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Bucharest-Màgurele, Romania

kINFN – Sezione di Catania, 64 Via Santa Sofia, I-95123 Catania, Italy

Abstract

This article presents a new semi-automatic method for charge and mass identi-
fication of charged nuclear fragments using either ∆E − E correlations between
measured energy losses in two successive detectors or correlations between charge
signal amplitude and rise time in a single silicon detector, derived from digital pulse
shape analysis techniques. In both cases different nuclear species (defined by their
atomic number Z and mass number A) can be visually identified from such correla-
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tions if they are presented as a two-dimensional histogram (’identification matrix’),
in which case correlations for different species populate different ridge lines (’identi-
fication lines’) in the matrix. The proposed algorithm is based on the identification
matrix’s properties and uses as little information as possible on the global form of
the identification lines, making it applicable to a large variety of matrices. Particular
attention has been paid to the implementation in a suitable graphical environment,
so that only two mouse-clicks are required from the user to calculate all initializa-
tion parameters. Example applications to recent data from both INDRA and FAZIA
telescopes are presented.

Key words: Silicon Detector, Computer Data Analysis, Charged Particle
Identification

1 Introduction

In the intermediate energy regime, violent heavy-ion collisions produce many
nuclear species with a large range of charge (Z), mass (A), and kinetic energy
(Ek) [1,2]. Studying this kind of reactions requires detectors with almost 4π
solid angle coverage, high granularity, low energy thresholds, large dynamic
range in energy and capable of characterizing reaction products on an event
by event basis. The first generation of 4π multi-detectors focused on complete
collection of charged particles produced in a reaction [3,4,5,6,7], providing lit-
tle isotopic information for heavy fragments (Z > 5). More recently detectors
have evolved to provide isotopic resolution for a broader range of products
[8,9,10], by improving existing detectors and identification techniques, or de-
veloping new methods such as the Pulse Shape Analysis (PSA) in silicon
detectors [11,12,13].

Such multi-detectors are generally made of telescopes (stacks of detector ma-
terial layers) measuring the energy lost by charged particles in the different
stages. Several combinations of detectors have been used for this purpose,
such as ionization chambers (IC), silicon detectors (Si), plastic scintillators,
and thallium-activated cesium-iodide scintillators (CsI(Tl)). When a charged
particle passes through such a telescope, its charge, mass, and kinetic energy
determine the number of detectors it can cross before stopping, and the energy
loss in the different layers. Charged particles are then identified by plotting the
energy loss in one or several layers of the telescope (∆E) versus the residual
energy released in the detector in which the particle is stopped (E). Within
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this representation, called ∆E − E matrix, different particles populate iden-
tification lines characteristic of their charge and mass (see for example Fig.
1(a)).

Three main methods are then used to identify such particles:

(i) Interactive drawing of lines in order to discriminate between the ridges
corresponding to a given charge and/or mass. Particles are then identified
from their relative distance between pairs of ridge lines.

(ii) Fit of a limited set of ridge lines with a functional describing the relation
between ∆E and E, in which Z and A enter as parameters [14,15,16,17].
In this case, particle identification is obtained by inversion of the func-
tional for given ∆E and E, in order to extract Z and possibly A.

(iii) Fit of detector calibration parameters on a limited set of ridge lines
using energy loss table to generate all identification lines [20,27,10,21].
Particles are then identified from their relative distance between pairs of
ridge lines.

The method (i) is probably more powerful and allows to face any situation,
such as complex detector responses, but it suffers from two main limitations:
it does not provide any extrapolation in regions of low statistics, and it is time
consuming because each line has to be accurately drawn.

Methods (ii) and (iii) allow extrapolation and suffer less from this latter incon-
venience, since only a subset of ridge lines have to be drawn by hand. It may
still become problematic when using multidetectors composed of thousands
of identification telescopes. In both cases, identification performances rely on
the precise knowledge of the detector response, which can be very complex
in the case of CsI(Tl) scintillators light output-energy conversion [18] or in
presence of pulse-height defect in silicon detectors [19]. These two methods
are very efficient in reproducing Z lines but are generally not accurate enough
to reproduce isotopic lines over a large range of elements.

With increasing numbers of identification matrices to treat which include in-
formation on increasing numbers of individual isotopes of different elements, it
becomes essential to develop automatic or semi-automatic methods to extract
identification lines in ∆E−E matrices. The need for automation was already
evident with the advent of the first large charged particle arrays, and some
methods were developed at that time, using for example image processing
[22,25,26], or artificial neural networks [23]. More recently, neural networks
have been applied directly to digital current signal [13] for isotopic identi-
fication. Cluster algorithms have also been used for proton-γ discrimination
[24].

