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Introduction

In the Standard Model (SM) of particle physics, the interactions between electroweak gauge bosons are described by the non-Abelian S U(2) × U(1) structure of the electroweak sector. Measurement of the strengths of the trilinear (VVV, where V = γ, W, or Z) and quartic (VVVV) gauge couplings represent an important test of the SM, as deviations from SM predictions would indicate new physics. The discovery of a Higgs boson [START_REF] Cao | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF][START_REF]Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[END_REF] at the Large Hadron Collider (LHC) has taken a major step toward confirming the mechanism of electroweak symmetry breaking. Anomalous quartic gauge couplings (aQGCs) provide a window to further probe possible new physics extensions of electroweak theory. Exclusive production of W boson pairs, pp(γγ) → pW + W -p, provides an opportunity to study γγ → W + W -aQGC couplings [START_REF] Belanger | γγ → WW and γγ → ZZ as tests of novel quartic couplings[END_REF][START_REF] Chapon | Anomalous quartic WWγγ, ZZγγ, and trilinear WWγ couplings in two-photon processes at high luminosity at the LHC[END_REF].

In pp collisions, exclusive W + W -events are produced when each proton emits a photon and the two photons annihilate, either via t-and u-channel W-exchange diagrams involving trilinear gauge couplings or via quartic gauge coupling diagram, to create a W + W -pair. Figure 1 shows the exclusive production of a W + W -pair, where the blobs represent the t-channel, u-channel, and quartic diagrams. After the collisions, either both protons remain intact as shown in Fig. 1(a) (referred to as elastic hereafter), only one proton remains intact as in Fig. 1(b) (single-dissociation, SD), or both protons dissociate as in Fig. 1(c) (double-dissociation, DD). In all three cases the trajectories of the protons or their remnants deviate only slightly from their initial directions so that they never enter the acceptance of the ATLAS detector. On the other hand, inclusive processes are produced with accompanying activity such as initial-and final-state radiation and additional scattering in the same pp collision. The accompanying activity is collectively called the underlying event and emits particles into the acceptance of the ATLAS detector.

Photon scattering in hadron colliders can be described in quantum electrodynamics (QED) by the equivalentphoton approximation (EPA) [START_REF] Chen | Lepton pair production from two-photon processes[END_REF][START_REF] Budnev | The process pp → γγ; pp → e + eand the possibility of its calculation by means of quantum electrodynamics only[END_REF]. In this framework the exclusive W + W -cross-section can be written as σ EPA pp(γγ)→ppW

+ W -= f (x 1 ) f (x 2 )σ γγ→W + W -(m 2 γγ )dx 1 dx 2 , (1) 
where f (x i ), for i ∈ {1, 2}, is the number of equivalent photons carrying a fraction of the proton's energy, x i , that are emitted, while m γγ is the two-photon center-of-mass energy. This approach has been used to describe similar exclusive processes in the CDF [START_REF] Abulencia | Observation of exclusive electron-positron production in hadron-hadron collisions[END_REF], STAR [START_REF] Adams | Production of e + epairs accompanied by nuclear dissociation in ultra-peripheral heavy ion collisions[END_REF], and CMS [START_REF]Exclusive γγ → µ + µproduction in proton-proton collisions at √ s = 7 TeV[END_REF][START_REF]Search for exclusive or semi-exclusive γγ production and observation of exclusive and semi-exclusive e + eproduction in pp collisions at √ s = 7 TeV[END_REF] experiments.

Exclusive W + W -pair production is particularly sensitive to new physics that may be described by anomalous quartic gauge coupling (aQGC) of the form WWγγ [START_REF] Chapon | Anomalous quartic WWγγ, ZZγγ, and trilinear WWγ couplings in two-photon processes at high luminosity at the LHC[END_REF][START_REF] Kepka | Anomalous WWγ coupling in photon-induced processes using forward detectors at the LHC[END_REF]. The dimension-6 operators in Ref. [START_REF] Belanger | γγ → WW and γγ → ZZ as tests of novel quartic couplings[END_REF] are the lowest-dimension operators that give rise to anomalous WWγγ couplings, a W 0 /Λ 2 and a W C /Λ 2 where Λ is the scale of new physics. A procedure adopted by previous measurements [START_REF] Adams | Constraints on anomalous quartic gauge boson couplings from ννγγ and q qγγ events at CERN LEP2[END_REF][START_REF] Abazov | Search for anomalous quartic WWγγ couplings in dielectron and missing energy final states in p p collisions at √ s = 1.96 TeV[END_REF][START_REF]Evidence for exclusive gamma-gamma to W+ W-production and constraints on anomalous quartic gauge couplings at sqrt(s) = 7 and 8 TeV[END_REF] uses a dipole form factor to preserve unitarity at high m γγ . The couplings a W 0 /Λ 2 and a W C /Λ 2 then become:

a W 0,C /Λ 2 → a W 0,C Λ 2 1 1 + m 2 γγ Λ 2 cutoff 2 (2) 
where Λ cutoff defines the scale of possible new physics, and the term containing it ensures that unitarity is preserved.

Anomalous triple gauge couplings (aTGCs) could also produce similar effects but the sensitivity of this study to aTGCs is not competitive compared with other processes [START_REF] Chapon | Anomalous quartic WWγγ, ZZγγ, and trilinear WWγ couplings in two-photon processes at high luminosity at the LHC[END_REF], so these are taken to be zero.

More recent parameterizations of aQGCs are of dimension 8. The parameterization of the dimension-8 couplings, f M,0,1,2,3 /Λ 4 , in Ref. [START_REF] Degrande | Monte Carlo tools for studies of non-standard electroweak gauge boson interactions in multi-boson processes: A Snowmass White Paper[END_REF] are linearly related to the a W 0,C /Λ2 as follows:

f M,0 Λ 4 = a W 0 Λ 2 1 g 2 ν 2 , f M,1 Λ 4 = - a W C Λ 2 1 g 2 ν 2 , (3) 
where g = e/ sin(θ W ) and ν is the Higgs boson vacuum expectation value. Also, with this parameterization, f M,2 = 2 × f M,0 and f M,3 = 2 × f M,1 .

In addition to the discovery of the Higgs boson, several of its properties -such as mass, coupling strengths to various final-state particles, and branching ratios of its decay -have been determined [START_REF] Cao | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF][START_REF]Study of (W/Z)H production and Higgs boson couplings using H → WW * decays with the ATLAS detector[END_REF] using Higgs boson candidates from inclusive production. Higgs boson candidates from the exclusive production (pp → pggp → pH p) would have lower systematic uncertainties due to their cleaner production environment [START_REF] Heinemeyer | Studying the MSSM Higgs sector by forward proton tagging at the LHC[END_REF][START_REF] Cox | Detecting Higgs bosons in the b b decay channel using forward proton tagging at the LHC[END_REF][START_REF] Tasevsky | Review of Central Exclusive Production of the Higgs Boson Beyond the Standard Model[END_REF][START_REF] Cox | Detecting the standard model Higgs boson in the WW decay channel using forward proton tagging at the LHC[END_REF]. Since measurements using these Higgs boson candidates would have better precision, they could be used to improve knowledge of the Higgs boson sector. It is therefore interesting to determine the cross-section for exclusive Higgs boson production and examine the feasibility of using exclusive Higgs boson candidates for Higgs boson property measurements. This interest is reflected in the inclusion of the exclusive Higgs boson process studies as part of the physics program of forward proton-tagging detectors [START_REF] Royon | The AFP and CT-PPS projects[END_REF][START_REF] Adamczyk | Technical Design Report for the ATLAS Forward Proton Detector[END_REF][START_REF] Berardi | Total cross-section, elastic scattering and diffraction dissociation at the Large Hadron Collider at CERN : TOTEM Technical Design Report[END_REF] that extend the ATLAS and CMS coverage for LHC runs at 13 TeV.

Unlike exclusive W + W -production, exclusive Higgs boson production proceeds through a quantum chromodynamics (QCD) process involving at least three gluons as shown in Fig. 2. Two gluons from the colliding protons interact through a top-quark loop to produce a Higgs boson while additional gluon exchange between the colliding protons keeps the protons color-neutral and allows the protons to remain intact after the collision. The proton trajectories deviate slightly after the collision. One W boson from Higgs boson decays must be off shell so the event selection for that study needs to be different than the exclusive W + W -event selection, and the samples are largely orthogonal.

P 1 P 2 x 1 x ′ 1 x ′ 2
x 2

H t

Figure 2: The lowest-order Feynman diagram for the exclusive Higgs boson production. The variables x 1 and x 2 are the fractions of the momenta carried by the gluons that contribute to the production of the Higgs boson, with respect to the momenta of the protons P 1 and P 2 . The variables x 1 , and x 2 , on the other hand, are the fractions of the momentum carried by the exchanged third gluon with respect to the momenta of the protons P 1 and P 2 .

