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Three-mode parametric interactions occur in triply resonant optomechanical systems: Photons from an optical
pump mode are coherently scattered to a high-order mode by mechanical motion of the cavity mirrors, and these
modes resonantly interact via radiation pressure force when some conditions are met. They can either pump energy
into acoustic modes, leading to parametric instability, or extract mechanical energy, leading to optomechanical
cooling. Such effects are predicted to occur in long baseline advanced gravitational-wave detectors, possibly
jeopardizing their stable operation. We have demonstrated both three-mode cooling and amplification in two
different three-mode optomechanical systems. We report an observation of the three-mode parametric instability
in a free-space Fabry-Perot cavity, with ring-up amplitude saturation.

DOI: 10.1103/PhysRevA.91.033832 PACS number(s): 42.65.Yj, 42.50.Wk

I. INTRODUCTION

In 2001, Braginsky et al. predicted three-mode parametric
instability in advanced gravitational-wave detectors [1,2],
which would be caused by coincident frequency matching
and mode shape matching between mirror mechanical modes
and high-order optical modes. The high mechanical and
optical mode density of these systems makes it likely that
such interactions occur accidentally. Subsequently detailed
modeling [3–5] verified the predictions and experimental tests
on suspended optical cavities [6,7] demonstrated three-mode
interactions below the instability threshold.

Three-mode instability has been observed in relatively
low-quality factor solid-state resonators [8–12] and in a
microwave system [13], but has not been reported in free-space
optical cavities. The challenge can be met either by using
very high optical power in large-scale optical cavities such as
Advanced LIGO [14] or Advanced Virgo [15] detectors, or at
low power in table-top cavities with suitable mode structure
and a low-mass high-quality factor mechanical resonator.

In this paper we present two free-space cavity configura-
tions suitable for investigating three-mode interactions and
parametric instability. One is a cavity coupled to a silicon
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bridge microresonator, very similar to one already used
for two-mode cooling and instability experiments [16]. The
second is a cavity with an intracavity moving membrane [17].

We first present a summary of the conventional theory
of three-mode parametric interactions. We then describe the
experiment with a bridge resonator, which allows us to demon-
strate the resonant character of both amplification and cooling
processes, and the membrane experiment, which has demon-
strated parametric instability in a free-space cavity. The latter
experimental results reveal that the instability does not lead
to the loss of cavity lock and are in excellent agreement with
the theoretical model [18]. The implications of our results for
advanced gravitational-wave detectors are briefly discussed.

II. THEORY OF THREE-MODE PARAMETRIC
INTERACTIONS

Figure 1 presents a cartoon of two- and three-mode
interactions for the case of the Stokes mechanical amplifi-
cation process. An incident laser (optical power Pin, angular
frequency ω0 = 2πc/λ) is scattered by a moving mirror
(resonance frequency �m/2π ), creating two sidebands: Stokes
(at ω0 − �m) and anti-Stokes (ω0 + �m). In a cavity cooling
experiment [19–21], the anti-Stokes band is favored by tuning
the cavity close to ω0 + �m to damp and effectively cool
the resonator motion. Mechanical motion is amplified in the
opposite Stokes case.
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FIG. 1. (Color online) Radiation-pressure amplification seen as a macroscopic scattering process. (a) Two-mode amplification. The
nonresonant incident photon at ω0 is scattered to the same transverse optical mode, with a frequency offset �m with respect to the incident
photon. The cavity is detuned in order to favor the Stokes process, and the pump laser is far detuned from the resonance. (b) Three-mode
amplification. The resonant photon is scattered to a different optical mode of the cavity. Both the pump laser and the Stokes band can be
simultaneously resonant with the cavity. If the vibration profile of the mechanical mode matches the mode shape of the output optical mode,
the system can achieve very strong coupling.

In three-mode systems, the mechanical mode of the moving
mirror is coupled to not just one but two different optical
cavity modes. The incident laser beam (pump mode ω0 = ωp)
and the Stokes sideband can then be simultaneously resonant
with the cavity (target higher-order mode ωs), while still
keeping the anti-Stokes band far detuned. In this situation,
amplification appears as a scattering process of laser photons to
a lower-frequency mode by mechanical phonon creation. The
maximum efficiency is obtained when the laser is resonant with
the pump mode and when the frequency offset �ω = ωs − ωp

between the target mode and the pump is close to −�m, as
shown in Fig. 1(b).

