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Abstract

A systematics of over 300 complete and incomplete fusion cross section data points covering energies beyond the barrier for fusion

is presented. Owing to a usual reduction of the fusion cross sections by the total reaction cross sections and an original scaling

of energy, a fusion excitation function common to all the data points is established. A universal description of the fusion exci-

tation function relying on basic nuclear concepts is proposed and its dependence on the reaction cross section used for the cross

section normalization is discussed. The pioneering empirical model proposed by Bass in 1974 to describe the complete fusion

cross sections is rather successful for the incomplete fusion too and provides cross section predictions in satisfactory agreement

with the observed universality of the fusion excitation function. The sophisticated microscopic transport DYWAN model not only

reproduces the data but also predicts that fusion reaction mechanism disappears due to weakened nuclear stopping power around

the Fermi energy.

c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the European Commission, Joint Research Centre – Institute for Reference Materials and

Measurements.
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1. Introduction

The complex interplay between the one body (nuclear mean field) and the two-body (elementary nucleon-nucleon

(NN) collisions) degrees of freedom governs the rich zoo of nuclear reaction mechanisms observed in the transition

Fermi-energy region. Understanding the role of these two origins of energy dissipation in the course of heavy-ion

reactions (HIR) is a long standing challenge put to nuclear models. Study of the fusion excitation function, both

complete (CF) and incomplete (IF), and in particular shedding some light onto conditions of fusion disappearance,

may be a useful tool to constrain the ingredients entering theoretical models used to describe HIR in this energy range.

The modern dynamical models such as Sky3D by Maruhn et al. (2014), TDHF3D by Simenel (2012) or DYWAN by
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Fig. 1. Raw fusion cross sections σ f plotted as a function of Einc. The inventoried systems are distinguished among them by symbols and a color

code. The same symbols and the color code are used in Eudes et al. (2014-a) where an interested reader may find detailed information on energies,

σ values, and references to original works. The dashed line and the dashed curve are intended to guide the eye only.

Sébille et al. (2007) offer the promising theoretical frameworks to resolve above questions especially in selecting the

most appropriate effective interaction, see e.g. Dutra et al. (2012), and an improved modeling of the NN collisions.

In two recent papers we have presented a systematic study of both CF and IF fusion cross sectionsσ f in the incident

energy Einc = Elab/nucleon range of ∼3A – 155A MeV, see Eudes et al. (2013, 2014-a). In total, from the literature

published during the past 40 years, we have collected 382 CF and CF+IF σ f data points belonging to 81 reaction

systems with a vast variety of projectile–target pairs, system mass asymmetry, system isospin content as well as in the

large range of covered system masses Asys = 26 – 278 nucleons.

2. Scaling of fusion cross sections

Discarding those σ f data points for which we have strong indication that the σ f value suffers from a non-fusion

contribution, cf. in Eudes et al. (2013, 2014-a), or that other reaction mechanism has been erroneously identified as

fusion, Eudes et al. (2014-b), one ends with 76 systems and 316 CF+IF σ f data points. These data, as a function

of Einc, are displayed in figure 1. Clearly, most of these raw σ f data points gather in a narrow domain of the σ f

vs Einc plane although the lighter systems (blue, cyan, and green symbols) gather along an arclike structure (see the

dashed curve) while the heavier ones (pink, red, and orange symbols) follow a line which sharply rises with Einc (see
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Fig. 2. Normalized fusion cross sections σn plotted as a function of Ec.m..

the dashed line). The fact that systems of low and high mass Asys do not fall together is expected due to the known

dependence of the fusion cross section on the system size. To remediate it, one normalizes σ f by the (total) reaction

cross section σr at the same Einc. The obtained σ f /σr = σn, as suggested by Lautesse et al. (2006), is in figure 2

plotted as a function of center-of-mass energy Ec.m.= (Elab/Ap) (ApAt/Asys), where Asys=Ap+At and Ap (At) stands for

projectile (target) mass. By the applied normalization, the huge difference between the lighter and the heavy systems

in their dependence of the fusion σ f as a function of increasing energy of figure 1 is completely washed out: All the

systems display a similar arclike dependence on energy although it seems that arcs are shifted along abscissae as a

function of the increasing Asys. However, a scrutiny scan of the data reveals the true cause of this observed behavior.

