Standard Model (SM). This parameter 

depends quadratically on the coupling constants associated to the different 

currents considered in the weak interaction. In the frame of the SM, for allowed 

nuclear decays it is given by: 
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MC
  is the mixing ratio of the transition, CA 

and CV are the coupling constants associated to the axial-vector and vector 

currents respectively, MF and MGT are the Fermi (F) and Gamow-Teller (GT) 

nuclear matrix elements. As a consequence, a equals 1 (-1/3) for a pure F (GT) 

transition. Any deviation from these values would imply either a departure from 

the allowed approximation or the presence of new physics beyond the SM. 

However, the distribution of events also depends on the Fierz term, b, which 

arises from the interference between exotic and standard currents and is therefore 

null in the SM. This particularity enables to consider that the effective parameter 

that is determined in a  angular correlation experiment is actually [6]: 

)
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mb /aa~  1(    where the brackets < > mean a weighted average over the 

measured part of the  spectrum, m and Ee are respectively the mass and the total 

energy of the  particle. 

The first candidate studied with LPCTrap at GANIL was 
6
He [3], which is an 

ideal case to probe the tensor components. Until now only one experiment, 

performed in 1963, has reached a relative precision at the level of 1% (1) in this 

decay, yielding a = -0.3308(30) [4,5]. This result contributed significantly to fix 

the current limits on tensor contributions deduced from the correlation 

measurements performed at low energy [6]. 

For mirror transitions, the measurement of a also allows for a precise 

determination of the mixing ratio . This parameter, combined with precise half-

life, branching ratio and masses, can be used to compute the Vud element of the 

Cabibbo-Kobayashi-Maskawa quark-mixing matrix [7]: 
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where Ft1/2 is the corrected ft-value of the transition, GF is the Fermi coupling 

constant, R is a transition-independent radiative correction and fA (fV) is the 
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statistical rate function computed for the GT (F) component. In the T=1/2 mirror 

transitions [8], the mixing ratio is always the least known parameter [9]. In the 

case of 
35

Ar and 
19

Ne, all parameters involved in the determination of Vud, except 

, are presently known with relative precisions below the 10
-4

 level. Accurate 

correlation measurements in their decays would then enable to significantly 

improve the current value of Vud deduced from the mirror transitions database [7]: 

Vud = 0.9719(17), which is a factor of 10 less precise than the result deduced from 

the pure F transitions [10]. 
35

Ar and 
19

Ne are two species also studied with 

LPCTrap [11]. 

In all experiments performed in the past, a was always deduced from the 

distribution of a kinematic parameter of the recoiling daughter ion (RI), since the 

 detection is not efficient. Because of the very low kinetic energy of the RI, traps 

offer an ideal environment to confine the radioactive source and to ensure 

minimal disturbance for the RI motion [12-16]. The central element of LPCTrap 

is a transparent Paul trap [17], allowing the detection in coincidence of the  

particle and the RI. The setup is installed at the low energy beam line, LIRAT, of 

the GANIL/SPIRAL facility. 

2. Performances of LPCTrap 

At GANIL, the low energy radioactive beams delivered to LPCTrap are provided 

by the SPIRAL ECR source with a typical energy dispersion of 20 eV at 10 keV 

kinetic energy. A radio-frequency quadrupole cooler buncher (RFQCB) is then 

used to reduce the beam emittance and to produce ion bunches. The RFQCB is 

connected to the transparent Paul trap by a short line with dedicated beam optics 

and diagnostics. A telescope made of a double-sided silicon strip detector and a 

thick plastic scintillator is used to detect the  particles while the RI's are detected 

in coincidence thanks to a micro-channel plates position sensitive system. The 

detectors are set in a back-to-back configuration, combining the highest statistics 

and the better sensitivity to a tensor component. The LPCTrap setup is described 

in detail in [11,14] and references therein. Some important features are 

summarized here: 

- The trigger of an event is given by the detection of a particle in the  telescope. 

Then many parameters are measured, such as the RI time-of-flight (ToF), the 

positions of the two particles, the trap RF and the timestamp of the decay in the 
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measurement cycle. The set of distributions enables to reduce the background 

and to fix and control systematic parameters of the experiment during the off-

line analysis. 

