A model-independent confirmation of the $Z(4430)^-$ state

To cite this version:

HAL Id: in2p3-01213219
https://hal.in2p3.fr/in2p3-01213219
Submitted on 7 Sep 2023
A model-independent confirmation of the $Z(4430)^-$ state

The LHCb collaboration†

Abstract

The decay $B^0 \to \psi(2S)K^+\pi^-$ is analyzed using 3 fb$^{-1}$ of pp collision data collected with the LHCb detector. A model-independent description of the $\psi(2S)\pi$ mass spectrum is obtained, using as input the $K\pi$ mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the $\psi(2S)\pi$ mass spectrum can be described in terms of $K\pi$ reflections alone is rejected with more than 8σ significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region of the $Z(4430)^-$ exotic state.

Published in Phys.Rev. D92, 112009 (2015)

© CERN on behalf of the LHCb collaboration, licence [CC-BY-4.0]

†Authors are listed at the end of this paper.
1 Introduction

Almost all known mesons and baryons can be described in the quark model with combinations of two or three quarks, although the existence of higher multiplicity configurations, as well as additional gluonic components, is, in principle, not excluded \[1\]. For many years significant effort has been devoted to the search for such exotic configurations. In the baryon sector, resonances with a five-quark content have been searched for extensively \[2–5\]. Recently, LHCb has observed a resonance in the \(J/\psi p\) channel, compatible with being a pentaquark-charmonium state \[6\]. In the meson sector, several charmonium-like states, that could be interpreted as four-quark states \[7,8\], have been reported by a number of experiments but not all of them have been confirmed.

The existence of the \(Z(4430)^-\) hadron, originally observed by the Belle collaboration \[9–11\] in the decay \(B^0 \rightarrow K^+ Z(4430)^-\) with \(Z(4430)^- \rightarrow \psi(2S)\pi^-\), was confirmed by the LHCb collaboration \[12\] (the inclusion of charge-conjugate processes is implied). This state, having a minimum quark content of \(c\bar{c}u\bar{d}\), is the strongest candidate for a four-quark meson \[13–24\]. Through a multidimensional amplitude fit LHCb confirmed the existence of the \(Z(4430)^-\) resonance with a significance of \(13.9\sigma\) and its mass and width were measured to be \(M_{Z^-} = 4475 \pm 7^{+15}_{-25}\) \(\text{MeV}/c^2\) and \(\Gamma_{Z^-} = 172 \pm 13^{+37}_{-34}\) \(\text{MeV}/c^2\). Spin-parity of \(J^P = 1^+\) was favoured over the other assignments by more than \(17.8\sigma\) and, through the study of the variation of the phase of the \(Z(4430)^-\) with mass, LHCb demonstrated its resonant character.

The BaBar collaboration \[25\] searched for the \(Z(4430)^-\) state in a data sample statistically comparable to Belle’s. They used a model-independent approach to test whether an interpretation of the experimental data is possible in terms of the known resonances in the \(K\pi\) system. The \(K\pi\) mass and angular distributions were determined from data and used to predict the observed \(\psi(2S)\pi\) mass spectrum. It was found that the observed \(\psi(2S)\pi\) mass spectrum was compatible with being described by reflections of \(K\pi\) system. Therefore no clear evidence for a \(Z(4430)^-\) was established, although BaBar’s analysis did not exclude the observation by Belle.

The present article describes the details of an LHCb analysis that was briefly reported in Ref. \[12\]. Adopting a model-independent approach, along the lines of BaBar’s strategy, the structures observed in the \(\psi(2S)\pi\) mass spectrum are predicted in terms of the reflections of the \(K\pi\) system mass and angular composition, without introducing any modelling of the resonance lineshapes and their interference patterns. The compatibility of these predictions with data is quantified.

2 The LHCb detector

The LHCb detector \[26,27\] is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5\), designed for the study of particles containing \(b\) or \(c\) quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the \(pp\) interaction region \[28\], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about \(4\) Tm, and three stations of
silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of momentum, \(p \), of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex, the impact parameter, is measured with a resolution of \((15 + 29/p_T) \mu m \), where \(p_T \) is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The online event selection is performed by a trigger, which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

3 Data samples and candidate selection

The results presented in this paper are based on data from \(pp \) collisions collected by the LHCb experiment, corresponding to integrated luminosities of 1 fb\(^{-1}\) and 2 fb\(^{-1}\) at center-of-mass energies of 7 TeV in 2011 and 8 TeV in 2012, respectively.