The exclusive Higgs boson production cross-section can be written as [START_REF] Khoze | Prospects for new physics observations in diffractive processes at the LHC and Tevatron[END_REF] 

σ pp(gg)→ppH ∝ σ(gg → H) dQ 2 t Q 4 t f g (x 1 , x 1 , Q 2 t ) f g (x 2 , x 2 , Q 2 t )
contribute to the production of the Higgs boson, with respect to the momenta of the protons P 1 and P 2 .

The variables x 1 and x 2 are the fractions of the momentum carried by the exchanged third gluon with respect to the momenta of the protons P 1 and P 2 as shown in Fig. 2. These gluon densities are integrated over the exchanged (third) gluon transverse momentum Q t . This formalism, used in several theoretical calculations, predicts cross-sections that vary by over an order of magnitude [START_REF] Khoze | Prospects for new physics observations in diffractive processes at the LHC and Tevatron[END_REF][START_REF] Cudell | Central exclusive production of dijets at hadronic colliders[END_REF]. This wide disparity in predictions is an additional motivation for this measurement. While either proton could dissociate, the predictions presented here are for elastic production only and could underestimate the cross-section by an order of magnitude [START_REF] Khoze | Prospects for new physics observations in diffractive processes at the LHC and Tevatron[END_REF].

This paper describes searches for exclusive W + W -and H → W + W -production using e ± µ ∓ final states.

Events where a W boson decays to a τ lepton that subsequently decays to an electron or muon are also included. This final state is denoted eµX, where X represents the neutrinos. Section 2 describes the experimental setup. Section 3 describes the dataset and simulation tools used to model signal and background processes. Initial selection of electron, muon, jet and track candidates is discussed in Section 4. Section 5 introduces a new approach to separate exclusive from inclusive production processes. Section 6 describes the event selections including signal regions for both the exclusive W + W -and Higgs boson processes. Section 7 outlines studies of the exclusive event selection and underlying-event models using samples of same-flavor opposite-sign lepton pairs in pγγp → p + -p candidates ( = µ or e) to validate modeling and selection criteria. In Section 8, data control regions designed to test and correct physics and detector modeling are described. Systematic uncertainties are summarized in Section 9 and the results of the study are described in detail in Section 10. Section 11 summarizes the findings.

The ATLAS detector

ATLAS [27] is a multipurpose cylindrical detector1 that consists of an inner detector surrounded by a superconducting solenoid, a calorimeter system, and a muon spectrometer that includes superconducting toroidal magnets. The inner detector system consists of three subsystems: a pixel detector, a silicon microstrip detector, and a transition radiation tracker. Immersed in a 2 T magnetic field provided by the superconducting solenoid, these three subsystems enable the inner detector to accurately reconstruct the trajectories of charged particles in a pseudorapidity range |η| < 2.5 and measure their momenta and charges. The inner detector is surrounded by high-granularity lead/liquid-argon (LAr) sampling electromagnetic calorimeters covering the pseudorapidity range |η| < 3.2. A steel/scintillator tile calorimeter provides hadronic energy measurements in the pseudorapidity region |η| < 1.7. In the regions 1.5 < |η| < 4.9 the hadronic energy measurements are provided by two endcap LAr calorimeters using copper or tungsten as absorbers. The calorimeters are surrounded by a muon spectrometer that provides muon tracking beyond the calorimeters in the range |η| < 2.7, and improves muon momentum resolution, charge measurements, and identification including triggering.

Events are selected using a three-level trigger system [START_REF]Performance of the ATLAS Trigger System in 2010[END_REF]. A hardware-based Level-1 trigger uses a subset of detector information to reduce the event rate to 75 kHz or less. The rate of accepted events is then reduced to about 400 Hz by two software-based trigger levels, Level-2 and the Event Filter. These events are then stored for later offline reconstruction and analysis.

Data and simulated event samples

This analysis uses a data set of pp collisions collected at a center-of-mass energy √ s = 8 TeV during 2012 under stable beam conditions. After applying data quality requirements, the data set has a total integrated luminosity of 20.2 ± 0.4 fb -1 [START_REF]Luminosity Determination in pp Collisions at √ s = 8 TeV using the ATLAS Detector at the LHC[END_REF].

The exclusive SM γγ → W + W -signal sample is generated using the Herwig++ [START_REF] Bahr | Herwig++ Physics and Manual[END_REF] Monte Carlo (MC) generator, while γγ → W + W -signal samples with both the SM and non-SM aQGC predictions are generated by FPMC [START_REF] Boonekamp | FPMC: a generator for forward physics[END_REF]. These two generators use the EPA formalism with a standard dipole parameterization [START_REF] Budnev | The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation[END_REF] of the proton electromagnetic form factors to produce an equivalent photon flux in pp collisions. FPMC is used in these studies to generate pp → pggp → pH p events. None of these exclusive W + W - and Higgs boson generators support the case where one or both of the initial protons dissociate.

Produced via a mechanism similar to that for the exclusive W + W -signal, exclusive τ + τ -production is an irreducible background when the two τ leptons decay to an e ± µ ∓ final state. Elastic γγ → τ + τ -, γγ → µ + µ -and γγ → e + e -backgrounds are generated using Herwig++. Single-and double-dissociative γγ → µ + µ -and γγ → e + e -backgrounds are produced using LPAIR 4.0 [START_REF] Vermaseren | Two-photon processes at very high energies[END_REF], while Pythia 8 [START_REF] Sjöstrand | A Brief Introduction to PYTHIA 8.1[END_REF] is used to produce single-dissociative γγ → τ + τ -candidates. Double-dissociative γγ → τ + τ -samples are not available but their contribution is small. This paper refers to the τ processes described in this paragraph as the exclusive background. In the exclusive Higgs boson search, exclusive W + W -production is an additional background.

Inclusive W + W -production is a dominant background and has similar final states to the signal process, except that it is usually accompanied by additional charged particles from the underlying event. The inclusive W + W -background is the sum of nonresonant q q → W + W -events, gg → W + W -events from nonresonant direct production, and resonant production and decay of the 125 GeV Higgs boson. The q q → W + W -and H → W + W -samples are generated using the Powheg-Box [START_REF] Alioli | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX[END_REF][36][START_REF] Nason | A New method for combining NLO QCD with shower Monte Carlo algorithms[END_REF][START_REF] Frixione | Matching NLO QCD computations with Parton Shower simulations: the POWHEG method[END_REF][START_REF] Alioli | NLO vector-boson production matched with shower in POWHEG[END_REF] generator (hereafter referred to as Powheg) interfaced to Pythia8 (Powheg+Pythia8) for parton showering, hadronization, and underlying-event simulation. The AU2 [START_REF]Summary of ATLAS Pythia 8 tunes[END_REF] parameter set ("tune") is used for the underlying event. For the nonresonant gg → W + W -sample, the gg2ww [START_REF] Binoth | Gluon-induced W-boson pair production at the LHC[END_REF] program is used and the showering, hadronization, and underlying event are simulated using Herwig [START_REF] Corcella | HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes)[END_REF] and Jimmy [START_REF] Butterworth | Multiparton interactions in photoproduction at HERA[END_REF], with the AUET2 [START_REF]ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11[END_REF] tune. The CT10 PDF set [START_REF] Lai | New parton distributions for collider physics[END_REF] is employed for all of these samples. The contribution from vector-boson fusion production of W + W -events, generated with Sherpa [START_REF] Gleisberg | Event generation with SHERPA 1.1[END_REF] with CT10 PDFs, is also included. In all regions of phase space, a normalization factor of 1.2 is applied to inclusive W + W -background as a correction to the cross-section as described in Section 8.3.

Other backgrounds such as W/Z+jets are easier to reject than inclusive W + W -production, because, in addition to being produced with extra charged particles, their final state topologies are also different. However, their contribution is non-negligible due to their several orders of magnitude higher cross-section. Both W/Z+jets processes are modeled with Alpgen [START_REF] Mangano | ALPGEN, a generator for hard multiparton processes in hadronic collisions[END_REF] interfaced to Pythia6 [START_REF] Sjöstrand | PYTHIA 6.4 Physics and Manual[END_REF] (Alpgen+Pythia6) using the CTEQ6L1 PDF set [START_REF] Pumplin | New generation of parton distributions with uncertainties from global QCD analysis[END_REF] and Perugia 2011C [START_REF] Skands | Tuning Monte Carlo Generators: The Perugia Tunes[END_REF] tune. Diboson processes such as WZ and ZZ2 are also sources of background if exactly two charged lepton candidates are reconstructed and identified. The WZ and ZZ samples are generated using Powheg+Pythia8 [START_REF] Melia | W + W -, WZ and ZZ production in the POWHEG BOX[END_REF] with the AU2 tune and the CT10 PDF set. Other diboson processes (Wγ and Zγ) are also considered, but their contributions are found to be negligible. The Powheg generator interfaced to Pythia6 with the CT10 PDF set is used to simulate t t background. Single-top-quark production through the t-channel is modeled with AcerMC [START_REF] Kersevan | The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1[END_REF] interfaced to Pythia6 with the CTEQ6L1 PDF set, while s-channel and Wt single-top-quark backgrounds are simulated using MC@NLO [START_REF] Frixione | NLO QCD corrections in Herwig++ with MC@NLO[END_REF] interfaced to Herwig and Jimmy with the CT10 PDF set and AUET2 tune. The underlying event AUET2B [START_REF]ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11[END_REF] tune is employed for the t t and t-channel single-top-quark backgrounds. A summary of the processes and simulation tools used in this paper are given in Table 1.