The evolution of computer resources, and the availability of powerful libraries
dedicated to large scale data analysis [28,29] allow us to consider new types of
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algorithms. In this article we present a new method, called SPIDER 1 identifi-
cation (for Spider Particle Identification in ∆E−E Representation) for semi-
automatic ridge line determination in two-dimensional matrices. This method
has been developed avoiding as much as possible the use of a priori informa-
tion on the exact form of identification lines, in order to be applicable to a
large variety of identification matrices. Particular attention has been payed to
the implementation in a suitable graphical environment. The extracted lines
can then be directly used to identify charged particles (i), or set as an input
of a functional fit (ii) or energy loss fit (iii).

2 SPIDER identification

2.1 Algorithm

Determining ridge lines in two-dimensional matrices (x, y) is a hard task,
whereas powerful algorithms for peak localization in N -dimensional matrices
are available [30]. The main idea of the present method is then to transform our
problem into a problem of peak localization in one-dimensional histograms.
To do so, we have to project a part of the matrix onto a relevant axis. It is the
shape of the identification lines and their relative population that guided the
choice of this projection. The one-dimensional histogram shown in Fig. 1(b)
is obtained by projecting all points between D(θ−α/2) and D(θ+α/2) onto
the straight line D(θ), passing through (x0, y0) and making an angle θ with
respect to Ox (see Fig. 1(a) where x stands for E and y for ∆E). Each peak
appearing on this projection corresponds to the intersection between D(θ) and
a ridge line of a given Z and A 2 . The angle of the first projection, θ0, and the
pedestal coordinates (x0, y0) are input parameters of the algorithm.

To localize the peaks in Fig. 1(b), the binning of the histogram should be
chosen carefully. The number of bins nb of the projection is defined as:

nb = dθ × ρ(θ)× β, (1)

with dθ the length of the projection, β a binning parameter to be provided by

1 not to be confused with the “SpiderWeb” surface construction algorithm
2 The ridge lines of individual isotopes are indistinguishable in these data, due to
insufficient resolution of the ∆E detectors. In this case ions of different Z populate
broad ridges around the mean value < A > of their isotopic distribution.
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the user, and ρ(θ) an internal parameter given by:

ρ(θ) =



√
2 if θ > θ0

1 if θ = θ0

5/4 if θ < θ0.

(2)

The choice of ρ(θ) is purely phenomenological.

Maxima are then located using the algorithm described in [30], and their
position in the two-dimensional matrix (Fig. 1(c)) is used as starting point for
all subsequently generated identification lines, making crucial the choice of θ0.

Linear abscissa [a.u.]

(b)

200 400 600 800 10000

50

100
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Fig. 1. Illustration of the different steps of the SPIDER identification: (a) defini-
tion of the projection; (b) projection on line D(θ) and localization of maxima; (c)
positioning of the maxima on the ∆E − E matrix; (d) weaving of the spiderweb.

The operation of projection/localization is then repeated in order to cover
the full matrix, varying θ from θ0 to 90°, and then from θ0 to 0° by steps of
δθ. In practice, δθ and α slightly depend on θ, and can be modified by the
user in order to adapt the algorithm to a specific situation (very low statistics
for example). Each new point P (xp, yp) is associated to the line Z, so far
containing nZ points and whose end point coordinates are (xZ , yZ), if: |yp − yZ | < δy, for nZ < 10,

|yp − fZ(xp)| < δy, for nZ ≥ 10,
(3)

with fZ(x) = a0Z × (x + a1Z)−a
2
Z a function fitted to the nZ points already

associated to the line Z, and δy = yZ × Z−1. The choices of fZ(x) and δy are
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purely phenomenological.

Once the spiderweb is woven (see Fig. 1(d)), identification lines that do not
fulfill the following criteria: 

nZ > 10

a1Z < 3000

0.35 < a2Z < 1

(4)

are rejected, where nZ is the final number of points associated to the line
Z, and (a0Z , a1Z , a2Z) are the parameters of fZ(x). This procedure aims at
eliminating lines with a form completely incoherent with the Bethe-Bloch
formula, without being too restrictive in order for this method to be applicable
to different types of identification matrices.

It is then possible to build the identification grid from each of the individ-
ual functions fZ(x), either limited to the range where peaks were found (see
Fig.2 for example), or extrapolated over the whole residual energy range (see
Fig.4(a) for example).

2.2 Implementation

In order to run the algorithm presented above, several input parameters should
be provided by the user: the pedestal coordinates (x0, y0), the first projection
angle θ0, and the binning parameter β. These parameters are generally difficult
to estimate, which makes our method unusable without an implementation
in a suitable graphical environment. It has therefore been included in the
identification grid editor of KaliVeda [29], which is a graphical user interface
dedicated to the creation and editing of identification grids developed initially
within the INDRA Collaboration [4].

