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GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

Keywords: numbers: 04.80.Nn, 95.55.Ym, 95.75.Kk, 07.60.Ly

Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitationalwave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10 -23 / √ Hz at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14th, 2015 the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [1], launching the era of gravitationalwave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of three improvement in the signal-to-noise ratio for binary black hole systems similar in masses to GW150914.

Introduction -On September 14th, 2015, both Advanced LIGO detectors in the USA, H1 in Hanford, Washington and L1 in Livingston, Lousiana, made the first direct measurement of gravitational waves [START_REF] Abbott | Observation of gravitational waves from a binary black hole merger[END_REF]. The event, GW150914, was determined to be the merger of two black holes, with masses of 36 M and 29 M , into a black hole of approximately 62 M [START_REF] Abbott | Properties of the binary black hole merger GW150914[END_REF]. 3.0 solar masses of energy ( 5.4 × 10 47 J) was radiated in gravitational waves. The gravitational waves from this event, which occurred at a distance of 410 Mpc 1.3 ×10 9 light years, changed the separation between the test masses by 4×10 -18 m, about one 200th of a proton radius.

The Advanced LIGO detectors, multi-kilometer Michelson-based interferometers [START_REF] Aasi | Advanced LIGO[END_REF], came online in September 2015, after a major upgrade targeting a factor of 10 sensitivity improvement over initial detectors [START_REF] Abbott | LIGO: the Laser Interferometer Gravitational-wave Observatory[END_REF][START_REF] Accadia | Virgo: a laser interferometer to detect gravitational waves[END_REF].

While not yet at design sensitivity during their first observation run, they have already exceeded the strain sensitivity of the initial detectors across the entire frequency band, significantly surpassing the past discovery potential. This paper describes the Advanced LIGO detectors, as well as their current and final design sensitivity, at the inception of gravitational-wave astronomy [START_REF] Abbott | Astrophysical implications of the binary black hole merger GW150914[END_REF][START_REF] Abbott | Tests of general relativity with GW150914[END_REF][START_REF] Abbott | GW150914: Implications for the stochastic gravitational-wave background from binary black holes[END_REF][START_REF] Abbott | Australian Square Kilometer Array Pathfinder (ASKAP) Collaboration, Dark Energy Survey and the Dark Energy Camera GW-EM Collaborations, The Fermi GBM and LAT Collaborations[END_REF][START_REF] Adrián-Martínez | High-energy neutrino followup search of gravitational wave event GW150914 with ANTARES and IceCube[END_REF].

Astrophysical Reach -In general relativity, a gravitational wave far from the source can be approximated as a time-dependent perturbation of the space-time metric, expressed as a pair of dimensionless strain polarizations, h + and h × [START_REF] Thorne | Gravitational radiation[END_REF]. An interferometric gravitational-wave detector acts as a transducer to convert these space-time perturbations into a measurable signal [START_REF] Weiss | Electromagnetically coupled broadband gravitational antenna[END_REF]. The interferometer mirrors act as 'freely falling' test masses. Advanced LIGO measures linear differential displacement along the arms which is proportional to the gravitationalwave strain amplitude. We define the differential displacement as ∆L = δL x -δL y , where L x = L y = L are the lengths of two orthogonal interferometer arms. The gravitational-wave strain and the interferometer displacement are related through the simple equation ∆L = h L, where h is a linear combination of h + and h × .

The tiny displacements induced by astrophysical events demand that the interferometer mirrors be free from environmental disturbances and require a highly sensitive interferometric transducer-designed to be limited only by disturbances arising from fundamental physics consideration.

Since the interferometer response to displacement, or equivalently gravitationalwave strain, is frequency dependent, it is necessary to represent the limiting detector noises as functions of frequency normalized by the interferometer response.