The same background samples are used for the exclusive Higgs boson search, except for Z+jets, which is modeled with Alpgen interfaced to Herwig and Jimmy (Alpgen+Herwig) and top-quark background whose contribution to the exclusive Higgs boson signal region is negligible. The CTEQ6L1 PDF set is employed for the Alpgen+Herwig Z+jets samples. Two more sets of Z+jets samples, generated using Powheg+Pythia8 and Sherpa with CT10 PDF set, are used for additional background studies.

All the background samples mentioned above are processed through a simulation of the ATLAS detector [START_REF]The ATLAS Simulation Infrastructure[END_REF] based on GEANT4 [START_REF] Agostinelli | Geant4-a simulation toolkit[END_REF]. The signal samples are processed through the fast detector simulation program ATLFAST2 [START_REF]The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim[END_REF]. The effect of the multiple pp collisions, which is referred to as pileup throughout this paper, is also simulated by overlaying minimum-bias events generated using Pythia 8 and corrected to agree with data. 

Process MC Generator Exclusive W + W -signal γγ → W + W -→ + ν -ν ( , = e, µ, τ) Herwig++ aQGC signal γγ → W + W -→ + ν -ν with a W 0,C /Λ 2 0 FPMC Exclusive Higgs boson signal Exclusive gg → H → W + W -→ + ν -ν FPMC Exclusive dilepton γγ → + -( = e, µ, τ) Herwig++, LPAIR, Pythia8 Inclusive W + W - W + W -→ + ν -ν ( , = e, µ, τ) Powheg+Pythia8, gg2ww+Herwig Inclusive gg → H → W + W -→ + ν -ν Powheg+Pythia8 Vector-boson fusion W + W -→ + ν -ν Sherpa Non-W + W -diboson (

Selection of leptons, jets, and charged particles

Selection criteria are applied to the data and simulated samples to identify events that have good quality electron and muon candidates. Electron candidates are reconstructed from clusters of energy deposited in the electromagnetic calorimeter that are matched to tracks in the inner detector. They are required to have transverse momentum p T > 10 GeV, and be within a pseudorapidity range |η| < 2.47, excluding the region 1.37 ≤ |η| ≤ 1.52. Also, they satisfy shower shape and track selection criteria that make up the "very tight" likelihood criteria [START_REF]Electron efficiency measurements with the ATLAS detector using the 2012 LHC proton-proton collision data[END_REF] defined by a multivariate likelihood algorithm. Electrons are required to be isolated based on tracking and calorimeter information. Efficiencies for very tight electron identification range from 60% to 70%. Muon candidates with p T > 10 GeV are reconstructed from tracks in the inner detector matched to tracks in the muon spectrometer. Muon candidates are required to be within a pseudorapidity range |η| < 2.5 and must satisfy the criteria outlined in Ref. [START_REF]Measurement of the muon reconstruction performance of the ATLAS detector using the 2011 and 2012 LHC proton-proton collision data[END_REF], providing muon identification efficiencies of up to 95%. The tracking and calorimeter isolation criteria for muon and electron candidates are the same as those used in Ref. [START_REF]Observation and measurement of Higgs boson decays to WW * with the ATLAS detector[END_REF].

Jets with |η| < 4.5 are reconstructed from energy clusters in the calorimeter using the anti-k t algorithm [START_REF] Cacciari | Dispelling the N 3 myth for the k t jet-finder[END_REF] with a radius parameter of 0.4. To suppress jets from pileup, only jets with p T > 25 GeV are considered. Missing transverse momentum p miss T with magnitude E miss T is reconstructed as the magnitude of the negative vector sum of the momentum of reconstructed physics objectse, µ, photons, and jets -and remaining calorimeter clusters that are not associated with any hard objects are also included with the proper calibration [START_REF]Performance of Missing Transverse Momentum Reconstruction in Proton-Proton Collisions at 7 TeV with ATLAS[END_REF].

Charged particle tracks having p T > 0.4 GeV and |η| < 2.5 reconstructed by the inner detector are used in this paper to reject nonexclusive production. They are required to leave at least one hit in the pixel detector and at least four hits in the silicon microstrip detector.

Exclusivity selection

Exclusive candidates are characterized by large rapidity gaps [START_REF]Dijet production in √ s =7 TeV pp collisions with large rapidity gaps at the ATLAS experiment[END_REF][START_REF]Rapidity gap cross sections measured with the ATLAS detector in pp collisions at √ s = 7 TeV[END_REF] between the protons and the system of interest -a W + W -pair or Higgs boson. A signature for this, in the ATLAS detector, is an absence of tracks, other than tracks from the W + W -pair or Higgs boson decay products. Inclusive candidates, in contrast, are produced with extra particles that originate from the emission and hadronization of additional gluons, and the underlying event. These extra particles usually produce tracks in the inner detector. This analysis takes advantage of the absence of additional charged particle tracks to separate exclusive from inclusive (color processes) production.

In exclusive Higgs boson and W + W -production, no further charged particles are produced apart from the two final-state leptons. So in order to select exclusive events, the distance between the z 0 of the leptons is required to be less than 1 mm, where z 0 is the z-coordinate at the point of closest approach of a lepton (or track) to the beam line in the r-φ plane. Then the average z 0 of the two leptons, z av 0 , is taken as the event vertex and is referred to as the lepton vertex. In this paper, an exclusivity selection is applied, which requires zero additional tracks with p T > 0.4 GeV near z av 0 with |z track 0 z av 0 | < ∆z iso 0 . To improve the efficiency for exclusive events whose leptons have more than one associated track (due to bremsstrahlung for example), candidate tracks considered for this selection are required to be unmatched to either of the final-state leptons. Therefore, a candidate track within an angular distance ∆R < 0.01 and within 1 mm in z 0 of either of the final-state leptons is considered matched and is ignored. The value ∆z iso 0 is optimized using exclusive Higgs boson and exclusive W + W -simulated samples. A value of ∆z iso 0 = 1 mm is chosen for all results in this paper. The exclusivity selection efficiency is found to be 58% and is largely process independent as is discussed in Section 8.1. In Fig. 3 the exclusivity efficiency is extracted from exclusive Higgs boson signal simulated by FPMC, plotted against the average number of interactions per beam crossing µ. For the dataset used in this study µ is 20.7. 

Event selection

Events are required to satisfy at least one of the single-and dilepton triggers in Table 2. They are further categorized into ee, µµ, and eµ final states. A combination of single-lepton and different-flavor dilepton triggers is used to select the signal events, while the same-flavor dilepton triggers are used to select ee and µµ events for validation and control regions.

For both the exclusive W + W -and Higgs boson channels, this analysis selects candidates consistent with leptonic decays of W-boson pairs into oppositely charged different-flavor leptons. Additional kinematic requirements reject background while retaining as much of the signal as possible. Exclusive W + W - production is a large background in the exclusive Higgs boson search, while the exclusive Higgs boson contribution to the exclusive W + W -signal is negligible. So the kinematic requirements for the two channels differ slightly. Table 3 summarizes the selection criteria for both channels.

Trigger

Lepton

p T criteria [GeV ] Single electron p e T > 24 Single muon p µ T > 24 Symmetric dielectron p e 1 T > 12, p e 2 T > 12 Asymmetric dimuon p µ 1 T > 18, p µ 2 T > 8 Electron-muon p e T > 12, p µ T > 8
Table 2: Single-lepton and dilepton triggers are used to select event candidates. Single-lepton triggers require either of the leptons to satisfy the specified p T criterion, while dilepton triggers have two specific p T criteria.

Exclusive W + W -candidate selection

For the exclusive W + W -channel, requiring oppositely charged e ± µ ∓ leptons rejects same-flavor lepton events from Drell-Yan and exclusive dilepton processes. The invariant mass of the dilepton system is required to be greater than 20 GeV. This rejects a significant fraction of the remaining background in which jets have non-prompt or fake electron and/or muon signatures. The lepton with the higher p T is referred to as the leading lepton ( 1) and the other, the subleading lepton [START_REF]Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[END_REF]. The p T requirement on the leading lepton is chosen to be higher than the single-lepton trigger threshold, resulting in different leading and subleading leptons requirements: p 1 T > 25 GeV and p 2 T > 20 GeV, respectively. These selection criteria define preselection.