In the simulation, \(pp \) collisions are generated using PYTHIA with a specific LHCb configuration. The decays of hadronic particles are described by EvtGen, in which final-state radiation is generated using PHOTOS. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit as described in Ref. Samples of simulated events, generated with both 2011 and 2012 conditions, are produced for the decay \(B^0 \rightarrow \psi(2S)K^+\pi^- \) with a uniform 3-body phase-space distribution and the \(\psi(2S) \) decaying into two muons. These simulated events are used to tune the event selection and for efficiency and resolution studies.

The selection is similar to that used in Ref. and consists of a cut-based preselection followed by a multivariate analysis. Track-fit quality and particle identification requirements are applied to all charged tracks. The \(B^0 \) candidate reconstruction starts by requiring two well-identified muons, with opposite charges, having \(p_T > 2 \text{ GeV/c} \) and forming a good quality vertex. The dimuon invariant mass has to lie in the window 3630–3734 MeV/c\(^2\), around the \(\psi(2S) \) mass. To obtain a \(B^0 \) candidate, each dimuon pair is required to form a good vertex with a kaon and a pion candidate, with opposite charges. Pions and kaons are required to be inconsistent with coming from any primary vertex (PV) and to have transverse momenta greater than 200 MeV/c.

The \(B^0 \) candidate has to have \(p_T > 2 \text{ GeV/c} \), a reconstructed decay time exceeding 0.25 ps and an invariant mass in the window 5200–5380 MeV/c\(^2\) around the nominal \(B^0 \) mass. Contributions from \(\phi \rightarrow K^+K^- \) decay, where one of the kaons is misidentified as a pion, are removed by vetoing the region 1010–1030 MeV/c\(^2\) of the dihadron invariant mass calculated assuming that the \(\pi^- \) candidate has the \(K^- \) mass.

To reduce the combinatorial background, a requirement is imposed on the output of a
The four variables used as input are: the smaller χ^2_{IP} of the kaon and the pion, where χ^2_{IP} is the difference in the PV fit χ^2 with and without the track under consideration; the $\mu^+\mu^-K\pi$ vertex-fit quality; the B^0 candidate impact parameter significance with respect to the PV; and the cosine of the largest opening angle between the $\psi(2S)$ and each of the charged hadrons in the plane transverse to the beam. After the multivariate selection, the B^0 candidate invariant-mass distribution appears as shown in Fig. 1 with a fitted curve superimposed. The fit model consists of a Hypatia distribution [40] to describe the signal, and an exponential function to describe the background.

Table 1 provides the fit results and the signal and background yields in the signal region. The width of the distribution, σ_{B^0}, is defined as half the symmetric interval around M_{B^0} containing 68.7% of the total signal. The signal region is defined by the $\pm 2\sigma_{B^0}$ interval around M_{B^0}.

Sideband subtraction is used to remove the background which is dominated by combinations of $\psi(2S)$ mesons from b-hadron decays with random kaons and pions. Sidebands are identified by the intervals $[M_{B^0} - 80, M_{B^0} - 7\sigma_{B^0}]$ MeV/c^2 and $[M_{B^0} + 7\sigma_{B^0}, M_{B^0} + 80]$ MeV/c^2. A weight, W_{signal}, is attributed to each candidate: unit weight is assigned to candidates in the signal region; the ratio of the background yield in the signal region and in the sidebands, with a negative sign, is the weight assigned to sideband candidates; zero weight is assigned to candidates in the remaining regions.
Table 1: Results of the fit to the invariant mass spectrum of the $\psi(2S)K\pi$ system. The signal and the background yields are calculated in the signal region defined by the interval of $\pm 2\sigma_{B^0}$ around M_{B^0}.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Fit results</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{B^0}</td>
<td>5280.83±0.04 MeV/c^2</td>
</tr>
<tr>
<td>σ_{B^0}</td>
<td>5.77±0.05 MeV/c^2</td>
</tr>
<tr>
<td>Signal yield</td>
<td>23.801±158</td>
</tr>
<tr>
<td>Background yield</td>
<td>757±14</td>
</tr>
</tbody>
</table>

4 Efficiency and resolution

Figure 2: The 2D efficiency shown in the following planes: (top-left) $(m_{K\pi},\cos \theta_{K^{*0}})$, (top-middle) $(m_{K\pi},\Delta \phi_{K\pi,\mu\mu})$, (top-right) $(m_{K\pi},\cos \theta_{\psi(2S)})$, (bottom-left) $(\cos \theta_{K^{*0}},\cos \theta_{\psi(2S)})$, (bottom-middle) $(\cos \theta_{K^{*0}},\Delta \phi_{K\pi,\mu\mu})$, (bottom-right) $(\cos \theta_{\psi(2S)},\Delta \phi_{K\pi,\mu\mu})$. Corrections for the efficiency are applied in the 4D space; the 2D plots allow visualization of their behavior.