The left panel of Figure 1 shows the amplitude spectral density of the total strain noise in units of strain per √ Hz during the first observation run (O1 run) and, for comparison, during the final science run of the initial LIGO detectors (S6 run). In the detectors' most sensitive frequency band between 100 Hz and 300 Hz, the O1 strain noise is 3 to 4 times lower than achieved in the S6 run. At 50 Hz, the improvement is about a factor of 30.

The right panel of Figure 1 shows the single detector signal-to-noise ratio (SNR) for an optimally oriented compact binary system consisting of two 30 M black holes as a function of redshift z, and for different interferometer configurations. The observed strain amplitude is largest for a source whose orbital plane is parallel to the detector's plane and is located straight above or below; we refer to such a source as optimally oriented. The SNR is computed in the frequency domain [START_REF] Finn | Binary inspiral, gravitational radiation, and cosmology[END_REF] using standard cosmology [START_REF] Ade | Planck 2013 results. XVI. Cosmological parameters[END_REF] and phenomenological waveforms which account for inspiral, merger and ringdown, but not spins [START_REF] Ajith | Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins[END_REF].

A Michelson interferometer lacks good directional sensitivity to gravitational waves. The antenna pattern covers approximately half the sky, both above and beneath the plane of the detector. Moreover, the antenna patterns [START_REF] Miller | Prospects for doubling the range of Advanced LIGO[END_REF] are shown to highlight the discovery potential in the coming years. The right plot shows the single detector signal-to-noise ratio (SNR) under optimal orientation as function of redshift z-for two merging black holes with mass 30 M each. GW150914 was not optimally orientated and was detected with a single detector SNR of 13 to 20 at z = 0.09; this event would not have been seen in S6.

of the two LIGO detectors are aligned to maximize the coincident detection of gravitational-wave signals, constrained to the 10 ms inter-site propagation time. The coincidence constraint substantially rejects non-Gaussian noise and vetoes local transients.

The observed strain amplitude is inversely proportional to the luminosity distance. For small redshifts, z < 1, the observable volume, and thus the detection rate, grows as the cube of the detector sensitivity. The number of detected events is expected to scale with the product of observing volume and observing time. Between September 12 and October 20 the H1 and L1 detectors had a duty cycle of 70% and 55%, respectively, while the observing time in coincidence was 48%. After data quality processing [START_REF] Abbott | Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914[END_REF], 16 days of data were analyzed around GW150914, resulting in a time-volume product of 0.1 Gpc 3 yr for binary black hole systems with masses similar to GW150914 [START_REF] Abbott | The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914[END_REF].

The Displacement Measurement -The current generation of advanced detectors use two pairs of test masses as coordinate reference points to precisely measure the distortion of the space-time between them. A pair of input and end test masses is located in each of the two arms of a Michelson laser interferometer, as shown in Figure 2. The Advanced LIGO test masses are very pure and homogeneous fused silica mirrors of 34 cm diameter, 20 cm thickness and 40 kg mass.

It is critical that the test masses be free from sources of displacement noise, such as environmental disturbances from seismic noise, or thermally driven motion. These noise sources are most relevant at frequencies below 100 Hz, while shot noise of the optical readout is dominant at high frequencies. Figure 3 shows the measured displacement noise of Advanced LIGO during the first observing run, together with the major individual contributions, as discussed below.

To reduce the effects of ground vibrations, the test masses are suspended by multi-stage pendulums [START_REF] Aston | Update on quadruple suspension design for Advanced LIGO[END_REF], thus acting as free masses well above the lowest pendulum resonance frequency of 0.4 Hz. Monolithic fused silica fibers [START_REF] Braginski | Oscillators for free-mass gravitational antennas[END_REF] are incorporated at the bottom stage to decrease suspension thermal noise [START_REF] Cumming | Design and development of the advanced LIGO monolithic fused silica suspension[END_REF], which limits the useful frequencies to 10 Hz and above. The Advanced LIGO test masses require about 10 orders of magnitude suppression of ground motion above 10 Hz. The multistage pendulum system attenuates the ground motion by seven orders of magnitude. It is mounted on an actively controlled seismic isolation platform which provides three orders of magnitude of isolation of its own [START_REF] Matichard | Seismic isolation of Advanced LIGO: review of strategy, instrumentation and performance[END_REF][START_REF] Wen | Hydraulic external pre-isolator system for LIGO[END_REF]. Moreover, these platforms are used to reduce the very large displacements produced by tidal motion and microseismic activity. Tidal forces can produce displacements up to several 100 µm over a multi-kilometer baseline on time scales of hours. The dominant microseismic activity is driven by ocean waves. The resulting ground motion can be as large as several µm at frequencies around 0.15 Hzeven far inland.