To reduce γγ → τ + τ -and Z/γ * → τ + τ -contamination, the magnitude of the transverse momentum of the dilepton system (p eµ T ) is required to be greater than 30 GeV. The exclusivity requirement rejects most of the remaining inclusive background. After applying these selection criteria, 70% of the predicted background is due to inclusive W + W -production, while γγ → τ + τ -contributes 15% and the contributions from other categories are negligible.

The limits on aQGCs are extracted from the region with p eµ T > 120 GeV. This requirement considerably reduces the SM contribution.

Exclusive Higgs Boson candidate selection

The Higgs boson decays to W + W -give one on-shell and one off-shell W boson. Thus the subleading lepton minimum p T is lowered to 15 GeV. For the same reason, the m eµ threshold is lowered to 10 GeV. The other requirements in the preselection are the same as for the exclusive W + W -sample. In contrast to the W + W -topology, the zero spin of the Higgs boson implies that the final-state leptons have small angular separation. Therefore the angular separation of the leptons in the transverse plane (∆φ eµ ) and the dilepton mass (m eµ ) are two good discriminating variables against the remaining exclusive W + W - background, which has a wider angular separation and relatively higher dilepton mass. Thus, m eµ and ∆φ eµ selection criteria are further imposed in the Higgs boson search. The transverse mass of the Higgs boson system, m T , is defined as:

m T = (E eµ T + E miss T ) 2 -| p eµ T + p miss T | 2 , (5) 
where

E eµ T = | p eµ T | 2 + m 2 eµ and | p miss T | = E miss T .
Requiring m T < 140 GeV further reduces both the inclusive and exclusive W + W -backgrounds and improves the signal significance by 20% (see Fig. 15). The exclusivity selection uses ∆z iso 0 = 1 mm here as well.

7 Pileup and exclusivity validation with γγ → + -events

The selection strategy described in Section 5 represents a new approach to extract exclusive processes without using usual vertex reconstruction [START_REF]Performance of the ATLAS Inner Detector Track and Vertex Reconstruction in High Pile-Up LHC Environment[END_REF]. This section describes two studies designed to validate this technique. The first one demonstrates how the ∆z iso 0 selection gives results comparable to those of previous strategies employed by the ATLAS Collaboration in a related measurement at √ s = 7 TeV [START_REF]Measurement of exclusive γγ → +production in proton-proton collisions at √ s = 7 TeV with the ATLAS detector[END_REF], and the second one shows how simulation of pileup and modeling of underlying event activity are verified. Except for possible non-standard couplings, the exclusive production of W + W -and + -are similar.

Exclusive dilepton candidates are therefore used in both studies because elastic γγ → + -production can be separated from SD and DD production using dilepton transverse momentum, p T , and acoplanarity (1 -|∆φ |/π) of the dilepton system, where ∆φ is the dilepton azimuthal separation. The γγ → µ + µ - candidates are used for these studies while γγ → e + e -candidates are used for cross-checks.

First, a measurement is made of the correction factor, f EL , defined as the ratio of observed elastic γγ → µ + µ -candidates to the Herwig++ prediction based on the EPA formalism. This factor is expected to be lower than 1.0 due to the finite size effects of the proton [START_REF] Dyndal | The role of finite-size effects on the spectrum of equivalent photons in proton-proton collisions at the LHC[END_REF]. Alternative formulations give similar results [START_REF] Harland-Lang | Exclusive physics at the LHC with SuperChic 2[END_REF]. Candidates are required to have two muons with p µ T > 20 GeV, invariant mass 45 < m µµ < 75 GeV or m µµ > 105 GeV and pass the exclusivity selection (∆z iso 0 = 1 mm). The Drell-Yan Z/γ * → µ + µ - process is the dominant background while contributions from other backgrounds are negligible. The elastic γγ → µ + µ -signal is enhanced by selecting the low-p T region with an upper limit on p T varied between 3 GeV to 5 GeV to study systematic uncertainties.

The value of f EL is extracted from template fits in acoplanarity. Some of the contributing processes have similar acoplanarity shapes; in particular the Drell-Yan and DD backgrounds are not distinguishable. Two fitting strategies are pursued. The first template strategy attempts to distinguish three shapes: elastic, SD, and combined DD plus background. The relative weighting of DD and background is varied to estimate the associated systematic uncertainty. The second template strategy uses the elastic and combined SD and DD shapes, with the background yield constrained to the simulation's prediction. These two fitting strategies give consistent results and are stable at the level of 10% under the variation of p µµ T and ∆z iso 0 selections, the four different Drell-Yan generators, bin width, and fit range. These variations reflect mismodeling of p µµ T and systematic uncertainties related to shape correlations and signal strength. The effect of these variations is much larger than the 3% combined effect of the systematic uncertainties discussed in Ref. [START_REF]Measurement of exclusive γγ → +production in proton-proton collisions at √ s = 7 TeV with the ATLAS detector[END_REF], which can then be ignored. The best-fit value is f EL = 0.76 ± 0.04(stat.) ± 0.07(sys.), where the systematic uncertainty covers the spread of fit values, and Fig. 4 shows the acoplanarity distribution compared to SM expectation normalized by the factors determined in this fit. An additional uncertainty of 10% related to pileup is discussed in the following paragraph. A similar study using γγ → e + e - candidates yields a consistent correction factor but with lower precision; thus the final value for f EL is taken from the γγ → µ + µ -sample. This correction factor is used to correct the number of γγ → τ + τ - candidates predicted by simulation in both the exclusive W + W -and the exclusive Higgs boson signal regions. Similar suppression is expected [START_REF] Dyndal | The role of finite-size effects on the spectrum of equivalent photons in proton-proton collisions at the LHC[END_REF] and observed [START_REF]Measurement of exclusive γγ → +production in proton-proton collisions at √ s = 7 TeV with the ATLAS detector[END_REF] in dissociative events, so the f EL factor is applied to dissociative events as well.

π |/ µ µ φ ∆ 1 -| 0 0.
In the second study, the impact of pileup on the signal efficiency and accuracy of the modeling in the simulation is evaluated. A kinematic selection is defined to enhance the fraction of elastic events. Events with p µµ T < 3 GeV and acoplanarity < 0.0015 are studied with both the nominal exclusivity selection criteria and by demanding exactly one extra track within ∆z iso 0 = 3 mm. In the case of exclusive signal, when there is one extra track, the extra track is from pileup and its ∆z 0 = |z track 0 z av 0 | has a locally constant distribution while for any inclusive background the track originates from the same vertex and the ∆z 0 distribution peaks at zero as can be seen in Fig. 5. A normalization factor, the background-subtracted ratio of observed exclusive events to the predicted sum of elastic, SD, and DD is determined for both selections. For nominal (zero track) exclusivity this normalization factor is 0.73 ± 0.03(stat.) ± 0.01(sys.). The one-track selection, illustrated in Fig. 5, gives a factor of 0.70 ± 0.06(stat.) ± 0.03(sys.) where the systematic uncertainties result from the uncertainty in the background normalization factor. The zerotrack and one-track normalization factors are consistent at the level of 10%, which is taken to be a measure of the accuracy of the pileup simulation in predicting signal efficiency.

The value of f EL with the additional ±10% relative systematic uncertainty for signal efficiency added in quadrature with the previous systematic uncertainty f EL = 0.76 ± 0.04(stat.) ± 0.10(sys.) [START_REF] Budnev | The process pp → γγ; pp → e + eand the possibility of its calculation by means of quantum electrodynamics only[END_REF] is consistent with the value of 0.791 ± 0.041 (stat.) ± 0.026 (sys.) ± 0.013 (theory) obtained in an earlier analysis using data from pp collisions at √ s = 7 TeV [START_REF]Measurement of exclusive γγ → +production in proton-proton collisions at √ s = 7 TeV with the ATLAS detector[END_REF]. This value is also consistent with the theoretical estimate of f EL ∼ 0.73-0.75, related to the proton size effects in the probed region of dimuon mass [START_REF] Dyndal | The role of finite-size effects on the spectrum of equivalent photons in proton-proton collisions at the LHC[END_REF]. 

Signal and background control regions

Several control regions are established to use data events to cross-check simulations in areas where they are known to be less reliable. The ratio of elastic to dissociative contributions is extracted from one control region, since a simulation for γγ → W + W -dissociative events is not available. Another set of control regions is used to study the proximity of small numbers of extra tracks to the lepton vertex. This is another regime where the underlying-event models have not been thoroughly tested, so relying on the data is preferred. Finally a control region is established for inclusive W + W -production, a predominant background. This control region has a different exclusivity requirement, one to four extra tracks, in order to increase the fraction of inclusive W + W -events. The inclusive W + W -contribution to the exclusive W + W -signal region is estimated using a data-driven method. Based on the number of events observed in this control region, this method makes some assumptions about the rejection of background when going from the control (one to four tracks) to the nominal (zero tracks) exclusivity requirement, and derives an estimate for the background from inclusive W + W -, Drell-Yan, W+jets, and top-quark production. The latter three processes have collectively a smaller contribution and are referred to as other background. Other contributions to the background are derived from Monte Carlo simulation and are found to be negligible.