The reconstruction and selection efficiency has been evaluated using simulated samples. The efficiency is calculated as a function of four variables: the $K\pi$ system invariant mass, $m_{K\pi}$; the cosine of the K^{*0} helicity angle, $\cos \theta_{K^{*0}}$; the cosine of the $\psi(2S)$ helicity angle, $\cos \theta_{\psi(2S)}$; and the angle between the $K\pi$ and the $\mu^+\mu^-$ planes calculated in the B^0 rest frame, $\Delta \phi_{K\pi,\mu\mu}$ (this variable is called ϕ in Ref. [12]). The helicity angle of the K^{*0} ($\psi(2S)$) is defined as the angle between the K^+ (μ^+) direction and the B^0 direction in the K^{*0}
Figure 3: The $\psi(2S)\pi$ invariant mass resolution as determined from simulated data (red dots). The continuous line is a spline-based interpolation.

$(\psi(2S))$ rest frame. This 4D space is subdivided in 24, 25, 5 and 4 bins of the respective variables. The value of the efficiency, at each point of the 4D space, is evaluated as a multilinear interpolation of the values at the sixteen bins centers surrounding it. To the points falling in a border 4D bin, where interpolation is not possible, the value of the efficiency at the bin center is assigned.

To visualize the behavior, 2D efficiency plots are shown, as functions of all the possible variable pairs, in Fig. 2.

Table 2 lists the resolutions (average uncertainty) of the reconstructed event variables as evaluated on simulated events. They are found to be very small compared to the width of any possible structure searched for in this analysis; therefore no resolution corrections are applied. In addition, the smooth behavior of the $m_{\psi(2S)\pi}$ resolution, shown in Fig. 3, demonstrates that structures in the $m_{\psi(2S)\pi}$ spectrum could not be caused by resolution effects.

Table 2: Experimental resolution of kinematical quantities, as estimated from Monte Carlo simulations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{K\pi}$</td>
<td>1.5 MeV/c^2</td>
</tr>
<tr>
<td>$m_{\psi(2S)\pi}$</td>
<td>1.8 MeV/c^2</td>
</tr>
<tr>
<td>$\cos \theta_{K^*0}$</td>
<td>0.004</td>
</tr>
<tr>
<td>$\cos \theta_{\psi(2S)}$</td>
<td>0.005</td>
</tr>
<tr>
<td>$\Delta \phi_{K\pi,\mu\mu}$</td>
<td>0.3°</td>
</tr>
</tbody>
</table>
5 K^* resonances

A number of K^{*0} resonances with masses up to slightly above the kinematic limit of 1593 MeV/c^2 can decay to the $K\pi$ final state and contribute to the $B^0 \to \psi(2S)K^+\pi^-$ decay. Table 3 lists these K^{*0} states as well as resonances just above the kinematic limit.

The $m_{K\pi}$ spectrum of candidate events, shown in the left plot of Fig. 4, is dominated by the $K^*(892)^0$ meson. A structure in the $K^*(1410)^0$, $K^*_0(1430)^0$ and $K^*_2(1430)^0$ mass region is also clearly visible. In addition, a non-resonant component is evident. A contribution from the low-mass tail of excited states above the kinematic limit is expected, in particular from the spin-1 $K^*(1680)^0$ and the spin-3 $K^*_3(1780)^0$ due to their large widths. The right plot of Fig. 4 shows the $\cos \theta_{K^*\pi}$ distribution which highlights the rich angular structure of the $K\pi$ system. The resonant structures of the $K\pi$ system can be also seen in the 2D distributions shown in Fig. 5. The plot on the right illustrates how the structures present in the $K\pi$ system considerably influences the $\psi(2S)\pi$ system.

