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We describe a system designed to re-bunch positron pulses delivered by an accumulator supplied by a
positron source and a Surko-trap. Positron pulses from the accumulator are magnetically guided in a
0.085 T field and are injected into a region free of magnetic fields through a l-metal field terminator.
Here positrons are temporally compressed, electrostatically guided and accelerated towards a porous sil-
icon target for the production and emission of positronium into vacuum. Positrons are focused in a spot of
less than 4 mm FWTM in bunches of �8 ns FWHM. Emission of positronium into the vacuum is shown by
single shot positron annihilation lifetime spectroscopy.
� 2015 CERN for the benefit of the Authors. Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the last decade the development of an efficient positron trap-
ping and storage technology [1,2] has allowed the production of
intense nanosecond-scale positron bunches opening the possibility
of new experiments. The use of positron bunching and trapping
was at the basis of the first antihydrogen formation [3,4] and the
observation of molecular positronium (Ps2) [5].

Fields that have benefitted from this technique are positronium
(Ps) spectroscopy [6,7] and Ps–Ps interaction studies [8] thanks to
the high yield of positronium in vacuum that can be obtained by
accelerating positron bursts to hit porous silica materials.

Ps is a purely leptonic atom consisting of an electron and its
antiparticle, the positron (eþ). Ps can exist in the singlet state,
parapositronium (p-Ps, total spin 0, formation probability 1/4) or
in the triplet state, orthopositronium (o-Ps, total spin 1, formation
probability 3/4). In vacuum, p-Ps decays into 2c rays with a mean
lifetime of 125 ps, while o-Ps decays into 3c rays with a mean
lifetime of 142 ns.

The production of dense Ps clouds in vacuum is also critical to
perform many other fundamental experiments such as the produc-
tion of antihydrogen through charge exchange reactions between
antiprotons and Ps excited into Rydberg states [9–11], precise
spectroscopy experiments for QED tests [12–14], tests of gravity
on matter–antimatter systems [15], high resolution tests for the
existence of mirror matter [16] and tests of laser cooling on
ultra-light atoms [17].

In this paper, we present the commissioning tests performed
with an apparatus designed and built to re-bunch pulses of
107 – 108 positrons [18] dumped from the Surko-type accumulator
of the AEgIS experiment (Antimatter Experiment: gravity, Interfer-
ometry, Spectroscopy) [10,19,20] at CERN.

The exit of the AEgIS Surko system is split into two different
beam lines for two different purposes (Fig. 1): the first one is
dedicated to inject bunched positrons into the experiment main
magnets, while the second one supplies bunched positrons to the
Surko-trap

Accumulator

Magn

the ma

Fig. 1. Sketch of the AEg
re-bunching apparatus. The latter has been developed and installed
in order to optimize the use of the bunched positron beam by per-
forming Ps spectroscopy experiments when eþ are not requested
by the main AEgIS experiment. Unlike other similar devices [21],
here positrons are extracted from a strong magnetic field by appro-
priate electrodes that also compress in time, transport and focus
the positron cloud on a grounded target. Ps is produced and emit-
ted into vacuum by implanting the positron bunch with a tuneable
energy of several keV on a suitable converter. The apparatus is
designed to produce Ps in a region with a magnetic field tunable
from less than 2 Gauss up to 300 Gauss, which allows one to per-
form spectroscopic experiments that require various environmen-
tal conditions (see for example Refs. [22,23]).

In Section 2, the AEgIS Surko apparatus is described, while in
the following one the positron re-bunching system is presented.
Sections 3 and 4 are devoted to the description of the performances
of the buncher with regards to time compression and focusing of
positrons on the target, respectively. Finally, emission of a dense
Ps cloud from nanochannelled samples is shown by single shot
positron annihilation lifetime spectroscopy (SSPALS) in Section 5.

2. Positron accumulator and eþ dump production

In the present system (see Fig. 1), positrons are produced via bþ

decay by a 22Na source with an activity of around 11 mCi. A solid
Ne moderator is used to slow down fast positrons from the
radioactive source down to an energy of a few eV [24]. The slow
e+ are guided by magnetic fields in the three-stage Surko-trap (First
Point scientific technology) [2]. The combined efficiency of moder-
ation and transport has been estimated to be � 2:5 � 10�3 [19]. In
the Surko-trap the positrons are cooled by interacting with N2

gas, and released after trapping every 0.15 s with an energy of
17 eV. The number of positrons in each bunch has been measured
to be between 2:5 and 3 � 104. The trapping/dumping efficiency is
0.14, calculated as the ratio between positrons injected in the trap
and positrons dumped from the trap [19]. Positrons released from
etic transfer line to

in AEgIS apparatus

Electrostatic system

and buncher

Target chamber

Detector

IS positron system.
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Fig. 2. Number of positrons in the accumulator plotted against the number of
pulses from the Surko-trap. Source intensity of 11 mCi. The signal was acquired
with a calibrated CsI detector coupled to a photodiode. Only statistical errors are
shown.