Systems of distinct arcs do not differ by their Asys but rather by their Ap vs At asymmetry. Defining abscissa in units

of the so-called system available energy Eav =Ec.m./Asys one does express the mass asymmetric systems on the same

footing with those which are mass symmetric. The normalized σn as a function of Eav is displayed in figures 3 and

4. Disregarding for a while discussion of the different panels of these figures, one may draw a general conclusion:

By properly reducing σ f values with σr and by applying an original energy scaling, the fusion excitation function,

irrespectively of the details of a given reaction system, follows a simple universal law.
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Fig. 3. Normalized fusion cross sections σn plotted as a function of Eav. The σr used for normalization is due to a) Bass (1980), b) Gupta and

Kailas (1984), and c) Kox et al. (1987), respectively. The full red curve in each panel is due to a fit with the homographic function of Eq. (2),

whereas the dashed black curve is due to the same kind of fit of panel c) in figure 4.
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Fig. 4. Normalized fusion cross sections σn plotted as a function of Eav. The σr used for the normalization is due to a) Shen et al. (1989), b) Tripathi

et al. (1996), and c) the Mixed approach (see text for details), respectively. The full red curve in each panel is due to a fit with the homographic

function of Eq. (2), whereas the dashed black curve is due to the fit of panel c).

3. Reaction cross section

Besides on experimental uncertainties of σ f the exact parameter values of the observed universal fusion excitation

function are somewhat dependent on the σr-values used for the σ f normalization. In this contribution, we focus on
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Fig. 5. Ratios of experimental σr and theoretical predictions for five models as a function of Eav. Panels display σr ratios with the models of a)

Bass (1980), b) Gupta and Kailas (1984), c) Kox et al. (1987), d) Shen et al. (1989), and e) Tripathi et al. (1996). An interested reader may find

detailed information on experimental σr and references to original works in Eudes et al. (2014-a).

the data normalization problem and the impact of the implemented σr. Accurate measurement of the total σr is rather

hard so that these data are scarce and it would be inappropriate to apply them to the ensemble of the collected σ f

data. Therefore, one commonly resorts to phenomenological approaches to calculate σr, a solution which suffers for

its own uncertainties and ambiguities. Thus, the uncertainty arising from the use of a particular parameterization of

σr has to be investigated. Among a number of phenomenological parameterizations of σr we have investigated five of

them due to Bass (1980); Gupta and Kailas (1984); Kox et al. (1987); Shen et al. (1989); Tripathi et al. (1996), i.e. in

this study we have included the pioneer one due to Bass (1980) and the most recent one by Tripathi et al. (1996). All
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Fig. 6. Histograms of the ratios between the experimental σr and the σr-values calculated by the models of a) Bass (1980), b) Gupta and Kailas

(1984), c) Kox et al. (1987), d) Shen et al. (1989), e) Tripathi et al. (1996) and the Mixed one. The yellow and the hashed histograms refer to the

projections of the σr-ratio values above and below Eav= 2 MeV/nucleon, respectively.

these approaches rely on the strong absorption picture of nuclear processes and differ among themselves in the way

the basic relation

σ(E) = πR2(1 − V
E

) (1)

is parameterized. In Eq. (1), the cross section depends on the inverse of energy E while the radius R and the potential

depth V may be, in a first approximation, considered as a constant for a given system. Various models differ in the

treatment of R and V by introducing or not a certain dependence on energy and/or on some other system properties,

usually Ap or Asys, to the one or both of them. In order to infer reliability of each of the models, in figure 5 we compare

them with 134 experimental σr measured for 46 systems.

From figure 5, one may infer that some of the models, on the average, overpredict σr. This conclusion is made

plausible by projecting the σr-ratio values onto the ordinate of each of the panels. The resulting histograms are

shown in figure 6. The hollow histograms display the projections of the full σr data set, i.e. at all Eav. The yellow

and the hashed histograms refer to the projections of the σr-ratio values above and below Eav = 2 MeV/nucleon,

respectively. Clearly, the Bass approach strongly and the Kox one moderately overpredict the measured σr at all Eav,

whereas parameterizations of Eq. (1) by Shen et al. (1989) and by Tripathi et al. (1996) moderately overpredict σr for

Eav� 2 MeV/nucleon and the one by Gupta and Kailas (1984) at energies Eav� 2 MeV/nucleon. By investigating the

projection histograms in some detail, we heuristically define the most appropriate combination of model predictions.

So, the Mixed σr is defined as follows

σr(Mixed) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

σr(Tripathi), f or Eav<2 MeV/nucleon, Asys<86

σr(Gupta), f or Eav<2 MeV/nucleon, Asys≥86
1
2
[σr(Tripathi) + σr(S hen)], f or Eav≥2 MeV/nucleon, all Asys.

With no doubt, from figure 6, one infers that the heuristic Mixed choice for the normalization σr reproduces on the

best manner the experimental σr-values regarding both the centroid and the width of the distribution histogram, see

panel f) of figure 6.