Single-dissociative and double-dissociative contributions

Without detecting the outgoing protons, the elastic γγ → W + W -events are indistinguishable from SD and DD candidates. However, simulations are only available for the elastic γγ → W + W -process; predictions for dissociative production of W + W -are not available. Following the strategy in Ref. [START_REF]Study of exclusive two-photon production of W + Win pp collisions at √ s = 7 TeV and constraints on anomalous quartic gauge couplings[END_REF] a normalization factor, f γ , is determined. This factor is used to correct the prediction for elastic γγ → W + W -to account for dissociative events. It is computed from data using γγ → µ + µ -candidates that satisfy the exclusivity selection with ∆z iso 0 = 1 mm, p ratio of observed dimuons in data to the Herwig++ prediction for elastic dimuon production:

f γ = N Data -N Powheg Background N Herwig++

Elastic

m µµ >160 GeV = 3.30 ± 0.22(stat.) ± 0.06(sys.), [START_REF] Abulencia | Observation of exclusive electron-positron production in hadron-hadron collisions[END_REF] where N Data is the number of candidates in the data, N Powheg Background is the expected number of background events, and N Herwig++ Elastic is the expected number of elastic γγ → µ + µ -candidates directly from Herwig++, i.e, the unscaled EPA prediction. Drell-Yan processes are the main sources of background, whereas inclusive and exclusive W + W -processes contribute less than 10%. The uncertainty is predominantly statistical, but also contains a systematic component estimated by varying the Powheg+Pythia8 Drell-Yan correction factor by ±20%, as is be discussed in Section 8.2. Predictions for this ratio are becoming available [START_REF] Harland-Lang | The photon PDF in events with rapidity gaps[END_REF].

The dilepton invariant mass distributions for the µ + µ -and e + e -final states are shown in Fig. 6. The elastic contribution is scaled by f EL = 0.76 and the SD contribution is normalized so that the sum of the elastic and SD contributions corresponds to f γ × N Herwig++ Elastic . The shapes of the SD and DD samples are quite similar, so the SD shape is used to describe both the SD and DD processes. The data are well described by the simulation over the full mass range. While the range of m > 160 GeV was chosen to correspond to the threshold m WW > 2m W , the value of f γ is in fact rather insensitive to the choice of this threshold. The W + W -sample tends to have higher m WW than these dilepton control samples m . The m ee distribution in Fig. 6 shows that f γ is also valid for the electron channel. Therefore, the total expected γγ → W + W -event yield in both the exclusive W + W -and the exclusive Higgs boson channels is taken to be the product of f γ times the Herwig++ prediction for elastic γγ → W + W -production.

The dimuon signal sample with mass above 160 GeV is also used to determine the signal efficiency for exclusivity, which is 0.58 ± 0.06 where the 10% uncertainty arises from pileup modeling as described in Section 7. Other signal samples give compatible results.

Track multiplicity modeling

In pp collisions, inclusive Drell-Yan, W + W -, t t, and many other events are initiated by quarks or gluons. Through hard radiation and the accompanying underlying event, such events are produced with several additional charged particles. The exclusivity selection is designed to reject such inclusive candidates that have additional tracks near the dilepton vertex. To estimate inclusive backgrounds from Drell-Yan production of τ + τ -and inclusive W + W -production, the track multiplicity modeling of low-multiplicity candidates is studied with a high-purity Z boson sample and scaled with appropriate correction factors.

Drell-Yan candidates are selected by requiring exactly two muons with p µ T > 20 GeV and |η| < 2.4, and satisfying m µµ > 45 GeV. The Z-resonance region, 80 < m µµ < 100 GeV, is used to measure the efficiency of the exclusivity selection in both the data and simulation. The contributions from non-Z processes are subtracted before and after the exclusivity selection for both the data and simulated samples. This non-Z contribution is estimated from the sideband regions 70 < m µµ < 80 GeV and 100 < m µµ < 110 GeV. The efficiency of the exclusivity selection for inclusive Z events in data is found to be 0.004. This was compared to efficiencies for simulated Drell-Yan samples from four generators: Alpgen+Pythia6, Alpgen+Herwig, Powheg+Pythia8, and Sherpa. In general, the exclusivity criterion rejects more Z/γ → µ + µ -candidates in the data than in the simulation. The study was repeated for events with one to four additional tracks.

Correction factors are defined as the ratio of the exclusivity selection efficiency in data to the one in the simulation. They are reported in Table 4 and denoted by f sim nTracks , where sim is P for Powheg+Pythia8, AH for Alpgen+Herwig, and AP for Alpgen+Pythia6, and nTracks is the number of additional tracks. These correction factors are used to scale the Monte Carlo prediction for the inclusive processes considered in the paper. The background event tuning for simulation of low multiplicity in 8 TeV data is seen to vary widely.

The uncertainties in these correction factors are estimated from the variation of the exclusive efficiency as a function of m µµ of the various generators. To check the consistency of the predictions of evolution of underlying event multiplicity as a function of mass, ratios of the predictions of the three generators to the one by Sherpa are listed in Table 5. These are normalized such that the average over the full mass range is 1. The variations are typically within 20%, which is taken as the systematic uncertainty in extrapolating the f sim nTracks correction factors. 4) for Drell-Yan and inclusive W + W - production. The enriched inclusive W + W -control region is the 1-4 extra-track region above p eµ T > 30 GeV. The band around the Data/SM ratio of one illustrates the systemic uncertainties. The upward red arrows indicate ratios outside the plotting range.

Number of extra tracks

ATLAS

To validate the correction factors f sim nTracks , an e ± µ ∓ sample was defined. Figure 7 (left) shows the distribution of the number of additional tracks after applying the W + W -preselection as defined in Table 3. Applying a relaxed exclusivity selection to select e ± µ ∓ candidates with one to four extra tracks yields a sample that has low enough statistical uncertainties and is dominated by Drell-Yan events for p eµ T < 30 GeV as illustrated in Fig. 7 (right). Selecting m eµ < 90 GeV further rejects non Drell-Yan contamination as shown in Fig. 8. The correction factor for Alpgen+Pythia6 Drell-Yan, computed in the region defined by p eµ T < 30 GeV and m eµ < 90 GeV, is found to be 0.90 ± 0.11, in good agreement with f AP 1-4 = 0.85 found above for Z → µ + µ -.

Inclusive W + W -normalization

Inclusive W + W -production is a significant background in both the exclusive Higgs boson and exclusive W + W -channels. From previous measurements [START_REF]Observation and measurement of Higgs boson decays to WW * with the ATLAS detector[END_REF][START_REF]Measurement of total and differential W + Wproduction cross sections in proton-proton collisions at √ s = 8 TeV with the ATLAS detector and limits on anomalous triplegauge-boson couplings[END_REF], it it known that the NLO prediction for the q q → W + W -process as provided by Powheg+Pythia8 underestimates the observed W + W -event yield. It is therefore necessary to understand the simulation of this background before requiring the exclusivity selection. A region close in phase space to the exclusive Higgs boson signal region is chosen, referred to here as the Higgs-specific inclusive W + W -control region. It has the same definition except: 55 < m eµ < 110 GeV, ∆φ eµ < 2.6 to reduce Drell-Yan background, no jets to reduce t t background, and no requirement on exclusivity. This region is dominated by inclusive W + W -production and has a purity of 60%. After subtracting the predicted backgrounds from data, (20 ± 5)% more data is observed than is predicted by Powheg+Pythia8. A normalization factor of 1.20 ± 0.05(stat.) is therefore taken as a correction to the cross-section and applied to the inclusive W + W -prediction in all regions of phase space studied here, as done in Ref. [START_REF]Observation and measurement of Higgs boson decays to WW * with the ATLAS detector[END_REF]. The transverse mass m T distributions in the Higgs-specific inclusive W + W -control region after applying the normalization factor to the Powheg+Pythia8 prediction is shown in Fig. 9.

Sum of inclusive W + W -and other background

An estimate of the sum of inclusive W + W -background and smaller contributions from Drell-Yan, W+jets, and top-quark production (collectively referred to as other background) is performed using an inclusive W + W --enriched control region defined with the same criteria as the exclusive W + W -signal region, except the exclusivity selection requires 1-4 extra tracks within ∆z iso 0 = 1 mm. This control region is shown in Fig. 7 (right) in the region above p eµ T > 30 GeV. It is dominated by the inclusive W + W -process and also has small contributions of exclusive events, non-W + W -(other-VV) dibosons, and other background.