Under such conditions, the effective damping rate �eff of
the mechanical resonator (mass m, mechanical quality factor
Q, and intrinsic damping �m = �m/Q) is related to the
parametric gain R which fully characterizes the three-mode
parametric interactions:

�eff

�m
= 1 − R. (1)

The parametric gain is given by

R = R+ − R−, (2)

where

R+ = 16

πλc

FpFtQPin �

m�2
m

(
1

1 + (ωp − �m −ωs)2/�2
cav

)
(3)

is the gain for the Stokes process and

R− = 16

πλc

FpFtQPin �

m�2
m

(
1

1 + (ωp + �m − ωs)2/�2
cav

)
,

(4)

is the gain for the anti-Stokes process.Fp andFt are the optical
finesses for the pump and target modes of the cavity, �cav/2π

the cavity bandwidth of the scattered mode, and � the spatial
overlap between mechanical mode u and optical modes vp and
vs.R is negative for cooling, positive for amplification and
larger than 1 for instability [1].

If the power is enough to exceed the parametric instability
threshold:

Pth = �ωpγpγs�m

2G2
ps

, (5)

then the amplitude will grow exponentially with the rate,

� ≈ 2G2
psPin

� ωpγpγs
− γm, (6)

where Gps is the coupling strength.
When the loss of pump mode power through scattering into

high-order mode becomes large, the amplitudes will reach their
steady-state values:

|ap|2 = �mγs

G2
ps

, (7)

|as|2 = �m

γs
|bm|2 , (8)

|bm|2 = −γpγs

G2
ps

+
√

2γpγs

�mG2
ps

Pin

�ωp
. (9)

Here, |ap| is the amplitude of the pump optical mode, |as| is the
amplitude of the scattered target high-order mode, and |bm| is
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the vibration amplitude of the mechanical mode of the moving
mirror (see Appendices for a detailed derivation).

III. DESIGN OF THE EXPERIMENTS

To observe the three-mode interaction, two relevant optical
modes have to be simultaneously resonant inside the cavity,
while the frequency difference between the two optical modes
must be tuned to the mechanical mode frequency to obtain
maximum parametric gain [1]. The resonance frequencies
of the mechanical modes of a typical table-top free-space
optomechanical resonator span from a few hundreds of kHz to
a few MHz, while the free spectral ranges of centimeter-scale
optical cavities usually lie in the GHz range. The two optical
modes therefore need to be almost degenerate (compared with
the scale of the free spectral range) and to be tuned with a
relative precision of ∼ 10−6. This can be achieved with a
careful choice of the mirror radii of curvature and of the cavity
length.

The second great challenge in these experiments is to ensure
a significant spatial overlap between the mechanical mode and
the optical modes.

A. Semiconfocal cavity with silicon resonator

Our first experiment, carried out at Laboratoire Kastler
Brossel in Paris, exactly corresponds to the setup first consid-
ered by Braginsky et al. [1]: a single-ended linear Fabry-Perot
cavity with a moving end mirror, whose motion induces
sidebands that can be amplified by the cavity. The moving
mirror is a 1 mm × 800 μm × 30 μm silicon doubly clamped
beam [16,22]. Such a micromirror has a number of mechanical
modes with appropriate vibration profiles (see Fig. 4) and
mechanical resonance frequencies close to 5 MHz.

The frequency resonance condition is reached with a cavity
close to the semiconfocal configuration, with the moving mir-
ror used as a nearly flat end mirror. The input mirror is concave,
with a 50-mm radius of curvature. The resonance frequency
offset �ω/2π scales linearly with the cavity length L, with a
measured rate of 250 kHz/μm close to the degeneracy point
L = R/2 between the TEM00 and TEM04 modes (see Fig. 2).
The cavity has a finesse of 30 000 for the TEM00 pump mode,
24 000 for the TEM04 scattered mode, with a corresponding
cavity bandwidth �cav/2π around 80 kHz.

