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bGrand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF–CNRS/IN2P3,

Bvd. Henri Becquerel, 14076 Caen, France
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Abstract

This article presents a new semi-automatic method for charge and mass identi-
fication of charged nuclear fragments using either ∆E − E correlations between
measured energy losses in two successive detectors or correlations between charge
signal amplitude and rise time in a single silicon detector, derived from digital pulse
shape analysis techniques. In both cases different nuclear species (defined by their
atomic number Z and mass number A) can be visually identified from such correla-
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tions if they are presented as a two-dimensional histogram (’identification matrix’),
in which case correlations for different species populate different ridge lines (’identi-
fication lines’) in the matrix. The proposed algorithm is based on the identification
matrix’s properties and uses as little information as possible on the global form of
the identification lines, making it applicable to a large variety of matrices. Particular
attention has been paid to the implementation in a suitable graphical environment,
so that only two mouse-clicks are required from the user to calculate all initializa-
tion parameters. Example applications to recent data from both INDRA and FAZIA
telescopes are presented.

Key words: Silicon Detector, Computer Data Analysis, Charged Particle
Identification

1 Introduction1

In the intermediate energy regime, violent heavy-ion collisions produce many2

nuclear species with a large range of charge (Z), mass (A), and kinetic energy3

(Ek) [1,2]. Studying this kind of reactions requires detectors with almost 4π4

solid angle coverage, high granularity, low energy thresholds, large dynamic5

range in energy and capable of characterizing reaction products on an event6

by event basis. The first generation of 4π multi-detectors focused on complete7

collection of charged particles produced in a reaction [3,4,5,6,7], providing lit-8

tle isotopic information for heavy fragments (Z > 5). More recently detectors9

have evolved to provide isotopic resolution for a broader range of products10

[8,9,10], by improving existing detectors and identification techniques, or de-11

veloping new methods such as the Pulse Shape Analysis (PSA) in silicon12

detectors [11,12,13].13

Such multi-detectors are generally made of telescopes (stacks of detector ma-14

terial layers) measuring the energy lost by charged particles in the different15

stages. Several combinations of detectors have been used for this purpose,16

such as ionization chambers (IC), silicon detectors (Si), plastic scintillators,17

and thallium-activated cesium-iodide scintillators (CsI(Tl)). When a charged18

particle passes through such a telescope, its charge, mass, and kinetic energy19

determine the number of detectors it can cross before stopping, and the energy20

loss in the different layers. Charged particles are then identified by plotting the21

energy loss in one or several layers of the telescope (∆E) versus the residual22

energy released in the detector in which the particle is stopped (E). Within23

∗ Corresponding author.
Email address: diego.gruyer@fi.infn.it (D. Gruyer).
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this representation, called ∆E − E matrix, different particles populate iden-24

tification lines characteristic of their charge and mass (see for example Fig.25

1(a)).26

Three main methods are then used to identify such particles:27

(i) Interactive drawing of lines in order to discriminate between the ridges28

corresponding to a given charge and/or mass. Particles are then identified29

from their relative distance between pairs of ridge lines.30

(ii) Fit of a limited set of ridge lines with a functional describing the relation31

between ∆E and E, in which Z and A enter as parameters [14,15,16,17].32

In this case, particle identification is obtained by inversion of the func-33

tional for given ∆E and E, in order to extract Z and possibly A.34

(iii) Fit of detector calibration parameters on a limited set of ridge lines35

using energy loss table to generate all identification lines [20,27,10,21].36

Particles are then identified from their relative distance between pairs of37

ridge lines.38

The method (i) is probably more powerful and allows to face any situation,39

such as complex detector responses, but it suffers from two main limitations:40

it does not provide any extrapolation in regions of low statistics, and it is time41

consuming because each line has to be accurately drawn.42

Methods (ii) and (iii) allow extrapolation and suffer less from this latter incon-43

venience, since only a subset of ridge lines have to be drawn by hand. It may44

still become problematic when using multidetectors composed of thousands45

of identification telescopes. In both cases, identification performances rely on46

the precise knowledge of the detector response, which can be very complex47

in the case of CsI(Tl) scintillators light output-energy conversion [18] or in48

presence of pulse-height defect in silicon detectors [19]. These two methods49

are very efficient in reproducing Z lines but are generally not accurate enough50

to reproduce isotopic lines over a large range of elements.51

With increasing numbers of identification matrices to treat which include in-52

formation on increasing numbers of individual isotopes of different elements, it53

becomes essential to develop automatic or semi-automatic methods to extract54

identification lines in ∆E−E matrices. The need for automation was already55

evident with the advent of the first large charged particle arrays, and some56

methods were developed at that time, using for example image processing57

[22,25,26], or artificial neural networks [23]. More recently, neural networks58

have been applied directly to digital current signal [13] for isotopic identi-59

fication. Cluster algorithms have also been used for proton-γ discrimination60

[24].61

The evolution of computer resources, and the availability of powerful libraries62