- The current version of the setup contains a recoil ToF spectrometer which 

allows the separation of the different charge states of the RI, due to the 

shakeoff process. This spectrometer makes LPCTrap a unique setup to measure 

the charge state distribution of the RI after the  decay of singly charged ions. 

- Until now, a measurement cycle of 200 ms (100 ms in the first experiment 

[14]) was used: an ion bunch is extracted and sent to the Paul trap each 200 ms. 

Actually the ions are kept in the trap during 160 ms and then extracted to 

measure the background during the remaining 40 ms, which is thus controlled 

continuously during the experiment. 

The performances of LPCTrap are summarized in Table 1, for the last 

experiments performed with 
6
He, 

35
Ar and 

19
Ne. The last column (Ncoinc) gives the 

number of "good" coincidences accumulated in some days, which includes a 

complete detection of the two particles (energy and position) when the ion cloud 

in the trap is at equilibrium (a buffer gas is injected in the trap to cool the ions), 

and the subtraction of the remaining background. This number also depends on 

many parameters such as the geometrical detection efficiency (4.5×10
-4

), the 

emission anisotropy of the 's and the RI in the decay, the rate of recoil 

neutrals…The lower statistics for 
19

Ne is due to the long half-life and several 

technical problems on the beam production encountered during the experiment. 

 

Table 1 Performances of LPCTrap during the last experiments with 6He, 35Ar and 19Ne (see text 

for details). Ibeam is the beam intensity at the entrance of LPCTrap; the buffer gas is used in the 

RFQ and the measurement trap to cool the ions; LPCTrap is the transmission efficiency of LPCTrap. 

Beam 

(year of exp.) 

Ibeam 

(pps) 

Buffer 

gas 

LPCTrap 

cycle=200ms 

Trapped radio- 

active ions/cycle 

Ncoinc 

 

6He1+ (2010) 

35Ar1+ (2012) 

19Ne1+ (2013) 

1.5×108 

3.5×107 

2.5×108 

H2 

He 

He 

5×10-4 

4×10-3 

9×10-4 

1.5×104 

2.5×104 

4.5×104 

1.2×106 

1.5×106 

1.3×105 
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3. Results 

3.1 The charge state distributions 

The RI spectrometer of LPCTrap has enabled to determine for the first time the 

experimental value of the shakeoff probability in the decay of 
6
He

1+
 ions [18]. 

This system, with one single electron, is an ideal case to test the sudden 

approximation commonly used in the theoretical descriptions of shakeoff 

processes. Our measurements have validated this fundamental approximation, 

yielding an experimental shakeoff probability, PSO = 0.02339(36) given at 1, in 

excellent agreement with its theoretical prediction, Pth = 0.02322. 

In the case of 
35

Ar
1+

, several electrons are involved, and such a system has 

revealed the importance of other processes such as the Auger emission [19]. The 

experimental charge state distribution of the resulting 
35

Cl ions (Fig. 1) can indeed 

be reproduced by calculations only if single and multiple Auger decays, 

subsequent to inner-shell shakeoff, are explicitly taken into account. For 
19

Ne
1+

, 

preliminary calculations predict a significantly lower effect due to Auger emission 

process, leading to lower yields for the highest charge states. Such a behavior is 

qualitatively observed in the ToF distribution of the 
19

F ions (Fig. 2), which is 

more strongly dominated by the two first charge states than the 
35

Cl ionic 

counterparts in the 
35

Ar
1+

 decay. The detailed analysis of these data is currently in 

progress to determine accurately the experimental charge state distribution, 

including the neutrals, and to achieve a more constraining comparison with 

upgraded calculations including recoil effects and possible shakeup contributions. 

 

 

 

 

 

 

 

Fig. 1 ToF distribution of the 35Cl RI resulting from 35Ar1+ decay. 