The entire test mass assembly including the suspension system and part of the seismic isolation system resides inside an ultra-high vacuum system, with pressures typically below 1 µPa over the 10, 000 m 3 volume, to prevent acoustic shorting of the seismic isolation systems and to reduce Rayleigh scattering in the optical readout.

The test masses are also susceptible to changes in the local gravitational field caused by changing mass distributions in their vicinity. While not limiting presently, at design sensitivity this time-dependent Newtonian noise source possibly becomes relevant below 20 Hz, and might require active cancellation [START_REF] Cella | Off-line subtraction of seismic Newtonian noise[END_REF][START_REF] Driggers | Subtraction of Newtonian noise using optimized sensor arrays[END_REF]. Thermally driven motion is another important source of displacement noise. It includes the Brownian motion of the suspension system [START_REF] Saulson | Thermal noise in mechanical experiments[END_REF] as well as the test masses [START_REF] Levin | Internal thermal noise in the ligo test masses: a direct approach[END_REF], and mechanical loss in the mirror optical coatings [START_REF] Harry | Optical coatings and thermal noise in precision measurement[END_REF]. The mirror coatings, a dielectric multilayer of silica and titania-doped tantala [START_REF] Harry | Titania-doped tantala/silica coatings for gravitational-wave detection[END_REF][START_REF] Granata | Mechanical loss in state-of-the-art amorphous optical coatings[END_REF], were developed to provide the required high reflectivity while minimizing coating thermal noise [START_REF] Flaminio | A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors[END_REF][START_REF] Agresti | Optimized multilayer dielectric mirror coatings for gravitational wave interferometers[END_REF][START_REF] Villar | Measurement of thermal noise in multilayer coatings with optimized layer thickness[END_REF]; at design it will eventually limit the sensitivity around 60 Hz [START_REF] Aasi | Advanced LIGO[END_REF].

The predicted levels for seismic, thermal and Newtonian noise sources are summarized in Figure 3 and compared to the total measured displacement noise. They are currently not limiting the sensitivity due to the presence of other technical noise sources, summarized in the next section and detailed in Ref. [START_REF] Abbott | The sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF].

Quantum noise in the interferometer arises from the discrete nature of photons and their Poisson-distributed arrival rate [START_REF] Caves | Quantum-mechanical radiation-pressure fluctuations in an interferometer[END_REF][START_REF] Braginsky | Quantum Measurement[END_REF][START_REF] Mcclelland | Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors[END_REF]. The momentum transfer of individual photons hitting a test mass gives rise to radiation pressure noise. Quantum radiation pressure noise scales as 1/mf 2 , where m is the mass of the mirror and f the frequency, and therefore it is most significant at lower frequencies.

Photon shot noise arises from statistical fluctuations in the photon arrival time at the interferometer output, and it is a fundamental limit of the transducer in sensing changes of the differential arm length. The importance of shot noise decreases as the inverse square-root of the laser power circulating in the interferometer arms. During the first observing run, Advanced LIGO was operating with 100 kW of circulating laser power. The corresponding quantum noise curve, comprising both low frequency radiation pressure noise and high frequency shot noise, is shown in Figure 3; it is limiting at frequencies above 70 Hz. In the upcoming years, we plan to increase the circulating laser power up to 750 kW, and thus reduce the shot noise contribution.

