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Introduction 

 

Zero-field splitting (ZFS) is a concept that is commonly used to indicate the loss of the 

degeneracy of the spin components of a spin-orbit free (SOF) state in the absence of an 

external magnetic field. This picture of ZFS is based on the separation of SOF and spin-

dependent effects such as spin-orbit coupling (SOC). With this viewpoint, ZFS between 

the spin components of S>1/2 SOF states can be observed in mononuclear complexes 

(i.e. complexes with one transition metal −TM− centre), when (i) the “crystal” field felt 

by the TM ion is anisotropic (i.e. does not correspond to a spherical or cubic symmetry), 

and (ii) when SOC is sufficiently large [McWeeny, 1965]. Spin-spin coupling (SSC) is also 

at play [McWeeny and Mizuno, 1961], but usually to a lesser extent. ZFS can in principle 

occur in any type of systems, however, it is commonly associated with an orbitally non-

degenerate ground SOF state. This chapter focuses on TM complexes, and more 

particularly the 3d ones. Mononuclear and binuclear (i.e. with two TM centres) 
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complexes will be considered to introduce the main features of single-ion and molecular 

or intersite anisotropies. 

Although ZFS is a concept that has been known for almost a century, it has triggered new 

investigations in the last twenty years, among which theoretical studies play a key role. 

One of the reasons for this revival is the discovery of the single-molecule magnet (SMM) 

behaviour [Gatteschi and Sessoli, 2003], which was first evidenced in the so-called Mn12 

molecule [Caneschi et al., 1991]. In this system, the low-temperature magnetic 

behaviour is interpreted as coming from the splitting of the spin-components of the 

S=10 SOF ground state.  The slow relaxation of the magnetization from the MS=−10 to 

MS=10 components and vice-versa, is observable at reasonable experimental timescales. 

The relaxation occurs via different mechanisms, such as thermal activation, direct 

tunnelling, or thermally assisted tunnelling. More information concerning SMMs can be 

for instance found in the nice review of Gatteschi and Sessoli [Gatteschi and Sessoli, 

2003]. Let us just recall that in order to design higher-temperature SMMs, various 

strategies have been attempted, as for instance enlarging the number of TM centres, or 

enlarging the single-ion anisotropies. More particularly for the latter strategy, it became 

clear that more extensive studies were necessary to understand the properties of 

“exotic” coordination spheres with pentacoordinated or heptacoordinated metal centres 

[Rebilly et al., 2008; Costes et al., 2012; Ruamps et al., 2013a; Ruamps et al., 2013b], or 

even low-coordinated cases [Zadrozny et al., 2013; Atanasov et al. 2013]. Moreover, the 

search for magneto-structural correlations from ab initio calculations and crystal-field 

models appeared necessary to eventually guide the synthesis of new coordination 

complexes, as highlighted by Telser in 2006 [Telser, 2006]. 

ZFS also plays an important role in the magnetic properties of condensed matter, as for 

instance ionic solids. In these systems, TM centres may be the subjects of local and inter-

site anisotropies. Low-temperature magnetic properties of extended systems are at least 

partly driven by the microscopic interactions that lead to ZFS. One may quote magnetic 

multiferroics [Ederer and Spaldin, 2004], for which magnetic and for instance electric 

transitions are coupled, meaning that one can in principle influence the magnetism of 

the material by the application of an external electric field or the electric polarization by 

a magnetic field. One common way of tackling the properties of solids is to treat infinite 

systems by applying periodic boundary conditions (PBCs), i.e. neglecting edge effects, 

and assuming an ideally ordered arrangement of the atoms. However, for reasons that 
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will be discussed later in this chapter, it is practically impossible to accurately compute 

ZFS when PBCs are considered. Another approach, which is perfectly suited for the 

computation of local effects in ionic solids, consists of using an embedded cluster to 

model the material, as was done by Pradipto et al. to study cupric oxide [Pradipto et al., 

2012] and Maurice et al. for LiCu2O2 [Maurice et al., 2012]. The interested reader may 

consult more literature concerning this approach [de P. R. Moreira et al., 1999; de P. R. 

Moreira and Illas, 2006 −and references therein−], but we already stress that the 

methods and conclusions that are given in this chapter are directly applicable to solids 

provided that an embedded cluster approach is followed. 

ZFS is often described in terms of model Hamiltonians, which have been (almost) always 

introduced phenomenologically.  Such models are typically spin Hamiltonians, since by 

definition ZFS applies to systems for which the ground orbital configuration is separated 

in energy from the others, and hence, the effective description of the lowest-lying states 

can be restricted to the spin variables. For mononuclear complexes, these Hamiltonians 

only consider the spin anisotropy of the magnetic centre. For polynuclear complexes, 

two main types of models are widely used, namely the giant-spin and the multispin 

models. Both types will be discussed here for binuclear systems to keep the discussion 

as clear as possible. 

This chapter aims at (i) making a bridge between ab initio calculations and model 

Hamiltonians to validate phenomenological Hamiltonians, (ii) establishing magneto-

structural correlations, and (iii) demonstrating that magneto-structural correlations can 

also be understood in terms of crystal-field models. Therefore, in principle, one can 

bridge ab initio calculations, model Hamiltonians, and crystal-field models to get a full 

and intuitive picture of the ZFS in TM complexes. The chapter is organized as follows; 

first, we describe the ab initio methodologies that are sufficiently accurate to compute 

ZFS, as well as the effective Hamiltonian theory; second, we discuss the relevance of 

standard and improved model Hamiltonians that effectively describe the ZFS in 

mononuclear and binuclear complexes; third, we evaluate magneto-structural 

correlations, either derived from ab initio calculations performed on model complexes, 

or analysed within crystal-field model; finally, we conclude on the overall progress made 

in the last two decades, and also give some perspectives. 

 

I. Ab initio calculations and effective Hamiltonians 
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In this part, we describe a common strategy to introduce relativistic effects in the  

calculation of ZFS, the typical way to introduce electron correlation in contracted spin-

orbit configuration interaction (c-SOCI), and a way to bridge the resulting spin-orbit 

wave functions to model Hamiltonians to (i) assess the validity of model Hamiltonians 

and (ii) extract the model parameter values if appropriate. Apart from the here-

discussed approach, other methods have been developed to compute ZFS and extract the 

model parameter values [Neese and Solomon, 1998, Pederson and Khanna, 1999; 

Aquino and Rodriguez, 2005; Neese, 2006; Ganyushin and Neese, 2006; Neese, 2007; 

Schmitt et al., 2011; Chibotaru and Ungur, 2012], but these are out of the scope of this 

chapter.  

 

I.1. From the Dirac equation to contracted spin-orbit configuration interaction 

 

The time-independent Dirac equation may be written as: 

 

              
            

 

where   is the speed of light,     is the momentum operator,    and    are the Dirac 4x4 

matrices,    is the one-electron external potential, and   is a four-component (4c) wave 

function. The resolution of the Dirac equation leads to two different types of solutions, 

the upper energy eigenfunctions are usually referred to as the “large” components, and 

the lower energy ones are known as the “small” components. Since the large 

components tend to standard spin-orbitals in the non-relativistic limit, these may also 

be considered as “essentially electronic” solutions. Although the introduction of 

relativistic effects is in principle more natural in 4c frameworks, much effort has been 

devoted in the last decades to reduce the complexity and derive accurate two-

component (2c) models.  