Demonstration of three-mode interactions requires the
tuning of the frequency difference �ω with a precision that is
small compared with the cavity bandwidth �cav. This requires
the cavity length to be controlled at the 100-nm level. To
change the cavity length, we have used both a stepper motor to
set either the Stokes or the anti-Stokes band close to resonance,
and a piezoelectric transducer for finer displacement tuning in
the vicinity of the resonances.

B. Near-confocal cavity with intracavity membrane

To observe higher parametric gains, it is convenient to use
a lower mass resonator. In our second experiment, performed
at the University of Western Australia in Perth, we used a
50-nm silicon nitride membrane as the mechanical resonator
(see Fig. 3). Such membranes have low optical absorption and
can be embedded in high-finesse optical cavities, creating a

FIG. 2. (Color online) Cavity tuning close to the three-mode
resonance condition, for the two experimental setups envisioned.
(a) Mode spacing �ω/2π for the case of a TEM00 and a TEM04

mode, as a function of cavity length. The curves are computed
for a plano-concave cavity, with a radius of curvature R = 50 mm.
Insert shows a closeup of the degeneracy point. (b) Optical resonance
frequencies of the compound cavity as a function of the membrane
position z0. For simplicity, only the relevant transverse modes TEM00

and TEM02 are shown. (Insert) Closeup of the avoided crossing near
Crossover 1 (with relative membrane position). Note the different
horizontal and vertical scales.

FIG. 3. (Color online) Membrane-in-the-middle configuration
for the three-mode interaction experiment and illustration of the
overlap between the membrane (2,6) mechanical mode and TEM00

and TEM20 optical modes. (a) Cavity configuration. (b) Mode
shape of the membrane (2,6) mode. (c) Mode shape of the TEM20

cavity mode. (d) Product of the mode shapes, with the optical mode
correctly located on the membrane for optimized overlap.
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coupled cavity configuration that can mimic a conventional
setup. They also have high-quality factor mechanical modes
in the MHz range [17]. The measured resonance frequency for
the (2,6) mode under investigation is �m/2π ∼ 1.718 MHz,
with a mechanical Q of �106 in vacuum.

To demonstrate the parametric instability, the membrane
position is tuned so that the two optical modes have a frequency
difference �ω = −�m. Figure 2 shows the frequency structure
of the coupled cavity as a function of the membrane position.
One can see that when the membrane is near Crossover 1
or 2, the frequency difference between the TEM00 mode and
the target TEM02 mode can be small enough to match the
membrane mechanical frequency. Crossover 1 (z0 = 0.09 λ)
is closer to a node of the electric field and should have lower
optical loss due to membrane absorption [23] than Crossover
2 (z0 = 0.16 λ).

In principle, tuning the membrane position allows the mode
spacing between the TEM00 and TEM20 modes to be tuned to
arbitrarily small value to match the membrane mechanical
resonance frequency. However in practice, the crossovers
are avoided due to mode coupling [24,25]. Thus there is a
minimum frequency spacing at the nominal crossing point as
shown in the insert in Fig. 2. One of the greatest challenges
in this experiment has been the adjustment of the membrane
position and its careful alignment to allow the minimum
frequency spacing to be smaller than the chosen mechanical
mode frequency.

Figure 3 shows the mode shapes of the (2,6) mechanical
mode, the optical cavity TEM20 mode shape profile, and the
product of all three profiles—the (2,6) mode, and the TEM00

and TEM20 optical modes. The optimized overlap factor ∼0.11
is obtained when cavity modes are correctly positioned on
the membrane at a specific location. The maximum finesse
observed with the membrane inserted at the Crossover 1
position is ∼13 000.

IV. EXPERIMENTAL RESULTS

We present in the following experimental results obtained
with both setups. Additional information on the experimental
setups, their characterization, as well as details on the
experimental results can be found in the Appendices.

A. Three-mode cooling and amplification
with the semiconfocal cavity

Experimental results for the anti-Stokes process are pre-
sented in Fig. 4. Here we have used the effective damping rate
γeff of the mechanical resonator as a measure of the three-mode
coupling. Close to the anti-Stokes process resonance (�ω =
+�m), the thermal noise spectrum is both widened (and
reduced) as expected. Similar effects were already observed
in two-mode cooling experiments [16]. Close to the resonance
�ω = �m, we observe a parametric gain R � −0.72.