Table 3: Mass, width, spin and parity of resonances known to decay to the $K\pi$ final state \[5\]. The list is limited to masses up to just above the maximum invariant mass for the $K\pi$ system which, in the decay $B^0 \to \psi(2S)K^+\pi^-$, is 1593 MeV/c^2.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass (MeV/c^2)</th>
<th>Γ (MeV/c^2)</th>
<th>J^P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^*(800)^0$</td>
<td>682±29</td>
<td>547±24</td>
<td>0^+</td>
</tr>
<tr>
<td>$K^*(892)^0$</td>
<td>895.8±0.19</td>
<td>47.4±0.6</td>
<td>1^-</td>
</tr>
<tr>
<td>$K^*(1410)^0$</td>
<td>1414±15</td>
<td>232±21</td>
<td>1^-</td>
</tr>
<tr>
<td>$K^*_0(1430)^0$</td>
<td>1425±50</td>
<td>270±80</td>
<td>0^+</td>
</tr>
<tr>
<td>$K^*_2(1430)^0$</td>
<td>1432.4±1.3</td>
<td>109±5</td>
<td>2^+</td>
</tr>
<tr>
<td>$K^*(1680)^0$</td>
<td>1717±27</td>
<td>322±110</td>
<td>1^-</td>
</tr>
<tr>
<td>$K^*_3(1780)^0$</td>
<td>1776±7</td>
<td>159±21</td>
<td>3^-</td>
</tr>
</tbody>
</table>
Figure 5: The two-dimensional distributions \((m_{K\pi}, \cos \theta_{K^*}) \) and \((m_{\psi(2S)\pi}, \cos \theta_{\psi(2S)}) \) are shown in the left and the right plots, respectively, after background subtraction and efficiency correction.

6 Extraction of the moments of the \(K\pi \) system

Background-subtracted and efficiency-corrected data are subdivided in \(m_{K\pi} \) bins of width 30 MeV/c\(^2\), which is suitable for observing the \(K\pi \) resonance structures. For each \(m_{K\pi} \) bin, the \(\cos \theta_{K^*} \) distribution can be expressed as an expansion in terms of Legendre polynomials. The coefficients of this expansion contain all of the information on the angular structure of the system and characterize the spin of the contributing resonances. The angular distribution, after integration over the \(\psi(2S) \) decay angles, can be written as

\[
\frac{dN}{d\cos \theta_{K^*}} = \sum_{j=0}^{l_{\text{max}}} \langle P^{\text{U}}_j \rangle P_j(\cos \theta_{K^*}),
\]

where \(l_{\text{max}} \) depends on the maximum orbital angular momentum necessary to describe the \(K\pi \) system, \(P_j(\cos \theta_{K^*}) = \sqrt{2\pi} Y^0_j(\cos \theta_{K^*}) \) are Legendre polynomials and \(Y^0_j \) are spherical harmonic functions. The coefficients \(\langle P^{\text{U}}_j \rangle \) in Eq. 1 are called unnormalized moments (moments, in the following) and can be calculated as integrals of the product of the corresponding Legendre polynomial and the \(\cos \theta_{K^*} \) distribution. Resonances of the \(K\pi \) system with spin \(s \) can contribute to the moments up to \(\langle P^{\text{U}}_{2s} \rangle \). Interference between resonances with spin \(s_1 \) and \(s_2 \) can contribute to moments up to \(\langle P^{\text{U}}_{s_1+s_2} \rangle \).

For large samples, the moments are determined from data as

\[
\langle P^{\text{U}}_j \rangle = \sum_{i=1}^{N_{\text{reco}}} \frac{W^{\text{signal}}_i}{\epsilon^i} P_j(\cos \theta_{K^*}),
\]

where \(N_{\text{reco}} \) is the number of reconstructed and selected candidates in the \(m_{K\pi} \) bin. The superscript \(i \) labels the candidate, \(W^{\text{signal}}_i \) is the weight which implements the sideband background subtraction and \(\epsilon^i = \epsilon(m_{K\pi}^i, \cos \theta_{K^*}^i, \cos \theta_{\psi(2S)}^i, \Delta \phi_{K\pi, \mu\mu}) \) is the efficiency correction, obtained as described in Sec. 3.
The dependence of the first six moments on $m_{K\pi}$ is shown in Fig. 6. Together with moment $\langle P_0^U \rangle$, represented in the left plot of Fig. 4, moments $\langle P_2^U \rangle$ and $\langle P_4^U \rangle$ show the S, P and D wave amplitudes in the mass regions of the $K^*(892)^0$, $K^*(1410)^0$, $K^*_0(1430)^0$ and $K^*_3(1430)^0$ resonances. The behavior of the moment $\langle P_6^U \rangle$, generated by an F wave, shows that any contribution from $K^*_3(1780)^0$ is small. A resonant $\psi(2S)\pi$ state would, in general, contribute to all $K\pi$ moments.