Coincident detection between the two LIGO observatories is used to reject transient environmental disturbances. Both observatory sites deploy seismometers, accelerometers, microphones, magnetometers, radio receivers, weather sensors, AC-power line monitors, and a cosmic ray detector for vetoes and characterization of couplings [START_REF] Effler | Environmental influences on the LIGO gravitational wave detectors during the 6th science run[END_REF].

Interferometric Transducer -The Advanced LIGO detector uses a modified Michelson laser interferometer to translate strain into an optical phase shift [START_REF] Aasi | Advanced LIGO[END_REF]. Similar to an electromagnetic receiver, the optimal antenna length for a gravitational-wave detector is a quarter wavelength. For a gravitational wave at 100 Hz this is 750 km. The Advanced LIGO interferometer arms are 4 km long and employ an optical resonator between the input and end test masses that multiplies the physical length by the effective number of round-trips of the light. However, the physical length cannot be arbitrarily short, because test mass displacement noises are multiplied by the same factor.

The output port of the Michelson interferometer is held at an offset from a dark fringe, resulting in a small amount of light leaving the output port [START_REF] Fricke | DC readout experiment in Enhanced LIGO[END_REF]. A differential optical phase shift will then decrease or increase the amount of light, depending which interferometer arm is momentarily stretched or squeezed by a passing gravitational wave. This light signal is measured by a photodetector, digitized and calibrated [START_REF] Abbott | Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914[END_REF], before being sent to the analysis pipelines [START_REF] Abbott | Observing gravitationalwave transient GW150914 with minimal assumptions[END_REF][START_REF] Abbott | GW150914: First results from the search for binary black hole coalescence with Advanced LIGO[END_REF].

The calibration factor that converts detected laser light power to mirror displacement is measured by applying a known force to a test mass [START_REF] Goetz | Precise calibration of LIGO test mass actuators using photon radiation pressure[END_REF]. An auxiliary 1047nm wavelength laser is reflected off the end test mass and modulated in intensity to generate a varying force. The response of the optical transducer is measured by sweeping the modulation frequency through the entire The sum of all known noise sources accounts for most of the observed noise with the exception of the frequency band between 20 Hz and 100 Hz. This will be the focus of future commissioning to full sensitivity. The quantum noise includes both shot noise and radiation pressure noise. Thermal noise includes terms due to the suspensions, the test masses and the coatings. Seismic noise is the ground displacement attenuated through the seismic isolation system and the suspensions. Cross couplings from the auto-alignment system and from the auxiliary lengths are combined into the trace labelled "other DOF" (degrees-of-freedom). Newtonian gravitational noise is estimated from density perturbations due to surface ground motion. The strong line features are due to the violin modes of the suspension wires, the roll and bounce modes of the suspensions, the AC power line and its harmonics, and the calibration lines. Not shown are numerous noise sources that do not contribute significantly-such as laser frequency, intensity and beam jitter noise, sensor and actuation noise, and Rayleigh scattering by the residual gas [START_REF] Abbott | The sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF].

detection band. It is also tracked by a set of fixed frequency lines. This way, the calibrated strain readout is computed in real-time with less than 10% uncertainty in amplitude. The overall variability of the detector's sensitivity was about ±10%.

The main light source is a pre-stabilized 1064-nm wavelength Nd:YAG laser. It is followed by a high power amplifier stage, capable of generating a maximum output power of 180 W [START_REF] Kwee | Stabilized high-power laser system for the gravitational wave detector Advanced LIGO[END_REF]. During the first observation run, only 20 W were injected into the interferometer. A triangular optical resonator of 32.9 m round-trip length is placed between the laser source and the interferometer to reject higher order transverse optical modes and to stabilize the laser frequency further [START_REF] Mueller | The Advanced LIGO input optics[END_REF]. At the output port, a bow-tie optical resonator of 1.3 m round-trip length is used to reject unwanted spatial and frequency components on the light. Optical curvature mismatch of the interferometer mirrors is caused by manufacturing imperfections and by thermal lensing due to heating from the main laser beam. A thermal compensation sys-tem provides active correction by means of ring heaters arranged around the test masses and a set of CO 2 lasers for central heating [START_REF] Brooks | Direct measurement of absorptioninduced wavefront distortion in high optical power systems[END_REF].