Various transformations/approximations have been implemented in standard codes, 

among which we quote the Douglas-Kroll (DK) transformation based expansions 

[Douglas and Kroll, 1976; Hess, 1986; Jansen and Hess, 1989] and the zeroth-order 

regular approximation (ZORA) approach [van Lenthe et al., 1994; van Lenthe et al., 

1996]. More recently, exact 2c formalisms (X2C) have been proposed [Iliaš and Saue, 
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2007]. Since many investigations of ZFS in TM complexes make use of the DK 

transformation, we will here describe briefly how to reach c-SOCI formalisms after this 

transformation, although c-SOCI schemes may also be derived from other reference 2c 

Hamiltonians.  

The DK transformation can in principle lead to the exact energies of the Dirac 

Hamiltonian if one considers an infinite-order expansion of the one-electron external 

potential (  ).  In practice, the expansion is of course limited to finite order; in most cases 

the expansion only contains second order terms. After the sign correction by Jansen and 

Hess in the original derivation of the transformation [Jansen and Hess, 1989], the 

second-order (and higher) DK expansions are commonly referred to as the Douglas-

Kroll-Hess (DKHn) Hamiltonians, where n is the expansion order. Another 

approximation, called the no-pair transformation, can be then introduced, in which the 

one-electron kinetic Hamiltonian matrix is diagonalised within a (finite) basis set to 

form a conventional one-electron basis. Although one can in principle use transformed 

one-electron and two-electron interactions, a one-component (1c) pseudo-relativistic 

Hamiltonian can be used in scalar relativistic calculations if only the spin-independent 

one-electron interactions are transformed [Roos and Malmqvist, 2004], which means 

that non-relativistic two-electron interactions are formally considered. A standard 

approximation consists of introducing the SOC after a non-relativistic or scalar-

relativistic calculation. Assuming that a set of scalar relativistic reference states has been 

built in the first step, a c-SOCI calculation consists of diagonalizing              

within the basis of the spin components of these reference SOF states, in which     are 

SOF electronic energies, and       is an appropriate SOC Hamiltonian. More details 

concerning the choice of the SOF electronic energies will be given in the next section. Let 

us just mention that it is common practice nowadays to use electronic energies coming 

from a higher level of theory than the one that is used to compute the multireference 

wave functions. So in addition to using the reference wave functions for the off-diagonal 

SOC matrix elements of   , one can “dress” the diagonal elements of a c-SOCI matrix with 

higher-level electronic energies. Such an approach was proposed by Teichteil et al. 

[Teichteil et al., 1983] and also Llusar et al. [Llusar et al., 1996]. 

Due to the local character of the spin-orbit operator, one may neglect interatomic SOCs. 

Expressions for the atomic SOC Hamiltonian that include one-electron and two-electron 

interactions adapted to the no-pair DKH2 Hamiltonian can be found elsewhere [Roos 



 6 

and Malmqvist, 2004]. If one further applies a mean-field approximation to treat the 

two-electron part of the atomic SOC Hamiltonian by assuming an atomic one-electron 

density and adding the resulting mean-fields to the one-electron integrals, the so-called 

atomic mean-field integral (AMFI) approximation is used [Hess et al., 1996]. Note that 

alternative mean-field approximations of the SOC operator have been proposed by 

Neese [Neese, 2005] and that the atomic approximation can nowadays be avoided even 

in routine calculations. 

 

I.2. The treatment of the spin-orbit free electron correlation 

 

Although c-SOCI calculations can in principle be performed using single-reference SOF 

states, this is not an optimal approach to compute ZFS since it is in most cases 

impossible to converge enough excited SOF states to obtain a good representation of the 

SOC operator. Therefore, it is more appropriate to use multireference SOF states, which 

are obtained from multiconfigurational self-consistent field (MCSCF) approaches. A 

second requirement to compute ZFS is that all the spin components of the SOF state(s) 

of interest have to be coupled to excited components in a balanced way, i.e. one should 

not introduce a bias in the treatment of the lowest-energy spin-orbit states towards one 

specific spin-orbit component. This common-sense requirement has two implications in 

practice,  (i) the set of SOF states considered in the first step of the calculation must be 

rather well thought, since selections based on an energy basis do not always lead to a 

consistent choice and (ii) it is convenient to consider state-averaged (SA) orbitals 

between all the SOF states of interest to control the balance between the SOC excitations 

that are introduced a posteriori. Although SA orbitals can be calculated for any type of 

MCSCF multireference SOF states, the appropriate calculation of physical properties 

requires ensuring some properties of the wave functions, which may break down by any 

space truncation of the CI space that is used for computing the SOF states. This is why 

most researchers consider the complete active space self-consistent field (CASSCF) 

method [Roos et al., 1980] in the first step of a ZFS calculation. 

Perhaps it is necessary at this stage to introduce the example of the nearly octahedral d8 

complexes to illustrate how one can consistently choose balanced active spaces and 

balanced SOCI spaces, i.e. an adequate set of SOF states in the first step of the calculation. 

If one only considers the d8 manifold, 10 spin-triplet (10T) and 15 spin-singlet (15S) SOF 
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states can be at maximum considered. Therefore, the easiest way to define balanced 

spaces consists of choosing an active space of 8 electrons in 5 orbitals, i.e. a CAS(8/5), 

and in computing 10T and 15S SOF states with the state-averaged CASSCF (SA-CASSCF) 

method [Roos, 2005]. Note that it is easier to guess which active spaces and which sets 

of states can be suitable by looking at the reference, most symmetrical situation, i.e. in 

the octahedral case. One can for instance think of adding the two orbitals associated to 

the ligand-to-metal “σ” donation, or to consider the ground SOF state plus a number of 

excited states that are consistent with the orbital degeneracies in that symmetry point 

group (“roots”), leading for instance to 4T, 7T and 2S, 10T and 9S sets of SOF states 

[Maurice et al., 2009]. In any case, the degeneracy of the first three spin-orbit roots 

should be strictly maintained in the octahedral situation. When the symmetry is 

lowered, which is necessary to observe ZFS, one should maintain a balanced treatment 

of the SOC operator. While it is clear that the active spaces that are consistent for the 

octahedral situation are transferable to the case of nearly octahedral complexes, the 

definition of the set of SOF states may be problematic. One can always recommend using 

the full set of states that can be formed within an 8/5 active space (i.e. 10T and 15S), or 

check that any of the previously mentioned subsets of it leads to similar averaged 

occupation numbers for the orbitals from which excitations are formed, i.e. for the three 

orbitals that correspond to the t2g orbitals in the octahedral case. A similar reasoning can 

be applied to any dn configuration near an ideal geometry that leads to orbitally non-

degenerate ground states, as for instance in nearly tetrahedral d7 complexes. In this case, 

the “full” set of spin-orbit free states consists of 10 spin-quartet (10Q) and 40 spin-

doublet (40D) SOF states, while it is also safe to consider the 4Q and 7Q subsets 

[Maurice et al., 2009].  

Now that the set of SOF states has been defined, the SOC is computed between the spin 

components (i.e. MS components) of these states to form the c-SOCI matrix. However, 

one needs to further discuss the choice of the SOF electronic energies that appear on the 

diagonal of the matrix. Since the spin components of the SA-CASSCF SOF states are 

considered to compute the off-diagonal elements of the c-SOCI matrix, it may appear 

natural to just consider the SA-CASSCF electronic energies on the diagonal of this matrix. 