dedicated to large scale data analysis [28,29] allow us to consider new types of63
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algorithms. In this article we present a new method, called SPIDER 1 identifi-64

cation (for Spider Particle Identification in ∆E−E Representation) for semi-65

automatic ridge line determination in two-dimensional matrices. This method66

has been developed avoiding as much as possible the use of a priori informa-67

tion on the exact form of identification lines, in order to be applicable to a68

large variety of identification matrices. Particular attention has been payed to69

the implementation in a suitable graphical environment. The extracted lines70

can then be directly used to identify charged particles (i), or set as an input71

of a functional fit (ii) or energy loss fit (iii).72

2 SPIDER identification73

2.1 Algorithm74

Determining ridge lines in two-dimensional matrices (x, y) is a hard task,75

whereas powerful algorithms for peak localization in N -dimensional matrices76

are available [30]. The main idea of the present method is then to transform our77

problem into a problem of peak localization in one-dimensional histograms.78

To do so, we have to project a part of the matrix onto a relevant axis. It is the79

shape of the identification lines and their relative population that guided the80

choice of this projection. The one-dimensional histogram shown in Fig. 1(b)81

is obtained by projecting all points between D(θ−α/2) and D(θ+α/2) onto82

the straight line D(θ), passing through (x0, y0) and making an angle θ with83

respect to Ox (see Fig. 1(a) where x stands for E and y for ∆E). Each peak84

appearing on this projection corresponds to the intersection between D(θ) and85

a ridge line of a given Z and A 2 . The angle of the first projection, θ0, and the86

pedestal coordinates (x0, y0) are input parameters of the algorithm.87

To localize the peaks in Fig. 1(b), the binning of the histogram should be
chosen carefully. The number of bins nb of the projection is defined as:

nb = dθ × ρ(θ)× β, (1)

with dθ the length of the projection, β a binning parameter to be provided by

1 not to be confused with the “SpiderWeb” surface construction algorithm
2 The ridge lines of individual isotopes are indistinguishable in these data, due to
insufficient resolution of the ∆E detectors. In this case ions of different Z populate
broad ridges around the mean value < A > of their isotopic distribution.
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the user, and ρ(θ) an internal parameter given by:

ρ(θ) =



√
2 if θ > θ0

1 if θ = θ0

5/4 if θ < θ0.

(2)

The choice of ρ(θ) is purely phenomenological.88

Maxima are then located using the algorithm described in [30], and their89

position in the two-dimensional matrix (Fig. 1(c)) is used as starting point for90

all subsequently generated identification lines, making crucial the choice of θ0.91

Linear abscissa [a.u.]

(b)

200 400 600 800 10000

50

100

150

200

Fig. 1. Illustration of the different steps of the SPIDER identification: (a) defini-
tion of the projection; (b) projection on line D(θ) and localization of maxima; (c)
positioning of the maxima on the ∆E − E matrix; (d) weaving of the spiderweb.

The operation of projection/localization is then repeated in order to cover
the full matrix, varying θ from θ0 to 90°, and then from θ0 to 0° by steps of
δθ. In practice, δθ and α slightly depend on θ, and can be modified by the
user in order to adapt the algorithm to a specific situation (very low statistics
for example). Each new point P (xp, yp) is associated to the line Z, so far
containing nZ points and whose end point coordinates are (xZ , yZ), if: |yp − yZ | < δy, for nZ < 10,

|yp − fZ(xp)| < δy, for nZ ≥ 10,
(3)

with fZ(x) = a0Z × (x + a1Z)−a
2
Z a function fitted to the nZ points already92

associated to the line Z, and δy = yZ × Z−1. The choices of fZ(x) and δy are93
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purely phenomenological.94

Once the spiderweb is woven (see Fig. 1(d)), identification lines that do not
fulfill the following criteria: 

nZ > 10

a1Z < 3000

0.35 < a2Z < 1

(4)

are rejected, where nZ is the final number of points associated to the line95

Z, and (a0Z , a1Z , a2Z) are the parameters of fZ(x). This procedure aims at96

eliminating lines with a form completely incoherent with the Bethe-Bloch97

formula, without being too restrictive in order for this method to be applicable98

to different types of identification matrices.99

It is then possible to build the identification grid from each of the individ-100

ual functions fZ(x), either limited to the range where peaks were found (see101

Fig.2 for example), or extrapolated over the whole residual energy range (see102

Fig.4(a) for example).103

2.2 Implementation104

In order to run the algorithm presented above, several input parameters should105

be provided by the user: the pedestal coordinates (x0, y0), the first projection106