Figure 10 shows the leading lepton p 1 T distribution in this control region. The prediction is systematically lower than the data. The processes contributing to this control region can be found in Table 6, and the The m T distributions in the Higgs-specific inclusive W + W -control region that is used to determine the scaling for the Powheg+Pythia8 inclusive W + W -prediction. In the Data/SM ratio plot, the color band illustrates systematic uncertainties, the red upward arrow indicates a ratio outside the plotting range. total SM expectation is compared to the data. The data exceeds the simulation by 2σ. This discrepancy is attributed to a component from jets faking leptons that is unreliably simulated. Events produced with jets such as W+jets, Z+jets, and top-quark production, particularly jets faking leptons, are more easily rejected by the exclusivity selection, while other-VV and Drell-Yan (without accompanying jets) processes are likely to extrapolate from the 1-4 extra-track control region to the zero-track region with a scale factor similar to that for inclusive W + W -background. Therefore, this control region is used to constrain the inclusive W + W -plus other background involving fake leptons.

For the purpose of estimating the contribution of inclusive W + W -events and other background in the zero-track region, the number of these events in the 1-4 extra-track control region is bracketed by the Processes number of observed events in the data, after subtracting the exclusive and other-VV contributions, as an upper bound and by the predicted number of inclusive W + W -obtained from Powheg+Pythia8 as a lower bound. To obtain the contribution for the exclusive W + W -signal region, the two estimates are extrapolated from the 1-4 extra-track control region to the zero-track signal region. In this framework, the lower bound corresponds to the optimistic case where the other background contribution is completely rejected by the zero-track exclusivity requirement, while the upper bound corresponds to the case where all observed candidates in the control region are suppressed by the same factor as the inclusive W + W - process. Finally the average of the two estimates (after extrapolation) is taken as the contribution for the signal region.

Inclusive W + W - Inclusive W + W - 102 ± 20 Exclusive W + W - 5.5 ± 0.4 Exclusive τ + τ - 1.2 ± 0.
The extrapolation is achieved by multiplying the estimates by the ratio of the predicted numbers of inclusive W + W -events:

N Estimated 0 = N Estimated 1-4 × N Predicted WW,0 N Predicted WW,1-4 , (8) 
where N Estimated 0 and N Estimated 1-4 are the estimates for the lower bound or upper bound mentioned above, and N Predicted WW,0 and N Predicted WW,1-4 are respectively the number of inclusive W + W -events predicted by Powheg+Pythia8 for the zero-track and 1-4 extra-track regions. This ratio is found to be 0.048 ± 0.014, where the uncertainty is dominated by the 20% systematic uncertainties taken to be uncorrelated between the f P 0 and f P 1-4 factors that are included in the predicted numbers of events. As mentioned above, the small exclusive and other-VV contributions are subtracted before the extrapolation. So for inclusive W + W -and Drell-Yan processes, the expected number of events in the zero-track region is 20 times less than the prediction for the 1-4 extra-track control region.

As mentioned above, the inclusive W + W -and other background contributions to the signal region are taken as the average of the two estimates. Half the difference is included as an additional contribution to the uncertainty in this determination. This results in a final estimate of 6.6 ± 2.5 background candidates for the exclusive W + W -signal region.

This background estimate, 6.6 ± 2.5 events in the exclusive W + W -signal region, corresponds to scaling the Powheg+Pythia8 W + W -prediction by a normalization factor of 0.79. This factor is used to estimate the inclusive W + W -and other background contamination in the Higgs boson and aQGC signal regions.

Source of uncertainty

Uncertainty [%] Statistics 33% Background determination 18% Exclusivity signal efficiency 10% All other < 5% Total 39%

Table 7: Sources of uncertainty for the measured exclusive W + W -cross-section. All other includes other efficiencies, acceptance, luminosity, and lepton scales and resolution.

Systematic uncertainties

The main sources of systematic uncertainty are related to the exclusivity selection and the background determination. The uncertainty in the efficiency of the exclusive signal selection contributes 10% to the exclusive W + W -and Higgs boson signal yields, as estimated in Section 7 from the ratios of dimuon event yields without extra tracks and those with exactly one extra track. The prediction of the exclusive W + W - process uses the f γ factor as described in Section 8.1 and thus carries the 7% uncertainty in f γ . The γγ → τ + τ -background has an uncertainty of 14% that is propagated from the f EL factor. As described in Section 7, the f EL uncertainty includes 10% related to the exclusive signal selection and another 10% that results from acoplanarity fits. There is a 38% uncertainty in the inclusive W + W -background, as discussed in Section 8.4. This 38% uncertainty contains a component from the ±20% uncertainty in Drell-Yan background described in Section 8.2.

The contributions from these systematic uncertainties to the measured exclusive W + W -cross-section can be found in Table 7. The overall background contribution is 18%, predominantly from uncertainty in the extrapolation from the 1-4 track control region. In addition to the systematic uncertainty from the exclusivity selection (10%), other systematic uncertainties (lepton selection efficiencies and acceptance, luminosity and lepton scales and resolution) contribute less than 5%. The statistical uncertainty dominates the uncertainties in the cross-section.

Results

This paper presents three main results: the exclusive W + W -production cross-section, limits on possible aQGCs, and a limit from a search for exclusive Higgs boson production. Each is summarized in the following. The exclusive W + W -signal is the sum of elastic and single-and double-dissociative events through the f γ factor discussed in Section 8.1.

Standard Model exclusive W + W -production

Before the exclusivity selection, good agreement between data and background prediction is observed. In the eµ final state, the overall event yield agrees to within 2% and after requiring p eµ T > 30 GeV it agrees to within 0.5%. The p eµ T distribution before the exclusivity requirement is shown in Fig. 11. The numbers of candidates at various stages of the analysis are listed in Table 8 and the uncertainties quoted include both the statistical and systematic uncertainties. Top-quark and Drell-Yan Z/γ * → τ + τ - processes are the dominant backgrounds before exclusivity, while after requiring exclusivity their contributions are less than 0.5 events. These two backgrounds along with W+jets are grouped together as other background (Table 8). The inclusive W + W -estimate (described in Section 8.4) already includes these three processes; thus the other background contribution after requiring exclusivity is not added to the total background. Non-W + W -(other-VV) diboson processes are also highly suppressed by the exclusivity selection: they contribute 0.3 ± 0.2 events. Diffractive W + W -production was considered as a background and found to be insignificant. The expected signal yield is 9.3 ± 1.2 events, including the dissociative contributions ( f γ factor) discussed in Section 8.1. The total predicted background is 8.3 ± 2.6, while 23 candidates are observed in the data.

Figure 12 shows the p eµ T and ∆φ eµ distributions after applying all selection criteria. The shapes of the signal and the inclusive W + W -distributions are similar. The remaining τ + τ -background has an azimuthal opening angle close to ∆φ eµ ∼ π, i.e., the leptons are back-to-back. No further requirement is applied to ∆φ eµ to reject this background, as the aQGC signal also has an enhancement for ∆φ eµ ∼ π. The event yield at different stages of the selection. The expected signal (γγ → W + W -) is compared to the data and total background. The SM-to-data ratio (SM/Data) gives the level of agreement between prediction and data. The product of efficiency and acceptance ( A) for the signal is computed from the γγ → W + W -→ e ± µ ∓ MC generator. The statistical and systematic uncertainties are added in quadrature. For the background, the uncertainties are only shown for the yields after exclusivity selection, where they are relevant for the measurement.

[GeV] The full phase space cross-section predicted by Herwig++ is σ Herwig++ γγ→W + W -= 41.6 fb. This number is well defined but ∼20% corrections similar to those for the EPA dilepton prediction are expected, as discussed with Equation ( 6) above. The branching ratio of the W + W -pair decaying to e ± µ ∓ X is BR(W + W -→ e ± µ ∓ X) = 3.23% [START_REF] Olive | Review of Particle Physics[END_REF] (including the leptonic decays of τ leptons). Therefore, the predicted cross-section corrected for BR(W + W -→ e ± µ ∓ X) and including the dissociative contributions through the normalization f γ = 3.30 ± 0.23 becomes:

σ Predicted γγ→W + W -→e ± µ ∓ X = f γ • σ Herwig++ γγ→W + W -• BR(W + W -→ e ± µ ∓ X) = 4.4 ± 0.3 fb, (9) 
which corresponds to the prediction of N Predicted = 9.3 ± 1.2 signal events, quoted in Table 8. The number of candidates observed in the data is N Data = 23, while the predicted background is N Background = 8.3 ± 2.6 events. So the observation exceeds the prediction by a ratio: R = (N Data -N Background )/N Predicted = 1.57 ± 0.62.

The uncertainty in R results from propagation of the uncertainties of each of the numbers that go into the calculation. The uncertainty in the factor f γ contributes 7%.