The Advanced LIGO detector uses coupled optical resonators to maximize the sensitivity of the interferometric transducer. These optical resonators enhance the light power circulating in each arm while simultaneously optimizing the effective antenna length and the gravitationalwave signal bandwidth [START_REF] Drever | The Detection of Gravitational Waves[END_REF][START_REF] Drever | Quantum optics[END_REF][49][START_REF] Meers | Recycling in laser-interferometric gravitational-wave detectors[END_REF][START_REF] Mizuno | Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors[END_REF]. As the interferometer is held near a dark fringe, most of the light is reflected back to the laser source. Adding a partially transmissive mirror at the interferometer input forms an optical resonator, leading to a power gain of 35 to 40 at the beamsplitter. The optical resonator in the interferometer arms enhances the circulating power by another factor of 300. Thus, 20 W of laser power entering the interferometer results in nearly 100 kW circulating in each arm. A partially reflective mirror is also placed at the output port to enhance the signal extraction and to increase the detector bandwidth. The resulting differential pole frequency or detector bandwidth is 335 Hz (H1) and 390 Hz (L1) [START_REF] Abbott | The sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF]. The optical mode matching in the output resonator is worse for H1.

All of these coupled optical resonators require servo controls to be brought and held on resonance [START_REF] Staley | Achieving resonance in the Advanced LIGO gravitational-wave interferometer[END_REF]. The lengths of the optical resonators in the interferometer arms are stabilized to less than 100 fm, whereas the lengths of the other coupled resonators are kept within 1 to 10 pm [START_REF] Abbott | The sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF]. Similarly, the interferometer test masses are aligned within tens of nanoradians relative to the optical axis for optimal performance. The noise arising from sensing and control of these extra degreesof-freedom are combined together in the curve labeled "other DOF" in Figure 3. The Pound-Drever-Hall reflection locking technique is used to sense the auxiliary longitudinal degrees-of-freedom [START_REF] Drever | Laser phase and frequency stabilization using an optical resonator[END_REF][START_REF] Fritschel | Readout and control of a powerrecycled interferometric gravitational-wave antenna[END_REF], while an interferometric wavefront sensing scheme is deployed for the alignment system [START_REF] Morrison | Automatic alignment of optical interferometers[END_REF][START_REF] Barsotti | Alignment sensing and control in Advanced LIGO[END_REF]. The differential arm length is controlled by the same technique during lock acquisition, but switched to the offset locking technique described above when observing. Digital servo systems are used to feed control signals back to actuators which steer the relative longitudinal positions and orientations of the interferometer mirrors. To prevent reintroducing ground motion onto the test masses, electrostatic actuators [START_REF] Affeldt | Advanced techniques in GEO 600[END_REF] are mounted to a second quadruple pendulum known as the reaction chain. Only test masses use reaction chains; all other interferometer mirrors use coil actuators mounted on a rigid structure surrounding the suspensions.

Servo controls are also necessary for damping the plethora of normal modes of the pendular suspensions and for stabilizing the seismic isolation system to an inertial reference frame. Moreover, at high laser power, optical springs introduce angular instabilities due to photon radiation pressure-induced torques acting on the mirrors [START_REF] Sidles | Optical torques in suspended Fabry-Perot interferometers[END_REF][START_REF] Dooley | Angular control of optical cavities in a radiation-pressure-dominated regime: the Enhanced LIGO case[END_REF], while the mirror acoustic modes introduce parametric instabilities [START_REF] Braginsky | Analysis of parametric oscillatory instability in power recycled LIGO interferometer[END_REF][START_REF] Evans | Observation of parametric instability in Advanced LIGO[END_REF]. At the current laser power only one acoustic mode is unstable which can be tuned away by the ring heaters. Together with thermal heating, angular optical springs and multiple parametric instabilities are the main challenges that need to be overcome to increase the circulating laser power; both will require active damping for stable operations.