angle θ0, and the binning parameter β. These parameters are generally difficult107

to estimate, which makes our method unusable without an implementation108

in a suitable graphical environment. It has therefore been included in the109

identification grid editor of KaliVeda [29], which is a graphical user interface110

dedicated to the creation and editing of identification grids developed initially111

within the INDRA Collaboration [4].112

The pedestal coordinates (x0, y0) can be set by the user with a simple click on
the ∆E−E matrix. Our algorithm needs also another point, (X0, Y0), situated
approximately in the middle of a high-Z line; and the knowledge of the charge
Z0 associated to this line. The values of θ0 and β are then calculated as follows
:

tan(θ0) =
Y0 − y0
X0 − x0

(5)

β =
1

20Z0

√
(X0 − x0)2 + (Y0 − y0)2. (6)

Thanks to the implementation in a “user friendly” graphical environment, our113

method needs only two mouse-clicks from the user to calculate all initialization114
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parameters, making it very easy to use.115

2.3 Examples of use116

The present method has been initially developed to treat INDRA Si-CsI(Tl)117

matrices [4]. Since it uses as little information as possible on the exact form118

of Z lines, it can be applied to different types of identification telescopes.119

Here are several examples of use on Si-CsI(Tl), IC-Si, Si-Si matrices; and also120

matrices from Pulse Shape Analysis of the charge signal in silicon detectors.121
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Fig. 2. Application of the SPIDER identification method on a Si-CsI(Tl) matrix of
INDRA (θ ∼ 17°). Data come from the Ta+Zn at 39 MeV/A reaction measured at
GANIL.

Fig. 2 presents the result of the SPIDER identification on a ∆E − E matrix122

coming from a Si-CsI(Tl) telescope of the INDRA multidetector. In this ex-123

ample, Z lines up to Z = 29 were found by our algorithm. Since extrapolation124

using individual functions is not safe in the case of Si-CsI(Tl) matrix, because125

of the strong curvature of Z lines at low residual energy (E), identification126

lines have been generated on the range where points were found by the al-127

gorithm. The obtained identification grid cannot be used directly. It has to128

be completed by hand, or can be used as input to constrain a fit using some129

functional. This point is discussed in Section 2.4.130

Fig. 3 presents the results of the SPIDER identification on a ∆E −E matrix131

coming from an INDRA IC-Si telescope. In this kind of matrix, Z lines are132
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Fig. 3. Application of the SPIDER identification method on a IC-Si matrix of
INDRA (θ ∼ 17°). PID stands for particle identification obtained after linearization
of the matrix with the identification grid. Data come from the Ta+Zn at 39 MeV/A
reaction measured at GANIL.

generally broad due to the poorer energy resolution of such large-area ioniza-133

tion chambers operated at low pressure, and rarely homogeneously populated.134

Nevertheless, our algorithm has extracted ridge lines from Z = 2 to Z = 16135

(Fig. 3(a)), providing a good charge identification (Fig. 3(b)). It can be noted136

that, in this example, the Z = 4 line was not generated because it did not137

satisfy the criteria of Eq. (4).138

The result of the SPIDER identification on a ∆E − E matrix coming from a139

Si-Si telescope of FAZIA [9] is presented in Fig. 4. In this kind of matrix, ridge140

lines corresponding to different elements are clearly separated thanks to the141

very good quality of FAZIA silicon detectors. In addition, the line curvature is142

quite slight, making the SPIDER identification very efficient (Fig. 4(a)). Even143
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Fig. 4. Same as Fig. 3 for Si-Si matrix of FAZIA (θ ∼ 7°). Data come from the
Kr+Sn at 35 MeV/A reaction measured at LNS [31,32].

if a few lines (Z = 7 and Z = 9) have not been generated, the grid provides144

a very good charge identification, up to Z = 34 (Fig. 4(b)). For each integer145

value of Z, several peaks appear on the identification spectrum up to Z ∼ 20.146

These peaks correspond to different isotopes of each element, and allow to147

discriminate particles of different masses. The charge-identification grid can148

then be used as a starting point to generate a mass-identification grid. This149

point is discussed in sec. 3.150

Previous examples all concern the ∆E − E method. Identification matrices151

obtained by Pulse Shape Analysis of the charge signal in FAZIA silicon de-152

tectors [9] present a form quite similar to that obtained with the ∆E − E153

method. Since the SPIDER identification method uses little a priori informa-154

tion on the ridge line form, it can also be applied to this type of matrix. In155

the example shown in Fig. 5, the generated grid provides a satisfying charge156
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Fig. 5. Same as Fig. 3 for energy versus rise time of the charge signal in the first
silicon layer matrix of FAZIA (θ ∼ 7°). Data come from the Kr+Sn at 35 MeV/A
reaction measured at LNS [31,32].

identification from Z = 3 up to Z = 30 (Fig. 5(b)), even if identification lines157

do not cover the full matrix range (Fig. 5(a)).158

2.4 Coupling with a fitting procedure159

We have shown in previous examples that Z-lines generated by the SPIDER160

identification, possibly extrapolated using individual functions, can be directly161

used to identify particles. This procedure is efficient but does not allow to162

extrapolate the identification to higher Z. These lines, without extrapolation,163

can also be used as input to fit functional parameters. In the present example,164

we used the functional proposed in [16].165
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Fig. 6. Example of coupling between the SPIDER identification method and a
functional fit [16]. The identification grid used as input is shown in Fig.2.