Fig. 3. Sketch of the electrostatic system (a) and simulation of positron bunching
and focusing from the end of magnetic section to the target performed with the
SIMION� 8 code (b).

Fig. 4. Shape of the high voltage pulse as a function of time acquired at the input of
the buncher, measured with a Magnelab CT-C1.0 current transformer.
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the trap are magnetically transported to the accumulator where
many positron pulses can be stored for several hundreds of sec-
onds, due to a low base pressure (low 10�10 mbar).

The e+ radial confinement in the accumulator is guaranteed by a
0.1 T magnetic field generated by a homogeneous solenoid
(DB=B � 10�4). Longitudinal confinement of the positrons is
ensured by a harmonic potential well approximately 14 V deep
generated by 23 electrodes of 2.54 cm in diameter. The total length
of the trap is around 23 cm and the central electrode is segmented
into four sections in order to apply a rotating electric field for com-
pression of the positron plasma [25]. A potential of 360 mV and a
frequency of 5.3 MHz was used in the tests presented here.

Fig. 2 shows the number of positrons stored in the accumulator
as a function of the number of pulses from the trap (and thus as a
function of time). Up to 8 � 107 positrons can be stored in around
450 s (corresponding to roughly 3000 pulses from the trap). This
test was performed by storing positrons for a given time and then
dumping the e+ by raising a potential with its maximum amplitude
tunable from a few tens of eV up to around 400 eV. Dumped posi-
trons annihilated on a stopper placed at the exit of the accumulator
and the emitted annihilation gamma rays were detected by a cali-
brated CsI detector coupled to a photodiode, in order to determine
the absolute positron number.

The bunching system described in the present paper has been
designed to work with positrons dumped from the accumulator
with an energy of around 100 eV. The positron bunch at the exit
of the accumulator has a typical temporal FWHM of about
15� 20 ns [21].

3. Electrostatic transport and positron re-bunching

Positrons dumped from the accumulator are magnetically
transported along a distance of �60 cm by six solenoidal coils gen-
erating a maximum magnetic field of 0.14 T and then injected into
a series of 28 electrodes (Fig. 3a) designed to [18]:

1. extract the positrons from the magnetic field and guide them
towards the target chamber, where a field free zone is required
for several Ps experiments,

2. accelerate positrons to implant them in the target (kept at
ground potential) with energies up to several keV,
3. focus the positron cloud on the target with a spot smaller than
5 mm and with a time spread of less than 9 ns.

The electro-optical transport, bunching and focusing was simulated
from the output of the accumulator to the target position with the
SIMION� 8 code (Fig. 3b) [26]. The first electrode (see Fig. 3a) is
made of l-metal and with the supporting flange acts as a magnetic
field terminator to reduce the field from 0.085 T (the transport mag-
netic field immediately before the injection in the electrostatic sys-
tem) to 0.02 T within 5 mm [27]. The l-metal electrode, at �800 V,
the second electrode (�2100 V) and the following 25 electrodes of
the buncher (initially held at �535 V) form two lenses focusing
the positrons into the middle of the buncher itself.

The buncher, composed of 25 electrodes of 1.6 cm, has a total
length of 40 cm, thus containing the entire positron pulse which,
at the buncher entrance, is �20 cm long according to the simula-
tions. When the positron pulse enters the buncher, a parabolic
potential is raised between the first and the last electrode in order
to compress the pulse in time and space [18]. The parabolic



S. Aghion et al. / Nuclear Instruments and Methods in Physics Research B 362 (2015) 86–92 89
function of variable amplitude is superimposed to a tunable bias in
order to accelerate the positrons towards the target. The total volt-
age (parabolic amplitude + bias) is generated by a customized
4� 10 kV HV power supply (FID GmbH technology, model FPG
10–003NM30) with a pulse duration of 30 ns and a rise time of
2� 3 ns (Fig. 4).

The following tests were performed with a parabolic amplitude
of 900 V and a bias voltage of 3300 V, corresponding to a high volt-
age pulse of 4200V. A last electrode, held at �3000 V, was placed
downstream of the buncher and used to focus the beam on the tar-
get kept at ground potential 5.6 cm away from the last electrode.
Fig. 6. FWHM of the signal of Fig. 5 vs. time delay. Positron compression occurs for
a time delay between 18 and 25 ns. For longer time delays the positrons cross the
buncher after the switching on of the high voltage pulse and they are not, or only
partially, compressed. Errors are statistical only.
4. Buncher synchronization and positron compression

A digital delay generator (Stanford Research Systems DG 645)
was used to synchronize the buncher’s pulse with the posi-trons
dumped from the accumulator. A fast detector with a PbF2 crystal
(diameter 20 mm, length 60 mm) coupled to a Hamamatsu
R11265–100 PMT was placed at 4 cm from the target to detect
the gamma rays generated by the annihilation of the transported
positrons. The FWHM of the single photon signal was <3 ns. An
Al target was used for testing synchronization and positron beam
compression.