Similar measurements have been carried out for the neigh-
boring mechanical modes (3,7) and (5,5) of the moving mirror.
These results are also presented in Fig. 4. For all three modes,
we find that the frequency detuning �ω corresponding to the
maximal damping effect matches the mechanical resonance
frequency �m, deduced from the thermal noise spectrum, and

FIG. 4. (Color online) Experimental demonstration of the reso-
nant character of the three-mode anti-Stokes process. Mechanical
dampings of the (1,7) [green (middle)], (5,5) [black (left)], and (3,7)
[red (right)] mechanical modes. The damping increases substantially
close to the three-mode resonance condition. Dots are experimental
values of the effective damping, while the lines are fits to Eq. (4).
Inserts display the simulated mode shape profiles of the mechanical
modes.

the resulting damping of the mechanical mode. One can see
that the damping returns to its intrinsic value outside the
three-mode resonance. Note that different clamping losses
result in different intrinsic damping values. Despite the large
dispersion due to the low stability of the cavity, experimental
points for all three mechanical modes are well fitted by Eq. (4),
with a common optical bandwidth value close to 40 kHz, of
the same order of magnitude as the cavity optical bandwidth
�cav. Typical measured values for the absolute parametric gain
are close to 0.5.

Three-mode amplification has also been demonstrated close
to the Stokes process resonance (�ω = −�m). As sweeping
the length over 40 μm to detune the cavity by 2�m/2π �
10 MHz also changes its alignment, the overlap � and the
observed parametric gain are reduced. Results are in good
agreement with Eq. (3), and the measured maximal value for
the gain in this case is R = 0.41 for mode (1,7), for the same
optical power as in the cooling experiment. In this experiment
the parametric instability (gain > 1) regime could not be
achieved at the maximum usable input power of 5 mW.

B. Observation of three-mode parametric instability
with the intracavity membrane

We now describe the experiment performed with the
membrane cavity. The cavity is first set close to the Stokes
resonance condition. Once the laser is locked to the TEM00

mode and the optical mode is correctly positioned relative
to the membrane acoustic mode, exponential ring-up of the
mechanical (2,6) mode occurs as soon as the input power
exceeds the threshold of R = 1, reaching saturation in a time
of between 0.1 and 0.5 s, as shown in Fig. 5. Saturation occurs
without ruining the cavity locking. The figure shows that the
saturation amplitude depends on the input power. Due to the
very low-mass membrane and the high-finesse cavity used
in this experiment, the threshold for parametric instability is
expected to be only ∼3 μW. Hence very low powers must be
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FIG. 5. (Color online) Experimental demonstration of the para-
metric instability. The dots are experimental data of the beat-
note signal between the cavity TEM00 mode and TEM20 mode at
mechanical frequency, as a function of time for different input powers.
The curves display exponential ring-up before reaching saturation.
The solid curves are simulation results for the corresponding input
power. The input power is 26 μW (black), 15 μW [orange (dark
gray)], and 7 μW [yellow (light gray)].

used, which means that the beat-note signal between TEM00

and TEM20 is initially below the photodetector noise floor.
Experimental results are presented in Fig. 5 for three

different optical input powers: 7, 15, and 26 μW. The solid
curves are simulations using the value of Gps inferred from
the fit performed in Fig. 6 and the same input powers. The
measured ring-up times and beat-note steady-state amplitudes
between the TEM00 and TEM20 modes are shown in Fig. 6 as
a function of input power. Clearly there is good agreement
between the experimental results and the large-amplitude
model, except for some discrepancy at large input power.
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FIG. 6. (Color online) Measured steady-state beat-note signal
amplitudes (solid squares) and ring-up times (hollow circles) as a
function of the input power. The dashed blue line fit for the ring-up
time is from Eq. (A2), and yields a value of Gps = 2π × 0.10 Hz.
The full red line fit for the beat-note amplitude is from Eqs. (A5) and
(A6). The vertical line indicates the parametric instability threshold
of 3.92 μW.