The measured cross-section is determined in the exclusive W + W -region and extrapolated to the full W + W -→ e ± µ ∓ + X phase space:

σ Measured γγ→W + W -→e ± µ ∓ X = (N Data -N Background )/(L A) = 6.9 ± 2.2 (stat.) ± 1.4 (sys.) fb, (11) 
where L = 20.2 ± 0.4 fb -1 . The acceptance (A) is the ratio of the number of simulated events passing the kinematic requirements in Table 3 to the total number of events generated. The efficiencies ( ) account for the detector efficiencies due to lepton identification and reconstruction, triggering, and pileup. Both A and are computed using the Herwig++ prediction for the elastic γγ → W + W -process. At the end of the event selection, the acceptance is A = 0.280 ± 0.001 and the efficiency, which includes the exclusivity selection efficiency, is = 0.37 ± 0.04. T distribution for data compared to the SM prediction for events satisfying all the exclusive W + W - selection requirements apart from the one on p eµ T itself. Also shown are various predictions for aQGC parameters a W 0,C .

The efficiency of the exclusivity selection is 0.58 ± 0.06. The elastic, SD, and DD predicted acceptances can be compared using γγ → µ + µ -events with m µµ > 160 GeV, and they are found to be the same within 3%. Therefore, the measurement of the cross-section can be performed with the acceptances for elastic γγ → W + W -events. The products of acceptance and efficiencies ( A) at different stages of the event selection are given in Table 8.

The sources of uncertainty are given in Table 7. The statistical uncertainty dominates. The contribution from intermediate τ leptons to the accepted signal MC is determined using the Herwig++ generator to be 9.1%. The background-only hypothesis has a p-value about 0.0012, corresponding to a significance of 3.0σ.

Limits on anomalous Quartic Gauge Couplings

The aQGC limit setting was performed using the region p eµ T > 120 GeV where the aQGC contributions are expected to be important and Standard Model backgrounds are suppressed. The p eµ T distribution is shown in Fig. 13 for data compared to the Standard Model prediction and various aQGC scenarios. The aQGCs enhance the exclusive signal at high p eµ T , while the background is negligible with p eµ T > 80 GeV. The 95% CL limits on the couplings a W 0 /Λ 2 and a W C /Λ 2 are extracted with a likelihood test using the one observed data event as a constraint.

To extract one-dimensional (1D) limits, one of the aQGCs is set to zero. The 95% CL allowed ranges for the cases with a dipole form factor defined in Equation ( 2) with Λ cutoff = 500 GeV and without a form factor (Λ cutoff → ∞) are listed in Table 9. The uncertainties in the yields are included in the likelihood test as nuisance parameters. Also, limits on the two aQGC parameters are shown in Fig. 14 for the case with a dipole form factor with Λ cutoff = 500 GeV. The region outside the contour is ruled out at 95% confidence-level. The limits are comparable to the CMS combined 7 and 8 TeV results [START_REF]Evidence for exclusive gamma-gamma to W+ W-production and constraints on anomalous quartic gauge couplings at sqrt(s) = 7 and 8 TeV[END_REF].

The 95% CL limits on the dimension-8 f M,0,1,2,3 /Λ 4 couplings are given in Table 10 for the cases with and without a form factor. They are derived from the a W 0,C /Λ 2 couplings using Equation (3).

Coupling

Λ cutoff Observed allowed range [GeV -2 ] Expected allowed range [GeV -2 ] a W 0 /Λ 2 500 GeV [-0.96 × 10 -4 , 0.93 × 10 -4 ] [-0.90 × 10 -4 , 0.87 × 10 -4 ] a W C /Λ 2 500 GeV [-3.5 × 10 -4 , 3.3 × 10 -4 ] [-3.3 × 10 -4 , 3.1 × 10 -4 ] a W 0 /Λ 2 ∞ [-1.7 × 10 -6 , 1.7 × 10 -6 ] [-1.5 × 10 -6 , 1.6 × 10 -6 ] a W C /Λ 2 ∞ [-6.4 × 10 -6 , 6.3 × 10 -6 ]
[-5.9 × 10 -6 , 5.8 × 10 -6 ] Table 9: The observed allowed ranges for a W 0 /Λ 2 and a W C /Λ 2 , for dipole form factor with Λ cutoff = 500 GeV and without form factor (Λ cutoff → ∞). The regions outside the quoted ranges are excluded at 95% confidence-level.

Coupling

Λ cutoff Observed allowed range [GeV -4 ] Expected allowed range [GeV

-4 ] f M,0 /Λ 4 500 GeV [-3.7 × 10 -9 , 3.6 × 10 -9 ] [-3.5 × 10 -9 , 3.4 × 10 -9 ] f M,1 /Λ 4 500 GeV [-13 × 10 -9 , 14 × 10 -9 ] [-12 × 10 -9 , 13 × 10 -9 ] f M,0 /Λ 4 ∞ [-6.6 × 10 -11 , 6.6 × 10 -11 ] [-5.8 × 10 -11 , 6.2 × 10 -11 ] f M,1 /Λ 4 ∞ [-24 × 10 -11 , 25 × 10 -11 ] [-23 × 10 -11 , 23 × 10 -11 ]
Table 10: The allowed ranges for dimension-8 couplings values derived from the a W 0 and a W C parameters, for a dipole form factor with Λ cutoff = 500 GeV and without form factor. The regions outside the quoted ranges are excluded at 95% confidence-level. The limits on f M,2,3 /Λ 4 can be determined using the relations: The observed log-likelihood 95% confidence-level contour and 1D limits for the case with a dipole form factor with Λ cutoff = 500 GeV. The CMS combined 7 and 8 TeV result [START_REF]Evidence for exclusive gamma-gamma to W+ W-production and constraints on anomalous quartic gauge couplings at sqrt(s) = 7 and 8 TeV[END_REF] is shown for comparison.

f M,2 = 2 × f M,0 and f M,3 = 2 × f M,1 .

Limits on exclusive Higgs Boson production

As described in Section 3, exclusive production of Higgs bosons is simulated using the FPMC generator. Exclusive W + W -contamination in the exclusive Higgs boson signal region is estimated by using Herwig++ samples that are scaled by f γ = 3.30 to account for single-dissociative and double-dissociative processes. The predicted background from exclusive W + W -is derived from the observed cross-section in the exclusive W + W -signal region (Section 10.1). As discussed in Sections 8.2-8.4, the estimate for inclusive W + W -and minor contributions of Z/γ * → τ + τ -and W+jets is obtained from the inclusive W + W -samples scaled by a factor of 0.79. The contribution from inclusive Higgs production is expected to be negligible. Exclusive dileptons are not scaled by f γ because LPAIR simulates SD and DD processes as discussed in Section 7, except for γγ → τ + τ -production of which only SD is simulated. The rest of the background sources are scaled by their respective correction factors to account for the mismodeling of the underlying event. Six candidates are observed in the data, while 3.0 ± 0.8 events are predicted from background, and 0.023±0.003 from signal. The quoted uncertainty is the sum in quadrature of systematic uncertainties. Table 11 summarizes expected and observed yields in the signal region and at earlier selection points in the selection criteria summarized in Table 3. The exclusive Higgs boson prediction quoted here is from elastic contribution only. Observed data reasonably agrees with predictions. Figure 15 shows kinematic distributions in the signal region. Yields summarized in the preceding paragraph are converted to upper limits on the exclusive Higgs boson total production cross-section using the CL S technique [START_REF] Read | Presentation of search results: The CL(s) technique[END_REF]. The branching ratio BR(H → W + W -) used to compute these limits is (21.5±0.9)% [START_REF] Dittmaier | Handbook of LHC Higgs Cross Sections: 2. Differential Distributions[END_REF]. Table 12 shows a summary of the 95% CL upper limits on the exclusive Higgs boson total production cross-section. The observed upper limit is 1.2 pb, which is 1.1σ higher than the expected upper limit of 0.7 pb. The statistical uncertainty in the predicted background dominates the uncertainty involved in calculating this upper limit, while systematic uncertainties worsen the upper limits by at most 10%. This upper limit value is 400 times the cross-section predicted [START_REF] Khoze | Prospects for new physics observations in diffractive processes at the LHC and Tevatron[END_REF]. However, the limit would not change if the model prediction, which is for elastic production only, increased by an order of magnitude. This limit calculation inherently assumes that the acceptance and efficiency for dissociative events is not significantly different than for elastic events, hence the associated systematic uncertainty is insignificant.