This straightforward choice may however not be the wisest. In mononuclear complexes 

satisfactory results may be obtained at this level, although it is also clear that results are 

in general slightly improved when the diagonal of the c-SOCI matrix is “dressed” with 
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post-CASSCF correlated energies [Maurice et al., 2009]. In binuclear complexes, ZFS can 

be severely underestimated if SA-CASSCF energies are considered on the diagonal 

elements of the c-SOCI matrix, as shown by Maurice et al. showed in a very detailed 

study concerning the ZFS of the first excited spin-triplet block in copper acetate 

monohydrate [Maurice et al., 2011a]. In this case, it was shown via a crystal-field model 

that the ZFS of interest relates at second order of perturbation to the isotropic magnetic 

couplings of the orbitally single-excited states. As shown by decades of experience, a 

proper description of isotropic magnetic couplings is not trivial at post-CASSCF levels 

[Malrieu et al., 2014]. Perturbative approaches such as the complete active space 

perturbation theory at second order (CASPT2) [Anderson et al., 1992] and the n-

electron valence state perturbation theory at second order (NEVPT2) [Angeli et al., 

2001] do not fully account for the effect of charge-transfer configurations on the 

isotropic couplings. Although the description is clearly improved compared to CASSCF, 

multireference configuration interaction (MRCI) has to be considered for quantitative 

results.  Among the different MRCI schemes, the difference dedicated configuration 

interaction (DDCI) methods [Miralles et al., 1993] is one of the most successful ones for 

computing isotropic couplings. This method considers all the single and double 

excitations minus the double excitations that create two holes (h) in the inactive orbitals 

and two particles (p) in the virtual orbitals, usually referred to as the 2h2p excitations. 

Numerical examples will be given in sections II.1 and II.2 for mononuclear and binuclear 

complexes respectively and the comparison with experimental data will be discussed. 

 

I.3. On the effective Hamiltonian theory 

 

The effective Hamiltonian theory [Bloch, 1958; des Cloizeaux, 1960] enables one to 

establish a bi-univocal relation between a sophisticated Hamiltonian (here called the 

“reference” Hamiltonian) expressed in a large reference space and an effective 

Hamiltonian working on a truncated space, usually of much smaller dimension, that is 

called the “model” space. By definition, the eigenfunctions of an effective Hamiltonian 

are the wavefunctions of the reference Hamiltonian projected onto the model space 

while its eigenvalues are set to be identical to the energies of the reference Hamiltonian. 

Note that effective Hamiltonians can be used to design computational approaches 

[Spiegelmann and Malrieu, 1984a; Spiegelmann and Malrieu, 1984b; Chang et al., 1986, 
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Finley et al., 1998]. Alternatively, effective Hamiltonians can be used to extract 

information from wave functions and energies in order to determine the interactions of 

model Hamiltonians (i.e. the model operators and parameters).. By doing so, 

computational chemistry can (i) assess the validity of the considered model Hamiltonian 

by checking that the model space is appropriate (the norms of the projections onto the 

model space must be large enough) and check that the operators of the model 

Hamiltonian are the relevant ones (a good one-to-one correspondence between the 

model Hamiltonian and the effective Hamiltonian matrices must be obtained), and (ii) 

extract the model parameter values. This approach proved to be particularly 

appropriate in the field of ZFS for the second purpose, even if alternatives exist, as for 

instance the pseudo-spin approach of Chiboratu and Ungur [Chibotaru and Ungur, 

2012]. 

Various formulations of effective Hamiltonians have been reported in the literature, 

among which the Bloch [Bloch, 1956] and des Cloizeaux [des Cloizeaux, 1960] ones that 

will be commented here. The Bloch formulation of the effective Hamiltonian is defined 

as: 

              
  

 

    
         

 

where     and    are the  th projected eigenvector and eigenvalue of the reference 

Hamiltonian. The projected eigenvectors of the reference Hamiltonian are mutually non-

orthogonal and     is the inverse of the overlap matrix between the projected 

eigenvectors. However, one should note that this formulation does not ensure 

hermiticity of the effective Hamiltonian, which may be problematic for extracting model 

parameter values. In order to get Hermitian model Hamiltonians the des Cloizeaux 

formalism, which symmetrically orthogonalizes the projected eigenvectors (usually 

referred to as the Löwdin’s orthogonalization in quantum chemistry), can be used. In 

this formalism, the effective Hamiltonian is defined as: 
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Examples of discussions on the validity of model Hamiltonians and extractions of model 

parameter values are given in the next section. 

 

 
II. Model Hamiltonians and effective Hamiltonians 
 
 
Model Hamiltonians not only reduces the complexity of a given reference Hamiltonian, 

the model space is always smaller than the reference space, but also introduces effective 

parameters with a well-defined physical meaning. In the field of molecular magnetism, 

the typical simpler Hamiltonians are the well-known phenomenological spin 

Hamiltonians, in which no track of the orbital part of the wave functions is kept. 

Although the earliest spin Hamiltonian is the Heisenberg-Dirac-van Vleck (HDV) 

[Heisenberg, 1928; Dirac, 1929; Van Vleck, 1945] one (vide infra), the expression “spin 

Hamiltonian” was introduced later by Abragam and Pryce [Abragam and Pryce, 1951] in 

the context of the electron paramagnetic resonance (EPR) spectroscopy. In this part, we 

will show that (i) the effective Hamiltonian theory can be used to project the information 

contained in c-SOCI wave functions onto a model space consisting of the spin 

components of one (or several) spin state(s), (ii) question the validity of model 

Hamiltonians and improve them if necessary, and (iii) show that model parameter 

values in good agreement with experiment can be obtained. We will start by discussing 

mononuclear complexes prior to dealing with binuclear systems to gradually increase 

the complexity of the models to be introduced. Note that a basic introduction to the use 

of effective Hamiltonian theory in relation to model Hamiltonians can be found in a 

recent textbook [de Graaf and Broer, 2015]. 

 

II.1. Mononuclear complexes 

 

Mononuclear complexes with a dn electronic configuration can be split in two groups, 

S=1 or S=3/2 systems and S=2 or S=5/2 systems, as the model Hamiltonians that have to 

be used to describe the full complexity of their ZFS are different. Note that, in a first 

approximation, the model Hamiltonian for S=1 or S=3/2 systems can be used to describe 

S=2 or S=5/2 systems. Although this is commonly done in the literature, this 

approximation may not always be adequate, as will be discussed later. One should also 
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stress that usually, in the S=2 or S=5/2 systems, the SSC can contribute to a significant 

part of the total ZFS, around 10% of the total ZFS in manganese(III) complexes [Duboc et 

al., 2010], and even up to 20%  in manganese(II) complexes [Zein and Neese, 2008]. 

Therefore, one should account for the SSC in the determination of ZFS parameters 

[Neese, 2006]. A remark is thus worth here. Both SOC and SSC generate second-rank ZFS 

tensors and, unless these axes are imposed by symmetry, both effects may 

independently generate different magnetic axes. Therefore, one should in principle not 

only perform a c-SOCI calculation, but rather diagonalize                    prior to 

applying the effective Hamiltonian theory.  This point is also valid for the S=1 and S=3/2 

systems, although       can be more safely neglected in these cases, especially in 

complexes for which large ZFSs are observed. For mononuclear complexes, we compare 

computed values to experimental ones when the SSC contribution to the ZFS can be 

neglected. When this contribution is expected to play a more important contribution, we 

do not compare to experiment, but rather focus on the SOC contribution and on the 

validity of the model Hamiltonians. 

 

 

II.1.a. S=1 and S=3/2 systems 

 

For S=1 and S=3/2 systems, the model Hamiltonian which describes the ZFS of orbitally 

non-degenerate states is simply [Kahn, 1993]: 

 

              

 

where    is the spin operator row or column vector and    the second-rank ZFS tensor.    

is symmetric and only composed of real numbers. Expanding this Hamiltonian and 

applying it to the          spin component basis allows one to derive the analytical 

interaction matrix to be compared to the effective Hamiltonian matrix. Although a 

similar reasoning can be used for S=3/2 systems, we will only discuss in details the S=1 

case. Note that the analytical interaction matrix for S=3/2 systems is available elsewhere 

[Maurice et al., 2009]. The analytical interaction matrix is given in Table 1 for S=1. As 

mentioned earlier, the analytical interaction matrix is Hermitian (see Table 1), as any 

other analytical interaction matrix that will be discussed in this chapter.   
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Table 1. Analytical interaction matrix corresponding to the ZFS of S=1 systems [Maurice 

et al., 2009]. X, Y and Z correspond to the Cartesian axes of an arbitrary axis frame. 