This could be due to thermal effects caused by the increased
transverse mode intensity, which could lead to a decrease of
the parametric gain. The fit for the ring-up time constant
yields a value of Gps = 2π × 0.10 Hz and a corresponding
instability threshold power P th

in = 3.92 μW using Eq. (A1).
This is in excellent agreement with the theoretical model as it
corresponds to an effective coupling and an effective overlap
very close to its optimum value � = 0.95 �opt. The small
discrepancy can be explained by the imperfect membrane
alignment. The fit for the steady-state beat-note amplitude
yields a similar value.

V. CONCLUSION

Three-mode cooling and amplification up to the parametric
instability have been demonstrated in fully tunable free-space
optical cavities. Results demonstrate that the challenging
tuning required to enable three-mode interactions can be met
in appropriately designed optomechanical systems. The triple
resonance allows strong coupling which in turn opens new
possibilities for transducers, and single sideband upconverters
from the MHz to the optical band.

Our observation that mechanical mode amplitudes saturate
in accordance with our large-amplitude model for parametric
instability has interesting implications. It means that in such
systems, the saturation acts to control the cavity pump mode
power to a constant value independent of the input laser power.

In our system the onset of three-mode instability has not
led to loss of cavity lock because the power loss from the
TEM00 mode is sufficient to stabilize the system. The work
has important implications for large-scale laser interferometer
gravitational wave detectors such as Advanced LIGO and
Advanced Virgo. First we have confirmed the basic physics of
three-mode parametric instability, thereby adding confidence
to the prediction that such instabilities will need to be
controlled in these detectors. Second, this work shows that
instability does not necessarily lead to loss of cavity lock,
although it is not possible to directly extrapolate to large-
scale interferometers which have more complicated control
loops and different dynamical range. Further investigation of
parametric instability in large interferometers is needed.
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APPENDIX A: LARGE-AMPLITUDE MODEL

Most prior analysis of three-mode interactions have as-
sumed small amplitude [1,2,5,26–28]. While appropriate
for obtaining instability criteria, this approach is no longer
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FIG. 7. (Color online) Steady-state behavior of three-mode para-
metric instability. As soon as the cavity pump circulating power
exceeds the instability threshold, the power remains constant for all
input powers, while the transverse mode and the mechanical mode
amplitude increase monotonically.

relevant once the instability threshold is passed and the loss
of fundamental mode power through scattering into high-
order mode becomes large. Polyakov and Vyatchanin [18]
developed a large-amplitude theoretical model, which is valid
for parametric gain R > 1. They predicted that the interaction
will reach a saturated steady state. If the power is enough to
exceed the parametric instability threshold:

Pth = �ωpγpγs�m

2G2
ps

, (A1)

then the amplitude will grow exponentially. According to
Eq. (2.25) of Polyakov and Vyatchanin [18], the initial ring-up
rate after turning the laser on will be [29]

� ≈ 2G2
0SPin

� ωpγ0γS
− γm, (A2)

with a coupling strength Gij :

Gij = 2

L

√
�ωiωj

2m�m
�ij , (i,j = p,s), (A3)

where L is the cavity length and m is the effective mass of
the mechanical mode. The overlap factor between the optical
modes âp, âs and the mechanical mode b̂m is defined as

�ij =
(∫

d2r⊥ u(r⊥) vi(r⊥) vj (r⊥)

)2

, (A4)

where (i,j = p,s). u is the normalized mechanical mode
profile, vp and vs the normalized optical mode profiles for the
pump and scattered modes, and r⊥ is the transverse coordinate
on the resonator surface [1].

When the loss of pump mode power through scattering
into high-order mode becomes large, the amplitude will stop
increasing. According to Eqs. (2.17)–(2.19) of Polyakov and
Vyatchanin [18], the steady-state amplitudes of the three-mode
system will be (with some change of notation)

|ap|2 = �mγs

G2
ps

, (A5)

|as|2 = �m

γs
|bm|2, (A6)

|bm|2 = −γpγs

G2
ps

+
√

2γpγs

�mG2
ps

Pin

�ωp
. (A7)

where |ap| is the amplitude of the pump optical mode, |as| is
the amplitude of the scattered target high-order mode, and |bm|
is the amplitude of the mechanical mode of the moving mirror.
Figure 7 shows the steady-state amplitude of the cavity mode,
the higher-order mode, and the mechanical mode as a function
of input power.