A detailed discussion of these moments, together with the expressions relating moments to the amplitudes, can be found in Ref. [25] and references therein.

7 Analysis of the $m_{\psi(2S)\pi}$ spectrum

The reflection of the mass and angular structure of the $K\pi$ system into the $\psi(2S)\pi$ invariant mass spectrum is investigated to establish whether it is sufficient to explain the data distribution. This is achieved by comparing the experimental $m_{\psi(2S)\pi}$ spectrum to that of a simulated sample which accounts for the measured mass spectrum and the angular distribution of the $K\pi$ system by means of appropriate weights. The comparison is performed in three configurations of the $K\pi$ spin contributions. The simplest configuration corresponds to including the contributions of S, P and D waves, which account for all resonances with mass below the kinematic limit and the $K^*(1680)^0$ meson, just above it (see Table 3). In the second configuration the $K^*_3(1780)^0$ meson is also allowed to contribute. This represents a rather unlikely assumption since it implies a sizeable presence...
Figure 7: First six normalized $K\pi$ moments of the $B^0 \rightarrow \psi(2S)K^+\pi^-$ decay mode as a function of $m_{K\pi}$. The shaded (yellow) bands indicate the $\pm 1\sigma$ variations of the moments.

of spin-3 resonances at low $m_{K\pi}$. This configuration can be considered as an extreme case that provides a valuable test for the robustness of the method. In the third configuration a more realistic choice is made by limiting the maximum spin as a function of $m_{K\pi}$.

For each of the three configurations, 50 million simulated events are generated according to the $B^0 \rightarrow \psi(2S)K^+\pi^-$ phase-space decay. The simulation does not include detector effects because it will be compared to efficiency-corrected data. The simulated $m_{K\pi}$ distribution is forced to reproduce the $K\pi$ spectrum in data (left plot of Fig. 4) by attributing to each event a weight proportional to the ratio between the real and simulated $m_{K\pi}$ spectra in the appropriate bin. Finally, the angular structure of the $K\pi$ system is modified in the simulated sample by applying an additional weight to each event computed as

$$w^i = 1 + \sum_{j=1}^{l_{\text{max}}} \langle P_j^N \rangle P_j(\cos \theta_{K^*\pi}^i),$$

(3)

where $\langle P_j^N \rangle = 2\langle P_j^U \rangle / N_{\text{corr}}$ are the normalized moments, derived from the moments $\langle P_j^U \rangle$ of Eq. 2 and N_{corr} is the background-subtracted and efficiency-corrected yield of the $m_{K\pi}$ bin where the event lies. The behavior of the first six normalized moments is shown in Fig. 7. The value and the uncertainty of these moments, at a given $m_{K\pi}$ value, are estimated by linearly interpolating adjacent points and their $\pm 1\sigma$ values, respectively, as shown by the shaded (yellow) bands in the figures.

The experimental distribution of the $\psi(2S)\pi$ system invariant mass, $m_{\psi(2S)\pi}$, is shown
Figure 8: Background subtracted and efficiency corrected spectrum of $m_{\psi(2S)\pi}$. Black points represent data. Superimposed are the distributions of the Monte Carlo simulation: the dotted (black) line corresponds to the pure phase-space case; in the dash-dotted (red) line the $m_{K\pi}$ spectrum is weighted to reproduce the experimental distribution; in the continuous (blue) line the angular structure of the $K\pi$ system is incorporated using Legendre polynomials up to (left) $l_{\text{max}} = 4$ and (right) $l_{\text{max}} = 6$. The shaded (yellow) bands are related to the uncertainty on normalized moments, which is due to the statistical uncertainty that comes from the data. Therefore the two uncertainties should not be combined when comparing data and Monte Carlo predictions. See text for further details.

by the black points in the left plot of Fig. 8. The dotted (black) line represents the pure phase-space simulation, the dash-dotted (red) line shows the effect of the $m_{K\pi}$ modulation, while in the continuous (blue) line the angular structure of the $K\pi$ system has been taken into account by allowing S, P and D waves to contribute, which corresponds to setting $l_{\text{max}} = 4$ in Eq. 3. The effect of the angular structure of the $K\pi$ system accounts for most of the features seen in the $m_{\psi(2S)\pi}$ spectrum except for the peak around 4430 MeV/c2. The dashed (yellow) band in the figure is derived from the $\pm 1\sigma$ values of the normalized moments. The borders of the band are calculated by attributing to each simulated event the weight in Eq. 3 assuming the values of $+1\sigma$ or -1σ, simultaneously for all the contributing normalized moments. Due to the negative contributions of the moments, the borders may cross the central continuous (blue) line. The band should not be considered as an uncertainty in the simulation but only as an indicative measure of the limited data sample used to compute moments. Since the band and the error bars on the black points are related to the same statistical uncertainty on the data, they should not be combined when estimating the statistical significance of deviations of the data from the prediction.