The signal amplitude of the PbF2 + PMT detector is shown in
Fig. 5 as a function of the time delay between dumping the posi-
trons from the accumulator and the switching-on of the pulser.
The time reported on the x-axis of the figure is referred to a
time-zero that takes into account the delays due to the trigger of
the digital delay generator, the pulser, the electronics of the accu-
mulator and the cables. 1000 pulses from the trap were stored in
the accumulator before dumping.

When the parabolic potential in the buncher is switched on too
early (time delay <15 ns), the positrons are reflected backwards by
the potential wall raised at the entrance of the buncher. As a con-
sequence, the signal from the PMT is around 0 mV. On the other
hand, when the pulser is switched on too late (time delay
>60 ns), the positrons transit through the buncher without being
affected by the high voltage pulse, and the amplitude of the signal
is around 40 mV. With a delay of about 20 ns, the signal amplitude
is almost three times higher, reaching a value of around 110 mV.
Fig. 5. Signal amplitude from the PbF2 crystal coupled to a PMT Hamamatsu
R11265–100 (see text), as a function of the time delay, when positrons annihilate
on an Al target. Each point was measured accumulating 1000 pulses from the trap.
For a time delay shorter than 15 ns positrons are reflected. At around 20 ns the
signal amplitude is at its maximum because all positrons are inside the buncher
when the pulser is switched on, and they are compressed in time (see also Fig. 6).
Only statistical errors are given. Where not visible, the error bars are inside the
symbols.

Fig. 7. Comparison of the positron annihilation time distribution on an Al target
with the buncher off and buncher on (high voltage pulse of 4200 V). Both signals are
normalized to the same amplitude. The FWHM is reduced from 21 ns to �7 ns.
The increase of the amplitude with respect to the pass-through
configuration is consistent with the compression in time of the
positrons. In Fig. 6, the FWHM of the positron annihilation signal
is shown as a function of the delay. For a delay longer than 40 ns
the FWHM ranges between 15 and 23 ns, showing that the
positrons flying through the buncher are not, or only partially,
compressed. When the synchronization is adjusted, the signal
becomes narrower and, between 18 and 25 ns delay, its width
reaches a minimum of around 7–9 ns.

As an example, a comparison of two signals (normalized to the
same amplitude) with positron annihilation acquired with
the buncher off and on is shown in Fig. 7. With the buncher off
the FWHM of the positron annihilation time distribution is around
21 ns, while it decreases to �7 ns when the buncher is on.
5. Positron focusing

A microchannel plate (MCP) assembly (Hamamatsu F2222–
21P25 + Phosphor Screen P46) was used to characterize the
positron spot at the target position. The MCP assembly was placed
�1 cm behind the target position. The sample holder could be



Fig. 8. Positron beam spot acquired with an MCP assembly (a) and corresponding radial intensity distribution (b). The image was recorded with the electrostatic guided
positron bunch and no magnetic field in the target region. The FWTM of the positron distribution is <4 mm when positrons are accelerated to an energy of 3.3 keV.

Fig. 9. Positron beam spot acquired with an MCP assembly (a) and corresponding radial intensity distribution (b) when a 250 Gauss field is set in the target region. The FWTM
of the positron distribution is around 5 mm when positrons are accelerated to an energy of 3.3 keV.
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moved with an actuator in order to dump positrons directly onto
the MCP. The positron pulse was imaged on the phosphor screen
of the MCP assembly with a charge-coupled device (CCD) camera.

The image of the bunched positron beam on the MCP is shown
in Fig. 8(a) when positrons are guided by electrostatic fields and no
magnetic field is present in the target chamber. The corresponding
intensity distribution is shown in Fig. 8(b).

The FWTM of the spot was found to be smaller than 4 mm. The
efficiency of positron extraction from the magnetic field of the
transfer line and transport along the buncher has been estimated
to be around 30%, using a calibrated CsI detector coupled to photo-
diodes. Thus, the spot of Fig. 8(a) corresponds to the annihilation of
around 107 positrons when 3 � 107 positrons are dumped from the
accumulator. In this configuration, the magnetic field in the target
region has been measured to be below 1.8 Gauss in the direction
parallel to the beam and below 0.5 Gauss in the perpendicular
direction.