The pedestal coordinates (x0, y0) can be set by the user with a simple click on
the ∆E−E matrix. Our algorithm needs also another point, (X0, Y0), situated
approximately in the middle of a high-Z line; and the knowledge of the charge
Z0 associated to this line. The values of θ0 and β are then calculated as follows
:

tan(θ0) =
Y0 − y0
X0 − x0

(5)

β =
1

20Z0

√
(X0 − x0)2 + (Y0 − y0)2. (6)

Thanks to the implementation in a “user friendly” graphical environment, our
method needs only two mouse-clicks from the user to calculate all initialization
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parameters, making it very easy to use.

2.3 Examples of use

The present method has been initially developed to treat INDRA Si-CsI(Tl)
matrices [4]. Since it uses as little information as possible on the exact form
of Z lines, it can be applied to different types of identification telescopes.
Here are several examples of use on Si-CsI(Tl), IC-Si, Si-Si matrices; and also
matrices from Pulse Shape Analysis of the charge signal in silicon detectors.
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Fig. 2. Application of the SPIDER identification method on a Si-CsI(Tl) matrix of
INDRA (θ ∼ 17°). Data come from the Ta+Zn at 39 MeV/A reaction measured at
GANIL.

Fig. 2 presents the result of the SPIDER identification on a ∆E − E matrix
coming from a Si-CsI(Tl) telescope of the INDRA multidetector. In this ex-
ample, Z lines up to Z = 29 were found by our algorithm. Since extrapolation
using individual functions is not safe in the case of Si-CsI(Tl) matrix, because
of the strong curvature of Z lines at low residual energy (E), identification
lines have been generated on the range where points were found by the al-
gorithm. The obtained identification grid cannot be used directly. It has to
be completed by hand, or can be used as input to constrain a fit using some
functional. This point is discussed in Section 2.4.

Fig. 3 presents the results of the SPIDER identification on a ∆E −E matrix
coming from an INDRA IC-Si telescope. In this kind of matrix, Z lines are
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Fig. 3. Application of the SPIDER identification method on a IC-Si matrix of
INDRA (θ ∼ 17°). PID stands for particle identification obtained after linearization
of the matrix with the identification grid. Data come from the Ta+Zn at 39 MeV/A
reaction measured at GANIL.

generally broad due to the poorer energy resolution of such large-area ioniza-
tion chambers operated at low pressure, and rarely homogeneously populated.
Nevertheless, our algorithm has extracted ridge lines from Z = 2 to Z = 16
(Fig. 3(a)), providing a good charge identification (Fig. 3(b)). It can be noted
that, in this example, the Z = 4 line was not generated because it did not
satisfy the criteria of Eq. (4).

The result of the SPIDER identification on a ∆E − E matrix coming from a
Si-Si telescope of FAZIA [9] is presented in Fig. 4. In this kind of matrix, ridge
lines corresponding to different elements are clearly separated thanks to the
very good quality of FAZIA silicon detectors. In addition, the line curvature is
quite slight, making the SPIDER identification very efficient (Fig. 4(a)). Even
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Fig. 4. Same as Fig. 3 for Si-Si matrix of FAZIA (θ ∼ 7°). Data come from the
Kr+Sn at 35 MeV/A reaction measured at LNS [31,32].

if a few lines (Z = 7 and Z = 9) have not been generated, the grid provides
a very good charge identification, up to Z = 34 (Fig. 4(b)). For each integer
value of Z, several peaks appear on the identification spectrum up to Z ∼ 20.
These peaks correspond to different isotopes of each element, and allow to
discriminate particles of different masses. The charge-identification grid can
then be used as a starting point to generate a mass-identification grid. This
point is discussed in sec. 3.

Previous examples all concern the ∆E − E method. Identification matrices
obtained by Pulse Shape Analysis of the charge signal in FAZIA silicon de-
tectors [9] present a form quite similar to that obtained with the ∆E − E
method. Since the SPIDER identification method uses little a priori informa-
tion on the ridge line form, it can also be applied to this type of matrix. In
the example shown in Fig. 5, the generated grid provides a satisfying charge
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Fig. 5. Same as Fig. 3 for energy versus rise time of the charge signal in the first
silicon layer matrix of FAZIA (θ ∼ 7°). Data come from the Kr+Sn at 35 MeV/A
reaction measured at LNS [31,32].

identification from Z = 3 up to Z = 30 (Fig. 5(b)), even if identification lines
do not cover the full matrix range (Fig. 5(a)).