                                

         
 

 
               

  

 
           

 

 
               

         
  

 
                     

 
           

        
 

 
               

  

 
           

 

 
              

 

The c-SOCI calculation delivers wave functions expressed in terms of the spin 

components of a set of SOF states. To describe the ZFS of an S=1 system with       , the 

c-SOCI eigenvectors have to be projected onto the spin components of a SOF state, 

typically the ground state. The norm of the projection can be assessed by looking at the 

diagonal elements of the overlap matrix between the projected eigenvectors (S in         

or in                ). If the (ground) SOF state is well separated in energy from any other 

SOF state, the norm of the projections is expected to be close to 1. Let us choose the 

example of the [Ni(HIM2-Py)2NO3]+ (HIM2-py = 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-

dihydro-1H-imidazolyl-1-hydroxy) complex (see Figure 1) [Maurice et al., 2009].  
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Figure 1. Ball-and-stick representation of a model of the [Ni(HIM2-Py)2NO3]+ complex 

and its main magnetic axes [Maurice et al., 2009]. The “external” methyl groups have 

been modelled by hydrogen atoms; all hydrogen atoms are omitted for clarity. 

 

The projected wavefunctions are obtained from the ab initio ones simply by truncation 

and keeping only the part that concerns the spin components of the    ground SOF 

states: 

 

                                                                                

                                                                                

                                                                                

 

The norms of the projected vectors (prior to orthonormalization) are all larger than 

0.99, which perfectly legitimates the use of a spin Hamiltonian in this case. However, 

prior to validating       , other tests are necessary: one must show that (i) the effective 

and analytical interaction matrices match, and (ii) how the extracted tensor component 

values transform with respect to a change of the axis frame (i.e. that the extracted    

actually transforms as a tensor). The effective interaction matrix that is built with 



 14 

                is represented in Table 2 (E1 = 0.000, E2 = 1.529 and E3 = 11.396, all 

energies being in cm−1). 

 

Table 2. Effective interaction matrix corresponding to the ZFS of the [Ni(HIM2-

Py)2NO3]+ complex [Maurice et al., 2009]. 

                                             

          6.386 −0.690+i0.376 −3.734+i3.134 

         −0.690−i0.376 0.125 0.690−i.0376 

         −3.734−i3.134 0.690+i.0376 6.386 

 

By construction, the effective interaction matrix is Hermitian, has the same eigenvalues 

as the reference Hamiltonian (               ), and its eigenvectors    ,     and     are 

identical to the projected ab initio eigenvectors up to a given complex phase factor. By 

the term-by-term comparison of        and                , it is immediately clear that 

both matrices perfectly match, meaning that        is suited to describe the ZFS in this 

system, as it turns out to be the case for any S=1 system with an orbitally non-

degenerate ground state. Therefore, the second-rank ZFS tensor can be unambiguously 

extracted. Diagonalization of this tensor leads to the determination of the magnetic axes 

Xm, Ym, and Zm, as well as the ZFS parameters: 

 

        
 

 
              

   
 

 
              

 

provided that conventions are applied, i.e. |D| > 3E and E > 0 (or, alternatively E/D > 0). 

If one uses the transformation matrix P−1 that allows expressing    in the magnetic axis 

frame (such that            ), one can build again                 after computing the c-

SOCI solutions in this coordinate system, and show that the extracted tensor is diagonal 
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and finally that the same ZFS parameters can be extracted. Therefore, we conclude that 

   actually transforms as a second-rank tensor and show that the model Hamiltonian 

       is fully valid. In this case, the extracted values for D and E are −10.60 and 0.76 

cm−1, respectively [Maurice et al., 2009] and compare well with the most accurate 

experimental values (−10.15 and 0.10 cm−1, respectively, from high-field and high-

frequency EPR spectroscopy [Rogez et al., 2005]). Other nickel(II) complexes have been 

studied in a similar way and a good agreement between theory and experiment is 

generally observed with c-SOCI [Maurice et al., 2009; Maurice et al., 2011b; Costes et al., 

2012, Ruamps et al., 2013a; Ruamps et al., 2013b], while density functional theory 

methods seem to fail for this high-spin d8 configuration [Kubica et al., 2013]. 

A similar reasoning can be applied to S=3/2 complexes, such as nearly tetrahedral 

cobalt(II) complexes. The D and E parameters cannot be extracted from the eigenvalues 

of any reference Hamiltonian, since one only has access to the energy difference 

between the two Kramer’s doublets of interest. On the contrary, the application of the 

effective Hamiltonian theory unambiguously allows extracting the full ZFS tensor, i.e. 

determining the magnetic axes and the ZFS parameters. As shown elsewhere [Maurice et 

al., 2009],        is indeed also perfectly suited to describe the ZFS of S=3/2 ground 

states. As an example of application, let us consider the [Co(PPh3)2Cl2] (Ph = phenyl) 

complex (see Figure 2) [Maurice et al., 2009]. In this case, the extracted ZFS parameter 

values are −14.86 and 0.54 cm−1 for D and E, respectively [Maurice et al., 2009], which 

also compares well to the experimental values of −14.76 and 1.14 cm−1, respectively 

[Krzystek et al., 2004]. Also, note that the energy difference from the two Kramer’s 

doublet of interest relates to the D and E parameters as follows: 
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Figure 2. Ball-and-stick representation of the [Co(PPh3)2Cl2] complex and its main 

magnetic axes [Maurice et al., 2009]. All the hydrogen atoms are omitted for clarity. 

 

In both  nickel(II) and cobalt(II) examples described above, the computational 

methodology was based on SA-CASSCF calculations with quite large active spaces, small 

sets of SOF states (4T and 7Q, respectively), and CASPT2 correlated energies [Maurice et 

al., 2009]. As a recommendation, one may note that enlarging the set of SOF states does 

not systematically improve the results: on the one hand more SOC excitations are 

accounted for, on the other hand averaging artefacts are introduced, which may result 

for instance in a poor orbital set for describing the ground state. Therefore, one should 

make the compromise of describing as best as possible the stronger SOC interactions, i.e. 

balance between the number of possible excitations and the accurate description of the 

involved states. As a conclusion concerning the ab initio methodology, one may say that 

c-SOCI methods do not constitute a “black-box machinery” to compute ZFSs. 