Overall, more than 300 digital control loops with bandwidths spanning from sub-Hz to hundreds of kHz are employed to keep each Advanced LIGO interferometer operating optimally during observation. The digital control computers also serve as the data acquisition system that continuously writes on the order of 10 5 channels of time series data to disk, at a rate of 12 MB/s. It is synchronized to GPS to better than 10 µs [START_REF] Abbott | Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914[END_REF]. A statebased automation controller provides hands-free running during operations.

Outlook -The global gravitational-wave network will be significantly enhanced in the upcoming years. In 2016 Advanced LIGO will be joined by Advanced Virgo, the 3 km detector located near Pisa, Italy [START_REF] Acernese | Advanced Virgo: a second-generation interferometric gravitational wave detector[END_REF]. The Japanese KAGRA interferometer [START_REF] Aso | Interferometer design of the KAGRA gravitational wave detector[END_REF] and a possible third LIGO detector in India [64] will provide a global network that allows for improved parameter estimation and sky localization [START_REF] Abbott | Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo[END_REF]. Achieving design sensitivity with the network of current detectors will define earthbound gravitational-wave astrophysics in the near future. Looking further ahead, we can envision current technologies leading to a factor of two improvement over the Advanced LIGO design sensitivity [START_REF] Miller | Prospects for doubling the range of Advanced LIGO[END_REF], so that events such as GW150914 could be detected with SNRs up to 200. More dramatic improvements will require significant technology development and new facilities.
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 2 FIG. 2. Interferometer configuration and test mass setup.Each arm of the Michelson interferometer includes two suspended test masses. The two test masses are placed 4 km apart and form an optical resonator with a gain of 300. The suspension system is shown on the right, each test mass is at the bottom of a quadruple pendulum. It provides high isolation above the resonance frequencies which range from 0.4 Hz to 13 Hz. The test mass is attached to the penultimate mass through fused silica fibers providing a high mechanical quality factor which lowers the thermal noise. The other stages use steel wire. The attachment point to the seismic isolation system as well as stages 1 and 2 implement cantilever springs for vertical isolation. Each test mass is accompanied by its own reaction chain to minimize actuation noise. Coil actuators are mounted to the upper stages of the reaction chain and an electrostatic actuator is implemented at the bottom stage. Shown on the left are the other optics of the Michelson interferometer with the beamsplitter and the perpendicular arm. The two optics at the interferometer input and output port comprise the coupled resonator system which amplifies the response of the optical transducer.
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 3 FIG. 3. The displacement sensitivity of the Advanced LIGO detector in Hanford during the first observation run O1; the Livingston detector has a similar sensitivity, as shown in Figure 1.The sum of all known noise sources accounts for most of the observed noise with the exception of the frequency band between 20 Hz and 100 Hz. This will be the focus of future commissioning to full sensitivity. The quantum noise includes both shot noise and radiation pressure noise. Thermal noise includes terms due to the suspensions, the test masses and the coatings. Seismic noise is the ground displacement attenuated through the seismic isolation system and the suspensions. Cross couplings from the auto-alignment system and from the auxiliary lengths are combined into the trace labelled "other DOF" (degrees-of-freedom). Newtonian gravitational noise is estimated from density perturbations due to surface ground motion. The strong line features are due to the violin modes of the suspension wires, the roll and bounce modes of the suspensions, the AC power line and its harmonics, and the calibration lines. Not shown are numerous noise sources that do not contribute significantly-such as laser frequency, intensity and beam jitter noise, sensor and actuation noise, and Rayleigh scattering by the residual gas[START_REF] Abbott | The sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF].
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