When spin-3 $K\pi$ states are included, by setting $l_{\text{max}} = 6$, the predicted $m_{\psi(2S)\pi}$ spectrum is modified as shown on the right plot of Fig. 8. Even though the $l_{\text{max}} = 6$ solution apparently provides a better description of the data, it is shown in the following

1This plot uses an improved parametrization of the B^0 mass spectrum with respect to Fig. 1 in Ref. [12].
Figure 9: The experimental spectrum of $m_{\psi(2S)\pi}$ is shown by the black points. Superimposed are the distributions of the Monte Carlo simulation: the dotted (black) line corresponds to the pure phase-space case; in the dash-dotted (red) line the $m_{K\pi}$ spectrum is weighted to reproduce the experimental distribution; in the continuous (blue) line the angular structure of the $K\pi$ system is incorporated using Legendre polynomials with index l_{max} variable according to $m_{K\pi}$ as described in Eq. 4, reaching up to $l_{\text{max}} = 4$. The shaded (yellow) bands are related to the uncertainty on normalized moments, which is due to the statistical uncertainty that comes from the data. Therefore the two uncertainties should not be combined when comparing data and Monte Carlo predictions. See text for further details.

that it is largely incompatible with the data.

In Fig. 9 the maximum Legendre polynomial order is limited as a function of $m_{K\pi}$, according to

$$l_{\text{max}} = \begin{cases}
2 & m_{K\pi} < 836 \text{ MeV}/c^2 \\
3 & 836 \text{ MeV}/c^2 < m_{K\pi} < 1000 \text{ MeV}/c^2 \\
4 & m_{K\pi} > 1000 \text{ MeV}/c^2
\end{cases}$$

Figure 9 demonstrates that with this better-motivated l_{max} assignment, the simulation cannot reproduce adequately the $m_{\psi(2S)\pi}$ distribution.
Figure 10: Black points represent the experimental distributions of \(m_{\psi(2S)} \pi \) for the indicated \(m_K\pi \) intervals. The dash-dotted (red) line is obtained by modifying the \(m_K\pi \) spectrum of the phase-space simulation according to the \(m_K\pi \) experimental spectrum. In the continuous (blue) line the angular structure of the \(K\pi \) system is incorporated using Legendre polynomials with variable index \(l_{\text{max}} \) according to Eq. 4. The shaded (yellow) bands are related to the uncertainty on normalized moments, which is due to the statistical uncertainty that comes from the data. Therefore the two uncertainties should not be combined when comparing data and Monte Carlo predictions. See text for further details.

The disagreement is more evident when looking at the same spectra in different intervals of \(m_K\pi \), as shown in Fig. 10. Here the candidates are subdivided according to the \(m_K\pi \) intervals defined in Eq. 4. The last interval is further split into \(1000 \text{ MeV}/c^2 < m_K\pi < 1390 \text{ MeV}/c^2 \) and \(m_K\pi > 1390 \text{ MeV}/c^2 \). Except for the mass region around 4430 MeV/c², all slices exhibit good agreement between the data and the simulation. The peaking structure is particularly evident in the region \(1000 \text{ MeV}/c^2 < m_K\pi < 1390 \text{ MeV}/c^2 \), between the \(K^*(892)^0 \) and the resonances above 1400 MeV/c².
Figure 11: The experimental spectrum of $m_{\psi(2S)\pi}$ is shown by the black points. Superimposed are the distributions of the Monte Carlo simulation: the dotted (black) line corresponds to the pure phase space case; in the dash-dotted (red) line the $m_K\pi$ spectrum is weighted to reproduce the experimental distribution; in the continuous (blue) line the angular structure of the $K\pi$ system is incorporated using Legendre polynomials up to $l_{\text{max}} = 30$ which implies a full description of the spectrum features even if it corresponds to an unphysical configuration of the $K\pi$ system. The shaded (yellow) bands are related to the uncertainty on normalized moments.