 

II.2.b. S=2 and S=5/2 systems 

 

For S=2 and S=5/2 complexes, additional operators must be introduced in the model 

Hamiltonian to achieve a complete description of the ZFS: 
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where q may be odd, and where the    
  operators are extended Stevens operators 

[Stevens, 1952; Altshuler and Kozyrev, 1974; Abragam and Bleaney, 1986; Rudowicz and 

Chung, 2004]. This Hamiltonian is valid in any arbitrary axis frame for S=2 and S=5/2 

complexes. When the ground SOF state is well separated in energy from the excited 

states, the fourth-rank spin    
  operators have a very small effect on the effective 

interactions of the model       . Therefore, one can first find the main anisotropy axes 

by extracting    from the comparison of the effective interaction matrix and the 

analytical one that is obtained with       , and then compute the effective interaction 

matrix in this frame  after a second c-SOCI calculation. In this case, the model 

Hamiltonian reduces to: 

 

           
 

 

   

 

   

   
  

 

where k and n must be even, and the    
  operators are standard Stevens operators. Note 

that   
      and that   

   , i.e. that   
  is a second-rank axial ZFS parameter, while 

  
  is a rhombic one. As shown elsewhere, this two-step procedure leads to the 

unambiguous extraction of the main magnetic axes and of the five   
  parameters (  

 , 

  
 ,   

 ,   
 , and   

 ) [Maurice et al., 2010a]. Indeed, in the magnetic axis frame, the 

effective interaction matrix is in almost perfect correspondence with the analytical one 

derived for        with only some negligible deviations, typically not larger than 0.01 

cm−1. These deviations can be considered as numerical noise, and do not significantly 

alter the extracted   
  values. Note that if one wants to neglect the   

  parameters, i.e. 

introduce only second-rank spin operators in the model Hamiltonian, as in       , it is 

important to check a priori that the k=4 terms are not important to insure that the 

model and effective interaction matrices match. As will be discussed in section III.2, the 

fourth-rank Stevens parameters relate to the near-degeneracy of spin-components of 

different SOF states. Therefore, one should not neglect them in such situations, as for 

instance in nearly-octahedral manganese(III) complexes [Maurice et al., 2010a]. Note 

that however, the Jahn-Teller effect tends to largely remove the near-degeneracy 
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between the two lowest orbital configurations in this case, which explains for instance 

why the   
  parameters are not crucial to describe the ZFS in the [γ-Mn(acac)3] 

(acac=acetylacetonato) complex (see Figure 3) [Maurice, 2011], for which the first 

coordination sphere is tetragonally elongated.  

 

Figure 3. Ball-and-stick representation of the [γ-Mn(acac)3]  complex and its main 

magnetic axes [Maurice, 2011]. All the hydrogen atoms are omitted for clarity. 

 

In many cases of experimental interest,        is perfectly suited to describe the ZFS of 

S=2 and S=5/2 complexes.  

 

II.2. Binuclear Complexes 

 

Prior to introducing the model Hamiltonians that can be used to describe the ZFS in 

binuclear complexes, it is worth introducing the HDV Hamiltonian [Heisenberg, 1928; 

Dirac, 1929; Van Vleck, 1945], which may be expressed in a “multispin” picture, i.e. by 

considering local spin operators that are to be applied within the basis of local spin 

components, i.e. within the uncoupled spin basis: 

 

     
                   

 

where   is the isotropic coupling constant, and     and     are spin operator column 

vectors. Note that various expressions coexist in the literature, depending of a factor 
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that is applied to this Hamiltonian (here 1, but one may find −1 or more often −2). It can 

easily be shown that        can be also written in terms of spin operators that lead to a 

diagonal analytical interaction matrix if one works within the basis of spin 

eigenfunctions, i.e. within the coupled spin basis: 

 

     
        

 

 
         

 

 

    
   

 

where S ranges between |Sa−Sb| and Sa+Sb,    is the spin operator associated to each 

coupled spin state,  and Sa and Sb are the local spins on the a and b sites. Therefore, it is 

clear that       splits the coupled spin states, which may further be the subject of ZFS 

and mixings when anisotropic effective interactions are considered in the model 

Hamiltonian. Such ZFSs and “spin mixings” can be effectively described in two different 

ways that work in the coupled and uncoupled basis, respectively, and which are 

classified as “giant-spin” or “block-spin” models, and “multispin” ones. 

 

II.2.a. Giant-spin and block-spin Hamiltonians 

 

If the isotropic coupling constant plays a much more important role on the effective 

interaction matrix than the spin mixings, which is usually referred to as the “strong-

exchange limit” [Boča, 1999], very simple models can be used to describe the low-

energy spectrum. If only one spin “block” has to be described and that its magnetic axis 

frame is considered, one can use a very simple giant-spin Hamiltonian that is similar to 

      : 

 

            
            

 

 

   

 

   

   
  

 

where x=2S if S is even or x=2S−1 if S is odd, and k and n are even.  

The simplest case  is the ZFS of an S=1 spin state  resulting from the coupling of two local 

spins Sa=Sb=1/2. One typical example of such a situation is copper acetate monohydrate 

(see Figure 4) [Maurice et al., 2011a].  
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Figure 4. Ball-and-stick representation of copper acetate monohydrate [Maurice et al., 

2011a]. 

 

In this system, it is crucial to account for both SOC and SSC to compute the ZFS of the 

excited 3A1u SOF state. As shown by Maurice et al [Maurice et al., 2011a], the treatment 

of SOC requires a special attention  to the correlated energies appearing on the diagonal 

elements of the                    matrix (see Table 3). The reference wave 

functions were obtained with SA-CASSCF(18/10) calculations (see [Maurice et al., 

2011a] for more details). As can be seen in Table 3, second-order perturbation theory 

does not describe sufficiently well the SOF excitation energies, as well as variational 

approaches with limited configuration interaction spaces (the DDCI1 calculations 

include in this case only the 1h and 1p excitations, while the DDCI2 ones also account for 

the 1h1p, 2h, and 2p excitations). Although the DCCI2 level appears to lead to an almost 

converged value of D when only       is considered, it is essentially due to error 

cancellations (more details are given on this in [Maurice et al., 2011a]). The best value, 

obtained with the DDCI3 energies, is in exceptional agreement with experiment 

(Dexpt.=−0.335 cm−1 [Ozarowski, 2008]). The rhombic E parameter value is very small, 

0.006 cm−1 with the DDCI3 energies (in good agreement with Eexpt.=0.01 cm-1), and will 

not be discussed in details here. 
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Table 3. Computed axial ZFS D parameters as a function of the correlated energies used 

on the diagonal of the contracted configuration interaction matrices, and of the 

operators introduced in the Hamiltonian [Maurice et al., 2011a]. 

Eel                         

SA-CASSCF −0.017 −0.118 −0.137 

NEVPT2 −0.026 −0.118 −0.144 

DDCI1   0.005 −0.118 −0.115 

DDCI2 −0.172 −0.118 −0.291 

DDCI3 −0.200 −0.118 −0.319 

 

One should stress that in this particular case, i.e. the d9-d9 configuration, computing the 

ZFS of the triplet block happened to be particularly challenging, but it may not be the 

case for other configurations. Another system that has been studied within the giant-

spin approach is the [Ni2(en)4Cl2]2+ (en=ethylenediamine) complex (see Figure 5) 

[Maurice et al., 2010b; Maurice et al., 2010c]. Although this system does  not fall within 

the strong-exchange limit, it is possible to build two effective Hamiltonians in the basis 

of the spin components of the S=2, S=1 and S=0 spin components, one in which spin 

mixings are set to zero, and one in which these spin mixings are allowed [Maurice et al., 

2010c; Maurice, 2011]. From this theoretical study, it was shown that, in the magnetic 

axis frame,             
        can describe the ZFS of both the S=2 and S=1 blocks in the absence 

of spin mixing, and that the spin mixings can be described using additional operators 

[Maurice et al., 2010c] (in this case, due to a symmetry centre, the spin mixings concern 

the S=0 and some S=2 spin components). In other words, one can define a block spin 

Hamiltonian which describes the isotropic coupling and the ZFSs of the different blocks 

in the absence of spin mixing, and the spin-mixing effects can actually be introduced 

inside the different spin blocks, i.e. one can use a block-diagonal analytical interaction 

matrix to describe the entire low-energy spectrum [Maurice, 2011]. The comparison 

with experimental data is complicated since all the studies reported so far neglected 

some, and usually different, effective interactions in the model Hamiltonians [Ginsberg et 

al., 1972; Journaux et al., 1978; Joung et al., 1979; Herchel et al., 2007]. One can just 

mention that the best computed value for D2, i.e. the axial ZFS parameter of the S=2 

block, is in good semi-quantitative agreement with the experimental one [Herchel et al., 

2007] (−3.0 vs. −1.8 cm−1, respectively). 
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Figure 5. Ball-and-stick representation of the [Ni2(en)4Cl2]2+  complex and its S=2 block  

main magnetic axes. All the hydrogen atoms are omitted for clarity. 