Raw Z-lines obtained with the SPIDER method on an INDRA Si-CsI(Tl)166

matrix are those previously presented in Fig. 2. These lines, which do not167

cover the whole residual energy range, are used to fit the 9 parameters of the168

functional [16]. The result of the fit is shown in Fig. 6. It can be seen that a169

satisfactory agreement is obtained for all charges and over the full matrix. The170

quality of the charge identification can be checked in Fig. 6: a good charge171

identification is achieved up to Z ∼ 36, even if the statistics for high Z is very172

poor. The coupling between the SPIDER method and a functional fit allows173

to obtain a full charge identification in a very short time. This procedure was174

used during the data reduction of the INDRA experiment presented in [33].175
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Fig. 7. Illustration of the isotopic identification method in PID-E matrices.

3 Isotopic identification176

The method presented above, and its possible coupling with a fitting pro-177

cedure, facilitate a lot the extraction of Z-identification lines. As illustrated178

in Fig. 4(b), the good quality of FAZIA silicon detectors allows also isotopic179

identification of charged particles up to Z ∼ 25. In order to carry out an180

isotopic identification, ridge lines corresponding to each (Z,A) couple have181

to be drawn. This is again a very fastidious task. We propose here a method182

to extract these lines in a fully automatic way. The only input of the algo-183

rithm is a charge-identification grid that can be easily generated using the184

SPIDER identification method, which is particularly efficient for the case of185

Si-Si matrices (see Fig. 4).186

In ∆E − E matrices, lines corresponding to a given atomic number Z are187

regularly spaced and populated. The scheme for isotopic lines is much more188

complex: the relative population of each isotope depends strongly on the con-189

sidered element, on the studied reaction, and isotopes with short lifetimes (typ-190

ically lower than 1 ns) are never detected. The extraction of isotopic (Z,A)-191

lines from the raw ∆E −E matrix is therefore very complex. To simplify the192

treatment, we have to transform the matrix in order to extract masses Z by193

Z. The first stage of the algorithm is then to linearize the ∆E − E matrix194

according to the Z-identification grid provided by the user, in order to obtain195

a PID−E matrix (Fig. 7). If the quality of the grid is good enough, A-lines196

associated to a given Z are almost horizontal and lie in the PID range [Z-0.5,197

Z+0.5].198

All points contained in the range PID = Z ± 0.5 and E = Ei± δE (rectangu-199

lar box in Fig. 7) are projected on the PID axis. Peaks corresponding to the200

intersection of A-lines and the vertical line E = Ei appear in the projection201

histogram. The binning of this projection is set to 60 bins whatever the Z202

considered. Peaks are located and replaced in the PID−E matrix. Each new203

point is simply associated to the closest A-line. The operation is then repeated204
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Fig. 8. Result of the automatic isotopic line extraction applied to a Si-Si matrix
of FAZIA (θ ∼ 7°) in the Ar+Sn at 25 MeV/A reaction: isotopic identification grid,
isotopic and neutron number distribution after linearization.

by varying Ei in order to cover the whole residual energy range, and for all Z205

(Fig. 7). The obtained identification grid in the PID−E plane is finally trans-206

formed in the ∆E−E plane (Fig. 8). The corresponding isotopic identification207

matrix is presented in Fig. 8.208

This algorithm has also been implemented in the identification grid editor of209

KaliVeda [29].210

4 Conclusion211

In this article, we proposed a new method (SPIDER identification) for gener-212

ating Z and A identification grids in two-dimensional matrices. This method213
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has been developed avoiding as much as possible the use of a priori infor-214

mation on the exact form of identification lines, in order to be applicable to215

a large variety of identification matrices. It has been successfully tested on216

various types of matrices obtained with ∆E − E and Pulse Shape Analysis217

techniques. Particular attention has been paid to the implementation in a suit-218

able graphical environment, so it needs only two mouse-clicks from the user219

in order to calculate all initialization parameters. Extracted lines can then be220

directly used to identify charged particles, set as an input of a functional fit,221

or used to extract isotopic lines in a fully automatic way.222
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