8 Statistical significance of the result

The fact that the $m_{\psi(2S)\pi}$ spectrum cannot be explained as a reflection of the angular structure of the $K\pi$ system has been illustrated qualitatively. In this section, the disagreement is quantified via a hypothesis-testing procedure using a likelihood-ratio estimator. The compatibility between the expected $m_{\psi(2S)\pi}$ distribution, accounting for the reflections of the $K\pi$ angular structure, and that observed experimentally is tested for the three l_{max} assignments described in the previous section, with three sets of about 1000 pseudoexperiments each. For each pseudoexperiment, data and simulated samples involved in the analysis chain are reproduced as pseudosamples, generated at the same statistical level as in the real case. The signal candidate pseudosamples are extracted from a ($m_{K\pi}, \cos \theta_{K^{*0}}, \cos \theta_{\psi(2S)}, \Delta \phi_{K\pi\mu\mu}$) distribution obtained by an independent EvtGen [35] phase-space sample of $B^0 \to \psi(2S)K^{+}\pi^-$ events. The distribution is generated, for each of the three l_{max} cases previously discussed, in order to reproduce the ($m_{K\pi}, \cos \theta_{K^{*0}}$) behavior. The background pseudosamples are simulated according to the ($m_{K\pi}, \cos \theta_{K^{*0}}, \cos \theta_{\psi(2S)}, \Delta \phi_{K\pi\mu\mu}$) distribution of the candidates in the B^0 invariant mass side-bands. Finally, to mimic the calculation of the efficiency correction factors, two additional samples are generated by extracting events from two distributions, in the same 4D space, obtained from the simulation with full detector effects, before and after
the application of the analysis chain. The sum of the signal and background samples is then subject to background subtraction and efficiency correction, exactly as for the real data, and moments are calculated. In the pseudoexperiments, events are simulated with equal amounts of each $\psi(2S)$ polarisation state. Effects related to $\psi(2S)$ polarization are only included in the pseudosample via their correlation with the $K\pi$ mass and $\cos \theta_{K\pi}$ distributions, which are derived from data. It has been checked that this does not significantly influence the results although the validity of such approximate treatment of $\psi(2S)$ polarization is, in general, analysis dependent and not necessarily appropriate in other experimental situations.

The Monte Carlo method described in Sec. 7 is used for each pseudoexperiment to produce an $m_{\psi(2S)\pi}$ probability density function, $F_{l_{\text{max}}}$, for each of the three l_{max} configurations. To test for the presence of possible contributions from the $\psi(2S)\pi$ dynamics, which are expected to be present in moments of all orders, a fourth configuration is introduced by setting l_{max} to the unphysically large value of 30. By including moments up to $l_{\text{max}} = 30$, most of the features of the $m_{\psi(2S)\pi}$ spectrum in data are well described, as can be seen in Fig. 11. The logarithm of the likelihood ratio is used to define the test statistic

$$-2\Delta NLL_{l_{\text{max}}} = -2 \sum_{i=1}^{W_{\text{signal}}} \frac{W_{\text{signal}}}{\epsilon^i} \log \frac{F_{l_{\text{max}}}(m_{\psi(2S)\pi}^i)}{F_{30}(m_{\psi(2S)\pi}^i)},$$

where the sum runs over the events in the pseudo or real experiments.

An exotic state in the $\psi(2S)\pi$ system would give contributions to all $K\pi$ Legendre polynomial moments, whereas the conventional $K\pi$ resonances contribute only to moments corresponding to their spin and their interferences. If, for instance, the $B^0 \rightarrow \psi(2S)K^+\pi^-$ decay proceeds through S, P and D $K\pi$ resonances, then only moments with $l_{\text{max}} \leq 4$ would exhibit significant activity. Therefore, activity in moments of order $l_{\text{max}} > 4$ would suggest the presence of other resonant states contributing to the decay. Lower-order $K\pi$ Legendre polynomial moments, determined from data and used to build the prediction, although strongly dominated by the conventional $K\pi$ resonances, could also contain a contribution from the exotic state. As a consequence, a relatively small $\psi(2S)\pi$ resonant contribution could be accommodated by the Monte Carlo prediction. Conversely, a significant disagreement would imply that the $\psi(2S)\pi$ invariant mass spectrum cannot be explained as a reflection of the activity of known resonances in the $K\pi$ system, and would therefore constitute strong evidence for the presence of exotic states in the decay $B^0 \rightarrow \psi(2S)K^+\pi^-$.