For experiments requiring a specific magnetic field in the target
region [22], two coils, generating a field up to 300 Gauss in the
direction parallel to the beam, are installed around the target
chamber, symmetrically placed with respect to the plane of the tar-
get (Fig. 3). When a field higher than 150 Gauss is set, the magnetic
field positively affects the extraction of the positrons from the
buncher and the fraction of positrons reaching the target increases
up to around 40%. The missing positron fraction is expected to
mainly annihilate at the transition between magnetic and electro-
static transport (see simulation in Fig. 3b). The image of the posi-
tron beam on the MCP with 250 Gauss in the target region is
reported in Fig. 9a) and the corresponding intensity distribution,
in Fig. 9(b). In this configuration, the FWTM of the spot is around
5 mm. Taking into account the estimated transport efficiency, the
image corresponds to about 1:2 � 107 positrons reaching the target
when 3 � 107 positrons are dumped from the accumulator.
6. Positronium formation and detection

A PbWO4 scintillator (25� 25� 20 mm3) coupled to a Hama-
matsu R11265-100 PMT was placed above the sample holder at a
distance of 4 cm from the target center. This set-up, which combi-
nes a good detection efficiency with a relatively fast time response
(FWHM single photon signal around 4 ns), was used to detect the
annihilation radiation produced by the intense posi-tron burst
and to perform single-shot positron annihilation lifetime spec-
troscopy [28]. The anode signal from the PMT was divided using
a 50 X Mini-Circuits ZFRSC-2050B + splitter and was sent into
two channels of a Tektronix TDS5054B 500 MHz bandwidth
oscilloscope terminated on 50 X. One channel, with a vertical scale
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Fig. 10. SSPALS spectra measured on the surface of the MCP (no Ps formation, grey
curve) and in a silicon sample with nanochannels (Ps formation, black curve). Each
curve is the average of 10 single shots. Positrons were implanted with energy of
3.3 keV. The difference of the two spectra (Ps signal) is shown in the inset. The
continuous line is the fit of the experimental curve (see text). The o-Ps lifetime s
from this fit is �142 ns.
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of 1 V/div, was used to acquire the ‘‘prompt peak”, the other one,
with a scale of 100 mV/div, was used to record the low level part
of the signal in order to have a low digital noise [29]. Moreover,
the high frequency noise of the low gain channel was reduced
using a low-pass filter with a cut-off frequency of 100 MHz. The
waveforms of the two channels were recorded by a computer
and automatically merged to give the SSPALS spectra. Tests of Ps
formation and detection were performed by implanting around
107 positrons per shot in a silicon sample in which oxidized
nanochannels had been electrochemically etched (Fig. 10) [30,31].

The SSPALS obtained by implantation of positrons in the MCP
shows a sharp peak corresponding to the fast 2 gamma annihila-
tions of implanted eþ. On the right side of the peak, the signal
quickly decreases and reaches the noise level in about 100 ns. On
the other hand, the lifetime spectrum measured in the Si sample
with nanochannels shows a long tail from �20 ns up to 600 ns
generated by Ps formation and decay. The difference between the
two lifetime spectra in the time range 50–350 ns from the prompt
peak is reported in the inset of Fig. 10. The continuous line in the
graph is the best fit with the exponential function e�ðt=sÞ and a con-
stant background term, where t is the time and s the o-Ps lifetime
in vacuum. From this fit s ¼ 142 ns (with an error of few percent),
indicating that the observed o-Ps atoms have a lifetime consistent
with emission into vacuum.

From previous characterization of similar positron-positronium
converters, around 35% of positrons implanted with an energy of
3300 V are emitted into the vacuum as Ps [30,31]. Thus, when
3 � 107 are dumped from the accumulator, a cloud of about 4 � 106

positronium atoms emitted into vacuum can be estimated by using
the Ps diffusion model of Ref. [30].
7. Conclusion

A new apparatus designed to provide intense positron bunch-es
for the production of positronium into vacuum has been tested.
The system, using a 11 mCi source, allows for the compression of
around 107 positrons in a bunch with a FWHM of around 8 ns
and a spot size of less than 4 mm FWTM. The use of a l-metal field
terminator and the subsequent electrostatic transport permitted us
to extract positrons from the magnetic field of the AEgIS positron
transport line and to guide them to an eþ/Ps converter placed in
a region free of magnetic fields. Efficient formation and emission
into vacuum of ground state o-Ps (around 35%) have been demon-
strated with SSPALS measurements. The apparatus is installed in
proximity of the AEgIS laser system [32]. UV and IR laser beams
can easily be guided and injected into the target chamber, where
they are being used for several experiments on o-Ps spectroscopy,
such as n=3 excitation and o-Ps Rydberg atoms production.
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