 

74.6 (1.0) %

17.3 (0.4) %

5.7 (0.2) %

1.7 (0.2) %
< 1 %
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3.2 The  angular correlation parameters 

The extraction of a from the data requires realistic simulations of the 

experiments, containing a statistics significantly larger than the number of 

coincidences collected. The parameter is deduced from a fit of the RI ToF 

distribution using a linear combination of two distributions simulated with 

different values of a [14]. At least three parameters are left free in the fit: the 

value of a, the total number of events and the distance, d, between the RI 

detector and the center of the Paul trap. Indeed, the last parameter is by far 

determined more precisely using the data themselves than a specific geometrical 

measurement. The two parameters, a and d, are correlated such that the 

minimization is completely unambiguous (see Fig. 13 in [14]). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 ToF distribution of the 19F RI resulting from 19Ne1+ decay. 

 

For 
6
He, a first value at a relative precision of 3% (1) has been deduced from the 

data collected during a first experiment with limited statistics [14]: 

a = -0.3335 (73)stat (75)syst  (2) 

The systematic error is largely dominated by the spatial distribution of the ion 

cloud inside the trap (91%), related to its temperature, and determined in an off-

line experiment, using a 
6
Li source [20]. Simulations have shown that this 

parameter could also be determined with higher precision, if considered as a free 

parameter of the fit of the RI ToF distribution [21]. Indeed the shape of the 

leading edge of this distribution depends strongly on the cloud temperature and 

not on the value of a. Finally all the dominant contributions to the final 

~ 88 %

~ 11.5 %

~ 0.5 %
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systematic error (a)syst, except the  scattering in the device, could be determined 

by the data themselves, with consequently a reduction of (a)syst with higher 

statistics. Concerning the  scattering, the effect was estimated with GEANT4 

simulations, leading to a relative contribution to (a)syst at the level of 0.6%, 

which remains still reasonable. To reduce it, new measurements should be 

considered in a large energy range, from 100 keV to some MeV, for which data 

on energy straggling and multiple scattering in thin materials are missing. 

At higher statistics, the accuracy of the realistic simulations performed until now 

using different tools, mainly SIMION and GEANT4, is not yet sufficient to 

reproduce properly the whole set of distributions measured in the experiments. 

This analysis has revealed that the ion cloud simulation has to be improved. New 

simulation tools, using GPU technologies, are thus developed, aiming to describe 

the physical processes involved during the ion confinement in the trap (cooling, 

space charge effects, interaction in the RF field) in the most realistic manner [22]. 

The statistical precision expected in the three cases (
6
He, 

35
Ar, 

19
Ne) is given in 

Table 2, according to Ncoinc (Table 1) and the precision obtained in the first 

experiment (eq. (2)). For 
35

Ar and 
19

Ne, the SM values for a given in the table 

were calculated following Ref. [8]. The mixing ratios were deduced from the 

ratios between the mirror Ft-values and the Ft(0
+
 0

+
), including radiative 

corrections, but the extraction of the values of a does not include radiative 

corrections nor recoil effects. The current results are also given for comparison. 

 

Table 2 Statistical precision expected on a in the three nuclei studied at GANIL with LPCTrap 

(last column). SM and current values of a are given for comparison (see text for details). 

Isotope  SM value  Current value [Ref]  Projected 1 precision 

6He 

35Ar 

19Ne 

 

-0.3333 

0.9004a(16) 

0.0438b(8) 

 

-0.3308(30)  [4,5] 

0.97(14)  [23] 

0.00(8)  [23] 

 

0.0015 

0.0013 

0.0046 

aFrom Ref. [8]; badapted from Ref. [8] with the new world average of T1/2 [24] 

 

4. Conclusion and outlook 

In addition to the RI charge state distributions induced by the shakeoff process, 

LPCTrap has provided data with sufficient statistics to significantly improve the 
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current values of a in the allowed  decays of 
6
He, 

35
Ar and 

19
Ne. If the realistic 

simulations achieved with the advanced tools in development at LPC Caen 

become sufficiently accurate to reproduce the whole set of measured distributions, 

the systematic uncertainties should remain at a level of precision comparable to 

the statistical uncertainties. 

For 
35

Ar, for example, the result would induce a significant gain (~ 1.7) on the Vud 

precision deduced from the study of mirror decays [7]. This perspective motivates 

future measurements at GANIL in mirror decays, using new beams which are 

presently under development [25], such as 
33

Cl and 
37

K. In these two cases, 

precisions similar to the 
35

Ar experiment are expected, considering an upgraded 

LPCTrap setup with increased detection efficiency, which is currently under 

investigation. 
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