The $\Delta NLL_{l_{\text{max}}}$ distributions of the pseudoexperiments are shown in Fig. 12 (points with error bars) for each of the three l_{max} settings. They are consistent with Gaussian distributions. The statistical significance, S, to rule out the different hypotheses is the distance, in units of standard deviations, between the mean value of the $\Delta NLL_{l_{\text{max}}}$ (dashed red arrow in Fig. 12) and the observed value of the real experiment (continuous black arrow in Fig. 12). This ranges from 8 to 15 standard deviations, as listed in Table 4.

The table also gives the statistical significance obtained by restricting the analysis to
Figure 12: Distributions of $-2\Delta\text{NLL}$ for the pseudoexperiments (black dots), fitted with a Gaussian function (dashed red line), in three different configurations of the $K\pi$ system angular contributions: (left) $l_{\text{max}} = 4$, (middle) $l_{\text{max}} = 6$ and (right) l_{max} variable according to Eq. 4. The black arrow represents the $-2\Delta\text{NLL}$ value obtained on data.

Figure 13: Distributions of $-2\Delta\text{NLL}$ for the pseudoexperiments (black dots), fitted with a Gaussian function (dashed red line), for the region $1000\text{MeV}/c^2 < m_{K\pi} < 1390\text{MeV}/c^2$ in three different configurations of the $K\pi$ system angular contributions: (left) $l_{\text{max}} = 4$, (middle) $l_{\text{max}} = 6$ and (right) l_{max} variable according to Eq. 4. The black arrow represents the $-2\Delta\text{NLL}$ value obtained on data.

the region $1000\text{MeV}/c^2 < m_{K\pi} < 1390\text{MeV}/c^2$, where the presence of the structure around the $Z(4430)^-$ mass is most evident, as shown in Fig. 13. Thus, the hypothesis that the data can be explained solely in terms of plausible $K\pi$ degrees of freedom can be ruled out without making any assumption on the exact shapes of the $K\pi$ resonances present and their interference patterns.

9 Summary and conclusions

A satisfactory description of the $\psi(2S)\pi$ mass spectrum in the decay $B^0 \rightarrow \psi(2S)K^+\pi^-$ cannot be obtained solely from the reflections of the angular structure of the $K\pi$ system.
Table 4: Significance, \(S \), in units of standard deviations, at which the hypothesis that \(m_{\psi(2S)\pi} \) data can be described as a reflection of the \(K\pi \) system angular structure is excluded, for different configurations of the \(K\pi \) system angular contributions. In the second column the whole \(m_{K\pi} \) spectrum has been analyzed while in the third one the specified \(m_{K\pi} \) cut is applied.

<table>
<thead>
<tr>
<th>(l_{\text{max}})</th>
<th>(S), whole (m_{K\pi}) spectrum</th>
<th>(S), (1.0 < m_{K\pi} < 1.39 \text{ GeV}/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_{\text{max}} = 4)</td>
<td>13.3(\sigma)</td>
<td>18.2(\sigma)</td>
</tr>
<tr>
<td>(l_{\text{max}} = 6)</td>
<td>8.0(\sigma)</td>
<td>14.1(\sigma)</td>
</tr>
<tr>
<td>(l_{\text{max}}(m_{K\pi}))</td>
<td>15.2(\sigma)</td>
<td>17.3(\sigma)</td>
</tr>
</tbody>
</table>

In particular, a clear peaking structure in the 4430 MeV/\(c^2 \) mass region remains unexplained. Through a hypothesis-testing procedure based on the likelihood-ratio estimator, compatibility between the data and predictions taking into account the reflections of \(K\pi \) states up to spin three, is excluded with a significance exceeding 8\(\sigma \). The most plausible configuration, which allows \(K\pi \) states with spin values depending on the \(K\pi \) mass, is excluded with a significance of more than 15\(\sigma \).

This work represents an alternative and model-independent confirmation of the existence of a \(\psi(2S)\pi \) resonance in the same mass region in which previous model-dependent amplitude analyses have found signals \([9][11][12]\).

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECO (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia). Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), The Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom).
References

LHCb collaboration

Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Université di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Urbino, Urbino, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
Università della Basilicata, Potenza, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Viet Nam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore, Pisa, Italy
Università degli Studi di Milano, Milano, Italy

†Deceased