Let us discuss figures 3 and 4 in some detail. In figure 3 shown are normalizations with σr of Bass, Gupta, and Kox,

respectively and in figure 4 those with σr of Shen and that of Tripathi as well as the one labeled Mixed obtained by a

heuristic approach. These plots corroborate the conclusion that the Mixed σr is the best choice for the normalization

of fusion σ f . It is interesting to note that in figures 3 two of the models violate the normalization condition. In fact,

out of the 316 data points in the case of Gupta and that of Kox (panels b) and c) in figures 3, respectively) 2 and 41
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points, respectively violate the physically allowed range for the normalized cross section values σn =σ f /σr, namely

between 0 and 1. All these points are due to σn overflow that occurs at low energies.

4. Fitting the universal fusion excitation function

Assuming the applicability of the strong absorption concept, in the first approximation both σ f and σr may be

expressed by the same functional form given by Eq. (1). Consequently, for the reduced cross section one gets a simple

homographic law

σn(E)=
σ f (E)

σr(E)
=a +

b
c + E

, (2)

where a, b, and c are free parameters and E is taken as Eav, cf. in Eudes et al. (2013, 2014-a). The σn data points of

each panel of figures 3 and 4 have been fitted with the three-parameters homographic function of Eq. (2). The obtained

best fit result is displayed by the red full curve for each σn. Interestingly enough, independently of the σr chosen for

the normalization procedure, the best fit curve gives for the energy of disappearance of the CF+IF fusion process the

same value: Eav = 12.98± 0.06 MeV/nucleon. Also, at low energy, all the best fit curves overlap. The fit results of

different normalization cases disagree by at most about 5 % of σn and this occurs at intermediate values of Eav. That

may be easily inferred by the dashed black curve that is drawn in each panel of figures 3 and 4 and which represents

the best fit result in the case of the heuristic (Mixed) σr. Although the best fit result does not depend strongly on the

details of the σr parameterization, this subject is open to further investigation. However, the homographic functional

law of Eq. (2) seems to be established without any doubt.

5. Predicted fusion cross sections

Theoretical approaches suitable to predict the fusion cross sections well above the fusion barrier are rather scarce.

Among the approaches in closed empirical form which is well adjusted for the massive calculation of σ f we have

investigated two models, those by Bass (1974, 1977) and by Matsuse et al. (1982). It has to be mentioned that these

models, and in particular the one by Matsuse et al. (1982), have not been tested on a large number of HIR and

especially not for the rather vast span of reaction characteristics that the present collection of σ f data points covers.

Anyway, in figures 7 and 8 are presented the σ f -values predicted by these two models when for the normalization are

taken the σr-values calculated according to Bass (1980), Kox et al. (1987) and Tripathi et al. (1996). The predictions

of Bass (1974, 1977) rather well reproduce the general trend of the excitation function although the σn-values for

each of the normalizations used overpredict data for Eav > 8 MeV/nucleon, cf. in figure 7. Generally speaking, these

normalized cross sections split into two more or less distinct branches that overlap at the extreme values of Eav. In

the calculation of σr, the friction parameter of the Bass model has been fixed to the recommended value, i.e. to 5/7.

By varying the value of this parameter and/or by introducing an additional degree of liberty into the model one may

hope to bring the model prediction to the full homographic universality of the experimental data. In the case of σ f by

Matsuse et al. (1982) the normalized σn is almost constant for Eav > 3 MeV/nucleon and amounts between 20 % and

27 % of the total reaction σr at the highest energy considered, cf. in figure 8. Such a result suggests that the fusion

reaction mechanism would be present at any Einc. We mention that with σ f of Bass (1974, 1977) the normalization

condition 0≤σn≤ 1 is violated at 9 of 316 points in the case of σr by Kox et al. (1987), whereas for σ f of Matsuse et

al. (1982) the normalization is always violated – for 8, 29 and 16 points when σr is calculated by Bass (1980), Kox et

al. (1987) and Tripathi et al. (1996), respectively.

Another possible way in reproducing fusion excitation function offer various dynamical simulations of HIR. This

approach is, however, extremely demanding in the CPU time because the simulation has to be carried out at a number

of the reaction impact parameters in fine step and at each energy under study. That is why these models have essen-

tially been used to qualitatively study the phenomenon of heavy-ion fusion while the rare example of the published

quantitative studies of fusion excitation function by microscopic transport theories are with the BUU model by Xu

et al. (1990), the Landau-Vlasov (LV) model by Eudes et al. (2013), the SMF model by Shvedov et al. (2010) and

the DYWAN model by Eudes et al. (2013). The BUU and LV models completely fails in reproducing both absolute

values and trends of our universal fusion excitation function given by the homographic law of Eq. (2), cf. in Eudes
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Fig. 7. The predicted σ f by the Bass (1974, 1977) model for the data points of figures 1 and which are normalized by σr calculated with a) Bass

(1980), b) Kox et al. (1987) and c) Tripathi et al. (1996) models. To guide the eye in each panel is plotted the best fit curve of panel c) of figure 4.
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Fig. 8. Same as figures 7 but here the σ f values are predicted by the model of Matsuse et al. (1982).