 

 

Another study of the d8-d8 configuration, related to the strong-exchange limit, concerned 

model complexes [Ruamps et al., 2014]. It was shown that, contrary to what is often 

proposed, no simple relations appear between the ZFS parameters of the S=2 and S=1 

blocks, which can also be analysed within a multispin picture (vide infra). Also, it is clear 

that giant-spin and block-spin Hamiltonians may not be relevant in the weak-exchange 

limit, i.e. when J becomes negligible, since spin mixings cannot be considered as a 

perturbation in such a case. In principle, one should in this case consider a multispin 

model, the extraction of which is far from being straightforward, as will be shown later. 

 

II.2.b. Multispin Hamiltonians 

 

As in section II.1, we will introduce progressively the complexity of the multispin 

Hamiltonian in binuclear complexes. Let us start with the easiest case of two coupled 

S=1/2 centres, as  in the d9-d9 configurations for instance. The model Hamiltonian which 
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is commonly used includes an isotropic coupling terms (     ) plus an anisotropy tensor 

[Khan, 1993]: 

 

                      
                                                      

          

 

where      is a second-rank tensor that is neither symmetric nor antisymmetric in the 

general case,      is the symmetric anisotropy exchange tensor, and   
   is the 

Dzyaloshinskii-Moriya term [Dzyaloshinskii, 1958; Moriya, 1960], that can also be 

referred to as the antisymmetric exchange pseudo-vector. As mentioned earlier, 

computing      may turn into a real nightmare [Maurice et al., 2011a], but the semi-

quantitative determination of   
   is much less demanding, since it can be obtained from 

CASSCF(2/2) + c-SOCI calculations [Maurice et al., 2010d; Pradipto et al., 2012]. The 

analytical interaction matrix built in the uncoupled basis is represented in Table 4. 

 

Table 4. Analytical interaction matrix corresponding to            
          when Sa=Sb=1/2 

[Maurice et al., 2010d]. A shortened notation     

      
   is used for the    

      
       

  

uncoupled functions. X, Y and Z correspond to the Cartesian axes of an arbitrary axis 

frame. 

           
         

                                                     

              
 

 
         

 

 
            

 

 
           

 

 
        

             

              
 

 
            

 

 
        

 

 
           

             

 

 
           

              
 

 
           

 

 
           

             

 
 

 
        

 

 
           

            

 

 
        

             

 

 
           

 

 
           

 

 
        

 

One can also express this analytical interaction matrix with the      tensor and the   
   

pseudo vector by using the Dii = Tii, Dij = 1/2(Tij+Tji), dX = 1/2(TYZ−TZY), dY = 1/2(TZX−TXZ), 
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and dZ = 1/2(TXY−TYX) relations [Maurice et al., 2010d]. The analytical interaction matrix 

can be transformed into the coupled basis as follows: 

 

           
                     

           

 

where    is the transpose of the change of basis matrix U. The matrix elements of U are 

given by the appropriate Clebsch-Gordan coefficients [Boča, 1999]. When             is 

expressed in the coupled basis, the      tensor relates to the splitting and mixing of the 

S=1 block (i.e. its ZFS in the strong-exchange limit), while the   
   pseudo-vector 

introduces spin-mixings between the S=1 spin components and the S=0 one. This type of 

S/S+1 spin mixing is not always symmetry allowed (the symmetry rules are available 

elsewhere [Buckingham et al., 1982]). One may just recall that if the system contains a 

symmetry centre, as it is the case for copper acetate monohydrate, the   
   pseudo-

vector is null [Moriya, 1960]. Therefore, in this system, as in any other d9-d9 binuclear 

system, a simple relation appears between     and      [Maurice et al., 2011a]: 

 

    
 

 
     

 

By studying model copper(II)-copper(II) complexes, Maurice et al. showed that 

            is perfectly valid to describe the isotropic coupling and the ZFSs when 

Sa=Sb=1/2 [Maurice et al., 2010d]. Owing to the effective Hamiltonian theory, all the 

model parameter values can be theoretically extracted, while it appears complicated to 

properly distinguish between the symmetric and antisymmetric exchange terms from 

the outcomes of experiments. Moreover, since one can obtain good semi-quantitative 

estimates of the   
   pseudo-vector components from CASSCF(2/2) + c-SOCI calculations 

[Maurice et al., 2010d; Pradipto et al., 2012], antisymmetric exchange is essentially due 

to the direct SOC between the S=1 and S=0 spin components. 

When Sa=1 and Sb=1/2, another term must be added to the phenomenological model 

Hamiltonian, related to the single-ion anisotropy of site a [Khan, 1993]: 

 

                        
                                            

          

 



 25 

In this case, both the     and      symmetric tensors affect the S=3/2 block, while   
   

relates to the S/S+1 spin mixings, as usual.  

The situation is drastically complicated when considering the Sa=Sb=1 case, e.g. 

nickel(II)-nickel(II) complexes. The following model Hamiltonian was used for decades 

to interpret experimental data [Ginsberg et al., 1972; Journaux et al., 1978; Joung et al., 

1979; Herchel et al., 2007]: 

 

                    
                                                      

          

 

The validity of this model Hamiltonian was assessed by c-SOCI calculations and the 

effective Hamiltonian theory in 2010 by Maurice et al. [Maurice et al., 2010b]. It was 

shown that many terms of the effective interaction matrix which were obtained for the 

[Ni2(en)4Cl2]2+  complex were not associated to any model parameter in the analytical 

interaction matrix. In order to reproduce all features of the effective Hamiltonian matrix 

one must actually introduce a symmetric fourth-rank exchange tensor,      , in the 

model Hamiltonian, leading to: 

 

                    
                                                                        

 

if   
   is null.  The extraction of the       components is not straightforward even with 

all information contained in the 9x9 effective interaction matrix; one should thus 

consider relations between these components, as done in a study of model complexes 

[Ruamps et al., 2014]. One should thus stress that the spin mixings between the S=2 and 

S=0 spin components, mentioned in section II.2.a can be interpreted in terms of the 

parameters of the multispin Hamiltonian after transforming the analytical interaction 

matrix to the coupled basis: these terms actually relates to all symmetric tensors of 

           , i.e.    ,    ,     , and       [Maurice et al., 2010c]. 

Another interesting point which is worth mentioning here is that one may be interested 

in computing only the local anisotropy tensors, i.e.     and    . Various strategies exist, (i) 

one may replace one of the two magnetic centres by a model potential [Maurice et al., 

2010b]or by a diamagnetic ion [Maurice et al., 2010b; Bogdanov et al., 2013, Maurice et al., 

2013a], (ii) one may also consider its lowest-energy closed-shell configuration [Ruamps 
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et al., 2014], (iii) and another method considers local excitations while keeping the other 

site in its lowest-energy open-shell configuration [Retegan et al., 2014]. This last strategy 

is meant to be the most accurate approach. From the study of model complexes, it was 

shown that the local anisotropy parameters that can be obtained in these various ways 

are in very close agreement with those obtained from the extraction of the interactions 

of             [Ruamps et al., 2014]. In conclusion, if one wants to estimate local 

anisotropy parameters or local magnetic axes, these approaches can be safely 

considered. It is also worth mentioning here is that in the general case, the S/S+1 spin 

mixings do not arise solely from   
  : the mismatch between the local magnetic axes of 

the local     and     tensors also affects the effective couplings related to these mixings. 