2.4 Coupling with a fitting procedure

We have shown in previous examples that Z-lines generated by the SPIDER
identification, possibly extrapolated using individual functions, can be directly
used to identify particles. This procedure is efficient but does not allow to
extrapolate the identification to higher Z. These lines, without extrapolation,
can also be used as input to fit functional parameters. In the present example,
we used the functional proposed in [16].
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Fig. 6. Example of coupling between the SPIDER identification method and a
functional fit [16]. The identification grid used as input is shown in Fig.2.

Raw Z-lines obtained with the SPIDER method on an INDRA Si-CsI(Tl)
matrix are those previously presented in Fig. 2. These lines, which do not
cover the whole residual energy range, are used to fit the 9 parameters of the
functional [16]. The result of the fit is shown in Fig. 6. It can be seen that a
satisfactory agreement is obtained for all charges and over the full matrix. The
quality of the charge identification can be checked in Fig. 6: a good charge
identification is achieved up to Z ∼ 36, even if the statistics for high Z is very
poor. The coupling between the SPIDER method and a functional fit allows
to obtain a full charge identification in a very short time. This procedure was
used during the data reduction of the INDRA experiment presented in [33].
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Fig. 7. Illustration of the isotopic identification method in PID-E matrices.

3 Isotopic identification

The method presented above, and its possible coupling with a fitting pro-
cedure, facilitate a lot the extraction of Z-identification lines. As illustrated
in Fig. 4(b), the good quality of FAZIA silicon detectors allows also isotopic
identification of charged particles up to Z ∼ 25. In order to carry out an
isotopic identification, ridge lines corresponding to each (Z,A) couple have
to be drawn. This is again a very fastidious task. We propose here a method
to extract these lines in a fully automatic way. The only input of the algo-
rithm is a charge-identification grid that can be easily generated using the
SPIDER identification method, which is particularly efficient for the case of
Si-Si matrices (see Fig. 4).

In ∆E − E matrices, lines corresponding to a given atomic number Z are
regularly spaced and populated. The scheme for isotopic lines is much more
complex: the relative population of each isotope depends strongly on the con-
sidered element, on the studied reaction, and isotopes with short lifetimes (typ-
ically lower than 1 ns) are never detected. The extraction of isotopic (Z,A)-
lines from the raw ∆E −E matrix is therefore very complex. To simplify the
treatment, we have to transform the matrix in order to extract masses Z by
Z. The first stage of the algorithm is then to linearize the ∆E − E matrix
according to the Z-identification grid provided by the user, in order to obtain
a PID−E matrix (Fig. 7). If the quality of the grid is good enough, A-lines
associated to a given Z are almost horizontal and lie in the PID range [Z-0.5,
Z+0.5].

All points contained in the range PID = Z ± 0.5 and E = Ei± δE (rectangu-
lar box in Fig. 7) are projected on the PID axis. Peaks corresponding to the
intersection of A-lines and the vertical line E = Ei appear in the projection
histogram. The binning of this projection is set to 60 bins whatever the Z
considered. Peaks are located and replaced in the PID−E matrix. Each new
point is simply associated to the closest A-line. The operation is then repeated
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Fig. 8. Result of the automatic isotopic line extraction applied to a Si-Si matrix
of FAZIA (θ ∼ 7°) in the Ar+Sn at 25 MeV/A reaction: isotopic identification grid,
isotopic and neutron number distribution after linearization.

by varying Ei in order to cover the whole residual energy range, and for all Z
(Fig. 7). The obtained identification grid in the PID−E plane is finally trans-
formed in the ∆E−E plane (Fig. 8). The corresponding isotopic identification
matrix is presented in Fig. 8.

This algorithm has also been implemented in the identification grid editor of
KaliVeda [29].

4 Conclusion

In this article, we proposed a new method (SPIDER identification) for gener-
ating Z and A identification grids in two-dimensional matrices. This method
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has been developed avoiding as much as possible the use of a priori infor-
mation on the exact form of identification lines, in order to be applicable to
a large variety of identification matrices. It has been successfully tested on
various types of matrices obtained with ∆E − E and Pulse Shape Analysis
techniques. Particular attention has been paid to the implementation in a suit-
able graphical environment, so it needs only two mouse-clicks from the user
in order to calculate all initialization parameters. Extracted lines can then be
directly used to identify charged particles, set as an input of a functional fit,
or used to extract isotopic lines in a fully automatic way.
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[25] M. Morháč and M. Veselský, Nucl. Instr. Meth. Phys. Res. A 592 (2008) 434.

[26] L. Morelli et al., Nucl. Instr. Meth. Phys. Res. A 620 (2010) 305.

[27] J. Dudouet et al., Nucl. Instr. Meth. Phys. Res. A 715 (2013) 98.

[28] R. Brun, Nucl. Instr. Meth. Phys. Res. A 389 (1997) 81.

[29] J.D. Frankland, et al., http://indra.in2p3.fr/KaliVedaDoc.
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