APPENDIX B: NUMERICAL SIMULATION
OF PARAMETRIC INSTABILITIES

Here we present the results of our own numerical sim-
ulation, which will be used to interpret our experimental
results. We assume here that the Stokes mechanism of the
three-mode interaction is resonant (i.e., �ω = −�m). To have
a better understanding of the whole parametric instability
process, we have performed a discrete time-steps simulation.
To reduce artifacts, we solve the equations of motion with the
Runge-Kutta method [30]. To reduce computation time, we
rewrite the equations of motion to have three variables in the
following form:

ȧp = −γpap + iGpsase
i�mt × 2Re(bme−i�mt ) + √

2γpAin,

ȧs = −γsas + iGpsape
−i�mt × 2Re(bme−i�mt ), (B1)

ḃm = −�mbm + iGpse
i�mt × 2Re(a∗

pase
i�mt ).

The numerical values used for the simulation correspond to
the experiment carried out on the near-confocal cavity with
intracavity membrane. The initial state is set as

ap(0) = 0, as(0) = 0, bm(0) =
√

kBT/(��m), (B2)

so the system starts with the mechanical resonator thermal
noise level and no light resonant in the cavity. In reality, the
initial conditions are determined by the thermal distribution of

FIG. 8. (Color online) Simulation results for the TEM00 mode
amplitude (ap), the TEM20 scattered mode amplitude (as), and the
mechanical motion amplitude (bm). The input powers used here
are 5 μW [yellow (light gray curves)], 15 μW [orange (dark gray
curves)], and 25 μW (black curves). The system acts to control the
pump power in the cavity to a value which is independent of the
incident power, by scattering into the mechanical and transverse
modes.
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the mode amplitude. Fluctuations in this amplitude (assumed
here to have its mean value) lead to small changes on the
effective time axis. Because the amplitudes of concern in this
paper are large compared with the thermal amplitude, we also
neglect the thermal driving of bm in Eq. (B1).

The simulation results obtained with an input TEM00 power
of 5 μW, 15 μW, and 25 μW are shown in Fig. 8. When ap

reaches a threshold value, the parametric amplification process
starts and both as and bm start growing. This process goes
on until saturation is reached. In the saturation regime, the
intracavity pump amplitude ap is precisely independent of the
pump power (see Fig. 8, top curve). The excess optical energy
is channeled to the scattered optical amplitude as and the
mechanical motion amplitude bm. For our parameters, above
threshold, the typical scattered circulating power is a few mW
and the typical displacement amplitude of the order of 10−10 m
(see Fig. 7).

APPENDIX C: SEMICONFOCAL CAVITY

1. Characterization

A simple characterization setup using a network analyzer,
local electrostatic actuation, and a Michelson interferometer to
probe the mirror motion allows us to map the vibration profiles
and therefore identify the different vibration modes. The
corresponding overlap factors �ps can then be computed, with
Gaussian modes TEM00 and TEM04 as pump and scattered
modes, respectively.

2. Experiment

For each set of experiment, we first measure an optical
spectrum of the cavity, similar to the one presented in Fig. 11
(for the other experimental setup). This, together with an
identification of the transverse mode corresponding to each
resonance peak with a CCD camera, allows one to measure
the exact optical detuning for a given length of the cavity,
which has proven stable over the typical duration of a complete

FIG. 9. (Color online) Three-mode cooling. Displacement ther-
mal noise spectra observed close to the (1,7) mechanical resonance
frequency, for different frequency offsets �ω between TEM00 and
TEM04 modes of the cavity. Due to the three-mode cooling, the
thermal noise spectrum is both widened and reduced. Curves (a)–(d)
are measured for different detunings, (a) being the furthest from
resonance, and (d) the closest.

FIG. 10. (Color online) Experimental demonstration of the
Stokes mechanism. Thermal noise spectra observed close to the
Stokes process resonance. The curves are for different detunings
(a)–(d); see insert. (Insert) Evolution of the effective mechanical
damping of the (1,7) mechanical mode close to the Stokes resonance
condition, together with a fit with theory.

experiment. We then measure the noise spectra for different
cavity detunings. Note that because the coating thickness
(�5 μm) is not negligible compared to the resonator thickness,
the coating process yields tension within and bends the
resonator, slightly changing the optical frequency resonance
condition.