This can be easily shown by considering Da=Db≠0, Ea=Eb=0, and an angle 2α between 

coplanar local     
  axes. If one builds the correspond model interaction matrix within 

the uncoupled basis, and transforms it to the coupled one, the S/S+1 spin mixing terms 

are found proportional to         (the details of the derivation are not given here for a 

sake of simplicity). It is thus clear that these terms vanish for α=0, as it is the case for 

centrosymmetric complexes. Therefore, the local anisotropy tensors can be affected in 

the general case by the S/S+2 and to S/S+1 spin mixings. Furthermore, note that one 

should also never neglect these terms within the weak-exchange limit, contrary to what 

was done for instance to interpret the low-energy spectrum of a cobalt(II)-cobalt(II) 

complex [Ostrovsky et al., 2002]. From the perspective of modelling, it is not clear yet 

whether the model Hamiltonian used for the Sa=Sb=1 case is directly applicable to any 

other configuration. Actually higher-rank tensors could be necessary to reproduce all 

ZFS features for higher local spins [Maurice et al., 2013b], such as for instance a sixth-

rank tensor in the Sa=Sb=3/2 case. 

 

III. Magneto-structural correlations 

 

Magneto-structural correlations are particularly useful for chemists as they give clues to 

tune the properties of a system and pave the way for the rational design of new 

magnetic systems with predetermined properties. In the field of ZFS, they can be 

established  from correlations of  molecular geometry features with the experimental 

values of the parameters, as was done by Titiš and Boča in nickel(II) and cobalt(II) 

mononuclear complexes [Titiš and Boča, 2010; Titiš and Boča, 2011]. Here, we will only 
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discuss magneto-structural correlations deduced from the analysis of ab initio results, or 

from combined ab initio/crystal-field studies. 

 

III.1. Magneto-structural correlations based on ab initio calculations 

 

Due to the lack of intuition on the role of distortions on the   
   pseudo-vector 

components, Maurice et al. studied the effects of two angular distortions on the DM 

vector components on model [Cu2O(H2O)6]2+ complexes (see Figure 6) [Maurice et al., 

2010d]. This study was based on CASSCF(2/2) + c-SOCI calculations, and made use of 

the effective Hamiltonian theory, as mentioned in section II.2.b.  

 

 

Figure 6. Ball-and-stick representation of model [Cu2O(H2O)6]2+ complexes and the 

deformation angles that were applied to them [Maurice et al., 2010d]. All the hydrogen 

atoms are omitted for clarity. 

 

The norm of the   
   pseudo-vector as a function of the ϑ1 and ϑ2 deformation angles is 

represented in Figure 7.  
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Figure 7. Norm of the   
   pseudo-vector as a function of the ϑ1 and ϑ2 deformation 

angles (see Figure 6 for the definition of these angles) [Maurice et al., 2010d]. 

 

In this study, the only point for which the   
   pseudo-vector is null by symmetry 

corresponds to the ϑ1=ϑ2=0 case, for which the system possesses a symmetry centre. 

Another interesting point refers to ϑ1=π/2 and ϑ2=0. In this case, there is no atomic 

orbital contribution from the copper(II) centres, and as a consequence, the only 

important contribution to this norm comes from the bridging oxygen centre. As the   
   

pseudo-vector is far from being null in this case (   
        cm−1 [Maurice et al., 

2010d]), the (essentially) closed-shell bridging oxygen contributes to the norm of the 

  
   pseudo-vector, as highlighted by Moskvin in 2007 [Moskvin, 2007]. Other studies 

concerning single-ion anisotropies exist in the literature, among which one may quote 

the extensive one of Gomez-Coca et al. [Gomez-Coca et al., 2013], but these will not be 

discussed here. Instead, we will explore the cases of mononuclear complexes for which 

ab initio calculations are  used to extract crystal-field parameters. 

 

III.2. Magneto-structural correlations based on crystal-field models and ab initio 

calculations 

 

Joint ab initio and crystal-field studies are important to validate the equations derived 

from the crystal-field theory and to interpret the outcomes of experiments in a simple 

way. It is commonly practiced on mononuclear complexes, although equations can also 
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be derived in binuclear complexes, as was done for instance in the case of copper acetate 

monohydrate [Maurice et al., 2011a. In this section, we shall illustrate the procedure for 

the d8 and d4 configurations, using ab initio calculations on nearly-octahedral 

[Ni(NCH)6]2+ and [Mn(NCH)6]3+ model complexes. In both cases, we define the axial 

deformation parameter as: 

 

    
         

                 
 

 

and the rhombic deformation as: 

 

    
        

        
 

 

The mean d(TM,N) distance is 2.054 Å and 2.061 Å for TM = Ni [Maurice, 2011] and TM 

= Mn [Maurice et al., 2010a], respectively, while all d(TM,C)  parameters are fixed to 

1.155 Å and all the d(C,H)  ones to 1.083 Å. Minimal CASSCF calculations have been 

carried out with the five d-orbitals and 8 (Ni) or 5 (Mn) electrons within the active 

space. Note that in the formulae that are presented here, monoelectronic   SOC 

constants are considered. These constants are always positive and can be converted into 

polyelectronic λ ones by using the following relation: 

 

   
 

  
 

 

where S is the total spin of the ground SOF free-ion multiplet. 

It is easy to show, as done in the textbook of Abragam and Bleaney [Abragam and 

Bleaney, 1986], that for axially distorted systems: 

 

   
  

  
 

  

  
 

 

where Δ1 is the 3B1g → 
3
B2g excitation energy and    corresponds to the 3B1g → 

3
Eg 

excitation energy. The derivation of this equation is based on a model space containing the 
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spin components of the ground SOF 3B1g state, while the external space consists of the 

spin components of the lowest two excited SOF states, namely 3
B2g and 

3
Eg, which are 

essentially singly-excited states with respect to 3B1g. To check the correlation between the 

ab initio results and the outcomes of the crystal-field model, we substitute the ab initio 

Δ1 and    values in the expression for D, and take the SOC constant of the free Ni2+ ion, 

648 cm−1 (see Table 5). As can be seen, a good correlation appears between the ab initio 

and the crystal-field D values (DCF): the trend line that passes through the origin, as 

forced by symmetry, leads to DCF = 1.320 D with R2 = 0.9969. This shows that accounting 

for covalency effects by applying a reduction factor of 0.87 brings the DCF values in 

perfect agreement with the ab initio ones along the whole curve.  Therefore, the crystal-

field formula presented above is fully supported by c-SOCI calculations that consider the 

spin components of four SOF triplet states. Note that considering more SOF states in the 

first step of the calculation does not significantly improve the computed values, meaning 

that this formula explains most of the ZFS in axially distorted six-coordinate nickel(II) 

complexes. 

 

Table 5. Ab initio Δ1, Δ2 and D values and values of D derived from the crystal-field 

expression (DCF) obtained with   = 648 cm−1 (all values are in cm−1) [Maurice, 2011]. 

    Δ1 Δ2 D DCF 

0.957 8382.4 9692.5 −5.519 −6.855 

0.971 8669.7 9559.4 −3.568 −4.564 

0.985 8964.0 9416.5 −1.736 −2.279 

1.000 9266.9 9266.9 0.000 0.000 

1.015 9576.9 9110.8 1.659 2.271 

1.029 9895.8 8951.8 3.259 4.530 

1.044 10224.0 8791.1 4.814 6.778 

 

In a similar way, one can introduce a rhombic distortion, i.e. an in-plane radial 

distortion. The crystal-field derivation leads to: 
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and: 

 

   
  

   
 

  

   
 

 

where    correlates with the 3B1g → 
3
B2g energy difference in the D4h symmetry point 

group, and where    and    both correlate with the energy of the 3B1g → 
3
Eg excitation in the 

same symmetry point group [Maurice, 2011]. Similarly, it can be shown that these formulae 

are supported by ab initio calculations [Maurice, 2011], corroborating that the outcomes of 

model complex studies which aim at establishing magneto-structural correlation can be safely 

explained by crystal-field models.  