Conclusion

A measurement of the exclusive W + W -production cross-section and a search for exclusive Higgs boson production via diffraction using e ± µ ∓ final states are presented using a data sample that corre- sponds to 20.2 fb -1 of LHC pp collisions at √ s = 8 TeV collected with the ATLAS detector. A track-based technique for selecting exclusive candidates was developed and validated in the µ + µ -final state, resulting in a ratio of data to the EPA prediction for the exclusive γγ → + -process of f EL = 0.76 ± 0.04(stat.) ± 0.10(sys.) in agreement with previous ATLAS measurements at √ s = 7 TeV. For exclusive W + W -production, the cross-section is determined to be σ(γγ → W + W -→ e ± µ ∓ X) = 6.9 ± 2.2(stat.) ± 1.4(sys.) fb from 23 observed candidates with 8.3 ± 2.6 predicted background events. While evidence of SM exclusive W + W -production is at the 3.0σ level, no evidence for an excess was seen in the kinematic region that would be enhanced by anomalous quartic gauge couplings. Rather, independent limits are placed on anomalous quartic gauge couplings that are more stringent than earlier published results from the OPAL, D0, and CMS experiments. Six candidates consistent with exclusive Higgs boson production are observed in the data, with an expected SM background of 3.0 ± 0.8 events. This result corresponds to an upper limit at 95% CL on the total production cross-section of the exclusive Higgs boson of 1.2 pb, whereas the expected limit is 0.7 pb.
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Figure 1 :

 1 Figure 1: Diagrams for the exclusive γγ → W + W -production representing the (a) elastic process, (b) singledissociation where one initial proton dissociates (SD) and (c) double-dissociation where both protons fragment (DD). The symbols X and X denote any additional final state created.

Figure 3 :

 3 Figure 3: Efficiency of the exclusivity selection, extracted from the exclusive Higgs boson signal simulation, is plotted against the average number of interactions per beam crossing µ. The average is 20.7 for the current dataset.
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Figure 4 :

 4 Figure 4: Dimuon acoplanarity distributions after applying the exclusivity selection and requiring p µµ T < 3 GeV. The expected Drell-Yan shape and the elastic and combined SD and DD (Dissociative) shapes normalized from the fit are stacked. This fit determines the factor f EL .

Figure 5 :

 5 Figure 5: Absolute ∆z 0 of the extra track to the lepton vertex in the region defined by acoplanarity < 0.0015. The exclusivity requirement was changed to select exactly one extra track within 3 mm. The exclusive predictions are scaled by a factor of 0.70.

µT > 20 Figure 6 :

 206 Figure6: The dilepton invariant mass distribution for muon candidates (left) and electron candidates (right). The elastic yield is scaled by f EL = 0.76 and the SD distribution is scaled to bring the sum of the elastic and SD contributions to the Herwig++ prediction for the elastic process multiplied by the f γ factor in the mass region above 160 GeV. The last bin includes overflow.

Figure 7 :

 7 Figure 7: Distribution of track multiplicities after requiring the exclusive W + W -preselection (left) with no number of track dependent correction, and the p eµ T distribution of candidates that have 1-4 extra tracks (right), with the simulation including all appropriate correction factors such as f sim nTracks (Table4) for Drell-Yan and inclusive W + W - production. The enriched inclusive W + W -control region is the 1-4 extra-track region above p eµ T > 30 GeV. The band around the Data/SM ratio of one illustrates the systemic uncertainties. The upward red arrows indicate ratios outside the plotting range.

Figure 8 :

 8 Figure8: The m eµ distribution after requiring 1-4 extra tracks within ∆z iso 0 = 1.0 mm and p eµ T < 30 GeV. The Drell-Yan and inclusive W + W -samples are scaled by the factors f AP 1-4 and f P 1-4 , respectively. The other samples are normalized as mentioned in the text. In the Data/SM ratio plot, the color band illustrates the systematic uncertainties, the red upward arrows indicate ratios outside the plotting range.

Figure 9 :

 9 Figure9: The m T distributions in the Higgs-specific inclusive W + W -control region that is used to determine the scaling for the Powheg+Pythia8 inclusive W + W -prediction. In the Data/SM ratio plot, the color band illustrates systematic uncertainties, the red upward arrow indicates a ratio outside the plotting range.

Figure 10 :

 10 Figure 10: The leading-lepton p 1T distribution in the inclusive W + W -control region. The simulation includes all appropriate correction factors such as f sim 1-4 for Drell-Yan and f P 1-4 for inclusive W + W -production.

Figure 11 :

 11 Figure 11: The p eµT distribution before exclusivity, i.e., after requiring p eµ T > 30 GeV. The main backgrounds at this stage are top-quark production, inclusive W + W -and Drell-Yan. In the Data/SM ratio plot, the color band illustrates systematic uncertainties.

Figure 12 :

 12 Figure 12: The p eµ T (left) and ∆φ eµ (right) distributions in the exclusive W + W -signal region. The inclusive W + W - estimate includes small contributions from other backgrounds (Drell-Yan, W+jets, and top-quark production).
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 11 γγ → W + W -cross-section

Figure 13 :

 13 Figure 13: The p eµT distribution for data compared to the SM prediction for events satisfying all the exclusive W + W - selection requirements apart from the one on p eµ T itself. Also shown are various predictions for aQGC parameters a W 0,C .

  Figure14: The observed log-likelihood 95% confidence-level contour and 1D limits for the case with a dipole form factor with Λ cutoff = 500 GeV. The CMS combined 7 and 8 TeV result[START_REF]Evidence for exclusive gamma-gamma to W+ W-production and constraints on anomalous quartic gauge couplings at sqrt(s) = 7 and 8 TeV[END_REF] is shown for comparison.

Excl. H T 1 Table 11 :

 H111 SignalData Total Bkg Incl. W + W -Excl. W + W ->30 GeV, m eµ < 55 GeV, ∆φ eµ < 1Summary of signal and background yields at different stages of the Higgs boson event selection. Only major background sources are listed explicitly. All the other background sources are summed up in the 'Other' category. For the background, the uncertainties are only shown for the yields after exclusivity selection, where they are relevant for the measurement. They include the systematic and statistical components, added in quadrature.

Figure 15 :

 15 Figure 15: Distributions in the exclusive Higgs boson signal region, without including the selection on the variable plotted. The dominant processes are inclusive and exclusive W + W -production. The expected signal is scaled by a factor of 100 for visibility. The arrows denote the selection.

Table 1 :

 1 A list of the simulated samples used for estimating the expected contributions to the exclusive W + W - signal region and exclusive Higgs boson signal region. The exclusive W + W -production is treated as background in the exclusive Higgs boson channel. Similarly, the exclusive Higgs boson production is a background to exclusive W + W -signal.

	Other-VV diboson)
	WZ, ZZ

Table 3 :

 3 Selection criteria for the two analysis channels.

Table 4 :

 4 Ratio of exclusivity efficiencies for Z → µµ production in data and simulation for different generators after sideband subtraction of nonresonant contributions. The efficiency ratios f sim nTracks are shown for exclusive selection (n = 0) as well as for a relaxed selection with one to four additional tracks (n = 1-4).

		Powheg+Pythia8 f P n	Alpgen+Herwig f AH n	Alpgen+Pythia6 f AP n
	n = 0	0.58	0.21	0.69
	n = 1-4	0.88	0.39	0.85

Table 5 :

 5 Ratio of the exclusivity selection efficiency in Drell-Yan µ + µ -production as a function of dimuon mass of different generators to Sherpa. A common normalization factor is applied to each column to obtain an average ratio of 1. Only statistical uncertainties are shown. The statistical uncertainty from Sherpa is included and contributes 2.9%, 0.8%, 0.7% and 5.7% in the four mass regions.

	Events	3 10 4 10 5 10	ATLAS = 8 TeV, 20.2 fb -1 s Preselection		Data 2012 τ τ → * γ Z/ Other Bkg Other VV	Incl WW Excl. WW τ τ Excl. stat. ⊕ sys.	Events / 10 GeV	2 10 3 10	Data 2012 τ τ → * γ Z/ Other Bkg Other VV	Incl WW Excl. WW τ τ Excl. stat. ⊕ sys.
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		10							10
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	Data / SM	0.8 1 1.2						
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			0	2	4	6	8	10 12 14 16 18
								Number of extra tracks

Table 6 :

 6 Event yields in the inclusive W + W -control region. The uncertainties quoted are statistical and systematic.

	2

Table 8 :

 8 

Table 12 :

 12 Upper limits on σ H [pb] at 95% CL. The ±1σ and ±2σ uncertainties quoted here are on the expected upper limit.

[START_REF] Chapon | Anomalous quartic WWγγ, ZZγγ, and trilinear WWγ couplings in two-photon processes at high luminosity at the LHC[END_REF] where σ(gg → H) is the cross-section for the gluon fusion process that produces the Higgs boson. The functions f g[START_REF] Martin | Unintegrated generalized parton distributions[END_REF] are the generalized gluon densities for the finite proton size, that take into account the impact parameter. The variables x 1 and x 2 are the fractions of the momenta carried by the gluons that

The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam direction. The x-axis points from the IP to the center of the LHC ring and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse (x, y) plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η =ln tan(θ/2). The angular distance ∆R in the η-φ space is defined as ∆R = (∆η)

+ (∆φ) 2 .

The symbol Z in WZ and ZZ is used here for both Z and γ * production decaying to a lepton pair.
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