et al. (2013). The SMF model is quite successful but only two points for the 36Ar+ 96Zr system are published so far,

see in Shvedov et al. (2010) and Eudes et al. (2013). The predictions of the DYWAN model are shown in figure 9

by the filled circles (36Ar+ 36Ar), triangles (36Ar+ 58Ni) and reversed triangles (58Ni+ 58Ni). The DYWAN model

for Eav > 3.5 MeV/nucleon nicely reproduces both absolute values and fusion excitation function trends, including

the energy of fusion vanishing, in the full accordance with the established universal homographic law. Moreover,

this model suggests that the fusion reaction mechanism ceases to exist due to the insufficient stopping power of HIR

around the Fermi energy owing to a longer mean free path caused by the interplay between a weakened nuclear mean
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Fig. 9. Normalized complete fusion cross sections σn as a function of Eav from those measurements which have reported data on both complete

and incomplete fusion. The full violet curve is due to the best fit by the homographic function of Eq. (2). The light-violet background band around

the best fit curve is due to the errors on the fit parameters. The full red curve in the main panel is due to the same kind of fit to CF+IF data of the

Mixed σn, in fact, the best fit curve of panel c) of figure 4. The dashed blue curve is the difference of both fusion excitation functions. The open

symbols refer to the 14 systems studied experimentally. An interested reader may find detailed information on energies, σ f -values, and references

to original works in Eudes et al. (2014-a). The black filled symbols are result of σ f as predicted by the DYWAN model of Sébille et al. (2007).

The inset displays the ratio of CF and CF+IF best-fit excitation functions as a function of Eav.

field and a still insufficient stopping efficiency of NN collisions, cf. in Eudes et al. (2013). The phenomenon of the

nuclear (pseudo)transparency has been predicted for HIR in the Fermi-energy range a long time ago, see Eudes et al.

(1997); Basrak (2004); Novosel et al. (2005), but it received only recently an experimental confirmation, see Lehaut

et al. (2010).

6. Complete and incomplete fusion cross section

Only twelve experiments have explicitly been designed to measure both complete and incomplete fusion com-

ponents, cf. in Eudes et al. (2013, 2014-a). These 57 CF σn data points belonging to the 14 reaction systems and

obtained with the heuristic σr discussed above are displayed in figure 9 as a function of Eav. The same homographic

law of Eq. (2) used in fitting the CF+IF data is here used to obtain the best fit result to the CF data. It is shown by

the full violet curve. The used fitting code by James and Roos (1975) provides an uncertainty on the fit parameters a,

b, and c. These uncertainties define the light-violet background drawn around the best fit curve. Owing to the rather

large experimental error bars and the relatively small number of data points the energy of CF disappearance is not

very accurately defined. It reads Eav = 6.2 +1.3
−1.1 MeV/nucleon. Similarly, CF data display a stronger dependence on the

normalization σr used. However, the deduced energy of CF disappearance for each of the σr used lays well within

the above stated uncertainty limits.

In figure 9 by the full red curve is shown the best fit result with the heuristic (Mixed) σr of panel c) of figure 4.

Making difference of the violet CF and the red CF+IF best fit homographic functions allows to infer the main proper-



 Z. Basrak et al.  /  Physics Procedia   64  ( 2015 )  120 – 129 129

ties of the incomplete fusion excitation function: IF process opens around Eav ≈ 1.5 MeV/nucleon, reaches maximal

value at the energy of CF disappearance (Eav ≈ 6 MeV/nucleon), and vanishes at Eav ≈ 13 MeV/nucleon. An inset

displays how the best-fit CF excitation function decreases relatively to the CF+IF one, an observable which has been

investigated a long time ago by Morgenstern et al. (1984) who have concluded that the mass asymmetry has a strong

influence on the onset of incomplete fusion and on the limiting energy of complete fusion.

7. Conclusions

To summarize, the scrutiny of the existing fusion cross sections well above the reaction barrier allowed us to

establish a universal dependence of these data on energy. The established homographic functional description of both

the complete and the complete plus incomplete fusion excitation functions is rather stable and the inferred global

features of these excitation functions quite weakly depend on the details of the reaction cross section used for data

normalization. Nevertheless, the normalization may be improved if additional high quality measurements on both

fusion and reaction cross section would be available. The universality of the obtained fusion excitation functions

offers an easily applicable check on the reliability of nuclear models. It comes out that the old and rather simple

empirical model developed by Bass (1974) which is relying on the concepts of the strong nuclear absorption quite

well reproduces the CF+IF fusion excitation function, although the model has been developed to describe the CF only.

Most of the much more sophisticated dynamical models fails to reproduce the observed features of fusion. Among

these approaches, so far, only the DYWAN model of Sébille et al. (2007) has been able to provide a convincing result

in interpreting fusion cross sections.
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