3. Experimental results

Figure 9 presents the typical noise spectra observed for
different detunings �ω. As for the usual two-mode cooling
experiments, the noise spectrum becomes both wider (as
the effective damping � is increased) and lower (because
of the related cold damping effect). Figure 4 of the article
presents the measured values of the effective damping, ob-
tained by fitting the noise spectrum. As expected, the damping
reaches a peak value at the three-mode resonance (spectrum
d) and returns to the intrinsic damping value � outside the
resonance (spectrum a).

Figure 10 presents the results obtained in the opposite
case where the Stokes sideband is resonant and amplification
occurs. For similar reasons as above, the spectra are both
narrower and higher. The insert displays the dependence of
the measured effective dampings with the cavity detuning. The
same behavior as in the cooling case is observed: maximum
effect at the resonance (curve d) and intrinsic damping outside
the corresponding cavity bandwidth (curve a).

APPENDIX D: CAVITY WITH MEMBRANE
IN THE MIDDLE

1. Membrane

The membrane is a commercial Norcada stoichiometric
silicon nitride membrane with tensile stress T = 800 Mpa and
density ρ = 2.7 g/cm3 [31]. It has a square geometry with a
side length D = 1 mm and a thickness l = 50 nm. The effec-
tive mass of the membrane is 40 ng. The measured resonance
frequency is in good agreement with the expected one, given by
�i,j /2π =

√
T/4ρD2

√
i2 + j 2. The normalized membrane
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(i,j ) mode shape is given as follows (i,j = 1,2, . . .) [23]:

ui,j (x,y) = 2

D
sin

(
iπx

D
+ iπ

2

)
sin

(
jπy

D
+ jπ

2

)
. (D1)

2. Experimental setup

The optical cavity is mounted on an invar bar in a
vibration isolated vacuum tank. Motorized optical mounts
and piezoelectric transducers are used for cavity alignment.
The Pound-Drever-Hall technique [32] is used to lock the
input laser frequency to the cavity TEM00 resonance. We have
developed careful alignment and tuning procedures to tune the
cavity.

3. Coupled cavity with a membrane

The resonance frequency of such a cavity depends on the
reflectivity r and relative position of the membrane z0 [33]:

ωq = ω0
q − (c/L) cos−1[|r| cos(4πz0/λ)], (D2)

where ω0
q is the resonance frequency for the corresponding

linear cavity, and r is the membrane amplitude reflectivity,
which depends on the membrane thickness l and index of
refraction n [34] as follows:

r = (n2 − 1) sin 2πnl/λ

2in cos 2πnl/λ + (n2 + 1) sin 2πnl/λ
. (D3)

In this system, one also has to correct the overlap factors �ij

by an additional dimensionless longitudinal overlap factor �l,
which depends on the compound cavity working point and is,
when the frequency difference between the target mode and
pump mode is much smaller compared with the pump mode
|ωs − ωp| � ωp, given by

�l = sin(4πz0/λ)

√
|r|2

1 − |r|2 cos2(4πz0/λ)
. (D4)

0 2 4 6 8 10 12
15.5

16

16.5

17

17.5

FIG. 11. (Color online) Cavity spectrum when the mode spacing
is tuned close to the mechanical mode frequency. A fit with a double
Lorentzian allows the frequency difference �ω and the cavity losses
for both optical modes to be determined.

4. Characterization

We have measured the dependence of TEM00 and TEM20

mode frequency spacing with the membrane angle. As
expected, the frequency spacing is minimized when the
membrane is normal to the cavity axis, and varies with a
typical rate ∼4 MHz/mrad. We have first tuned the membrane
position along the optical axis to the desired Crossover 1
position. The optical mode spacing at the avoided crossing is
then tuned by membrane angular adjustment. Figure 11 shows
the tuned cavity spectrum. We have fitted the spectrum to two
Lorentzians to determine the corresponding mode linewidths.
As expected, as the optical mode spacing decreases, the cavity
mode linewidth increases due to the coupling between the
two modes [24]. We continuously monitor the mode shape
through the cavity transmission with a CCD camera to ensure
the mode shape stays the same. The cavity is stable enough to
make repeatable measurements, but retuning is required every
day to compensate for very slow drifts.
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