Before presenting the example of nearly-octahedral manganese(III) complexes, it is worth 

mentioning that such derivations are only valid close to ideal geometries of high symmetry, 

since it is assumed that the ground and excited SOF wave functions are either (i) not much 

affected by the distortion or (ii) affected in a way that can be easily modelled. In  general, it is 

always advisable to perform ab initio calculations and to analyze the nature of the SOF wave 

functions of interest. For instance, large angular distortions usually result in a mixing of 

various configurations in such a complex way that pen-and-paper analytical derivations 

become cumbersome. Moreover, even if analytical derivations can be performed, if the 

resulting formulae are too complicated, they become pointless in practice for establishing or 

understanding magneto-structural correlations. In such cases, it is preferable to directly 

establish the correlations by means of ab initio calculations, as presented in section III.1.  

Another interesting point concerns the role of the second coordination sphere. Although this 

effect is traditionally neglected in crystal-field models, it was shown by means of ab initio 

calculations that the second coordination sphere can play a crucial role on the single-ion 

anisotropy in some particular cases [Maurice et al., 2011b; Bogdanov et al., 2013]. 

Nearly-octahedral manganese(III) complexes, corresponding to the d
4
 configuration, are 

particularly interesting as they present non-intuitive ZFSs [Maurice et al., 2010a]. Although 

formulae which rationalize the ZFS of such systems are presented in the book of Abragam 

and Bleaney [Abragam and Bleaney, 1986], this case is often misinterpreted. Ab initio 

calculations showed that the external space cannot be restricted to quintet-spin SOF state 

components. Indeed three triplet-spin roots must also be included in the derivation to obtain 

accurate crystal-field formulae for this configuration [Maurice et al., 2010a]. The use of these 

newly derived expression lead to the energies of the ten spin components of the SOF 
5
E state 
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reported in Table 6. Note that the same wave functions as those obtained by Abragam and 

Bleaney with five quintet roots were obtained [Abragam and Bleaney, 1986]. The trend line 

ECF = 1.034 Eab initio has an R2 value of 0.9992, meaning that (i) the crystal-field formulae 

presented in Table 6 are valid and (ii) a reduced effective SOC constant of 346 cm−1 has 

to be used in the crystal-field model to effectively account for covalency.  

Table 6. Analytical crystal field expressions of the energies, ab initio and derived crystal 

field energies (in cm−1) [Maurice et al., 2010a]. For the computation of the crystal-field 

energies, the free-ion SOC of 352 cm−1 and  ab initio SOF excitation energies of 

ΔQ=13993 cm−1 and ΔT=11005 cm−1 have been used. 

Multiplicity Eanalytical Eab initio ECF 

Singlet  
           

     
 16.813 17.900 

Triplet 
           

     
 8.399 8.950 

Doublet 0 0.000 0.000 

Triplet  
           

     
 −8.890 −8.950 

Singlet   
           

     
 −17.775 −17.900 

 

 

Similarly to the nickel(II) case, one can derive formulae for the D and E parameters of 

Mn(III) complexes which belong to the D4h and D2h symmetry point groups. In this case, 

analytical formulae can also be written down for the parameters appearing in the 

Stevens fourth-rank operators. However, as shown in [Maurice et al., 2010a], one can 

consider various approximations, i.e. neglecting (i) the Stevens fourth-rank terms (large 

distortions) and (ii) the degeneracy lift of the excited SOF multiplets of the octahedral 

situation (3T1g and 5T2g).  For the former approximation, one should note that in the case 

of small distortions, the Stevens fourth-rank terms can be important as they are closely 

related to the near-degeneracy of the states that originate from the 5Eg of the octahedron 

[Maurice et al., 2010a]. In the D2h symmetry point group, two configurations mix to form 
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the two lowest SOF states [Abragam and Bleaney, 1986]. It is therefore necessary to 

introduce a mixing parameter δ to express these states as: 

 

                             

 

and: 

 

                              

 

where,    and    are the two coupled configurations. This leads, after some pen-and-paper 

work, to [Maurice et al., 2010a]: 

 

          
 

    
 

 

   
  

 

and: 

            
 

    
 

 

   
  

 

where E is defined positive by convention. The careful reader will notice that, as in the 

octahedral situation, the contribution of the triplet roots which were added in this derivation is 

proportional to the effect of the quintet roots that correlate with 
5
T2g in the octahedron. 

Finally, we end up with the same formula as the one reported in the book of Abragam and 

Bleaney [Abragam and Bleaney, 1986]: 

 

 

   
 

  

 
        

 

To conclude, one should mention that the anisotropy parameters are not enlarged by 

distorting the first coordination sphere in this configuration, as illustrated by Figure 8 in 

the case of axial distortions. The ZFS of complexes belonging to this configuration is non-

intuitive and the combined ab initio and crystal field model study has proved to be 

enlightening for experimental applications. Indeed, in this configuration, it is pointless to 

synthesize complexes with large distortions to enlarge the ZFS parameters, which is 
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notably consistent with the empirical fact that d4 complexes typically have axial ZFS 

parameter values ranging between −5 and 5 cm−1 [Boča, 2004]. 

 

 

Figure 8. Ab initio D parameter as a function of the axial distortion in model D4h 

manganese(III) complexes [Maurice et al., 2010a]. 

 

Conclusion 

 

In this chapter, we have shown that phenomenological Hamiltonians can be justified or 

even improved using the effective Hamiltonian theory; this creates a bridge between 

(supposedly) accurate ab initio calculations and intuitive models. We have also 

exemplified how the crystal-field theory can be used to rationalize the nature and 

magnitude of ZFS. These tools allow us to take another step in the direction of the 

control of magnetic properties as they provide concrete understanding of how to 

increase the magnetic anisotropy. Magneto-structural correlations have also been 

established, which may help to design molecules with desired properties. To maximize 

single-ion anisotropies, researchers followed strategies such as exploring exotic 

coordination spheres (for instance pentacoordinate or heptacoordinate complexes), and 

even low-coordination spheres. Several efforts have been devoted to binuclear and 

polynuclear systems, more often concerning single-ion anisotropies, but also concerning 

giant-spin and multispin models. Consequently, substantial progress has been made in 

D
 (

c
m

-1
)

Compressed Elongatedτax
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the understanding of the the magnitude and nature of the magnetic anisotropy in TM 

complexes with a wide range of ZFS parameter values over the last two decades. 

Nevertheless, many aspects deserve further studies. For instance, the treatment of large 

systems is still problematic as (i) it is not clear which method can be used to obtain an 

optimal balance between accuracy and efficiency, and (ii) current models to describe 

polynuclear complexes may not be complete. Indeed, even in the case of mononuclear 

complexes, some cases are typically pathological, e.g. when heavy atom ligands are 

involved. In this situation, it is not clear yet if sum-over-states or c-SOCI approaches can 

be safely applied to the computation of the ZFS due to the truncation and state-

averaging errors [Maurice, 2011]. One may thus prefer to introduce the spin-dependent 

effects a priori, as done within 2c frameworks. Also, some experimental data may have 

been incorrectly interpreted due to the use of inadequate models to fit the experimental 

outcomes of various techniques (magnetic susceptibility, magnetization, EPR, etc.). 

Therefore, there is clearly a need for more extensive studies and developments in the 

field of molecular magnetism. We hope that this chapter will motivate future work of 

this kind. 
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