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Common characteristics of synchrotron radiation and

light leaking from a bent optical fiber
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1 Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
2 Institut de Physique Nucléaire de Lyon, CNRS-IN2P3.
3 Institut Lumière Matière, Université Lyon 1.

E-mail: x.artru@ipnl.in2p3.fr

Abstract. Light leaking from a bent optical fiber shares many properties with synchrotron
radiation : in ray optics, both lights are emitted tangentially to a light cylinder ; in wave
optics, the emission mechanism involves a tunnel effect. The angular distributions of these two
radiations are studied in parallel and found to be similar. The same is done for the impact
parameter distributions. The latter show interference fringes of the Airy function type. The far
field escaped from the fiber is calculated with the Volume Current Method. An optical system
observing the impact parameter profile is proposed.

1. Introduction

Synchrotron radiation (SR) is the best known type of radiation emitted by a relativistic electron.
Its spectrum and angular distribution is well calculated in classical electrodynamics for most
practical purpose. However, its distribution in impact parameter space [1, 2, 3, 4], which is
relevant in beam profile measurement, is not so well known. Furthermore, the most consistent
classical equation of motion including radiation reaction, the so-called Abraham-Lorentz-Dirac
(ALD) equation is plagued with unphysical run-away solutions. Notwithstanding this difficulty,
a link has been established between the impact parameter of an emitted photon, a “side-slip”
of the electron and the Schott term of the ALD equation [5, 6].

An heuristic explanation of SR is the following: the whole Coulomb field of the electron
cannot follow the curved motion of the latter. Its part outside the “light cylinder” (a concept
used in pulsar physics) of radius1 R/v would go faster than light. It detaches and becomes free
radiation. Light escaping a bent optical fiber (LEBF) can be explained is the same way (see
figure 1), replacing the Coulomb field by the evanescent wave surrounding the fiber and v by
the phase velocity vph of the internal wave.

In this paper we pursue this analogy quantitatively. We assume that light circulates in the
fiber in a definite mode M (see Ref. [7]) and has a definite frequency ω0. In Section 2 we
compare the far-field angular distributions of both radiations. In Section 3 we analyze the fields
in the impact parameter b parallel to the curvature plane and propose an optical system for
observing the b-distribution.

1
R is the orbit radius of the electron or the bending radius of the fiber. In our units the speed of light is 1.
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Angular momentum considerations. In SR, the photon angular momentum JY about the orbit
axis (see figure 2) can be expressed in two ways [4]

JY = ~ω R/ve , (1)

JY = Rphot ~ω cosψ , (2)

Rphot is the distance between the light ray (in ray optics) and the orbit axis and ψ is the angle
between the ray and the orbit plane. For a photon escaping a fiber bent about the Y -axis we
have the same formulae, but replacing ve by the phase velocity vph. From (1-2) we obtain

Rphot = R/(v cosψ) (3)

with v = ve or vph. We see that the light ray does not come from the electron trajectory (SR
case) or from the fiber (LEBF case), but is tangent to a cylinder of radius Rphot > R. The
bundle of rays form a caustic. The classical impact parameter of the photon is

bcl ≡ Rphot −R ≃ (γ−2 + ψ2)R/2 (4)

where ψ is the angle between the ray and the curvature plane and γ = (1 − v)−1/2 with v = ve
or vph. We have assumed ψ ≪ 1 and γ ≫ 1, so that bcl ≪ R. The finite impact parameter
explains the frequency cutoff of SR or the critical bending radius of LEBF. bcl must be less than
the transverse size of the electron Coulomb field (for SR) or of the evanescent wave (for LEBF).
These are both ∼ γ/ω. We obtain therefore formally the same condition for a significant SR or
LEBF yield :

ωR <
∼ γ3 . (5)

This condition can also be obtained by considering the emission of the photon as a tunneling
through the centrifugal barrier [8].

Electron side-slipping [5, 6]. In the SR case, the electron “side-slips” in the direction of the
force exerted by the field. The displacement

be = bcl ~ω/(γme) (6)

is such that, just after the emission, the centre-of-inertia of the photon + electron system
prolongates the initial electron trajectory. bcl may be measurable with a thin enough electron
beam, but be ∼ λ–c ≃ 400 fm is practically not visible. Nevertheless, the global side-slipping due
to many photon emissions in the ~ → 0 limit is responsible for the Schott term in d3X/dτ3 of
the ALD equation.

light

cylinder

Figure 1. Escape of light from a bent optical fiber. The shaded areas represent the evanescent
wave. A similar figure can be drawn for synchrotron radiation.
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Figure 2. Coordinate system for synchrotron radiation or LEBF. The Y-axis is the bending
axis.

2. SR and LEBF amplitudes

Let us treat in parallel SR and LEBF. The electron trajectory or the fiber is bent in the
“horizontal” (x, z) plane along the circle of radius R centered at (−R, 0, 0) as shown in figure
2. The angular velocity Ω of the electron or the wave about the Y axis is negative. The
right of figure 2 specifies the spherical angular coordinate θ and ψ of the emitted photon
momentum, K = ω (cosψ sin θ, sinψ, cosψ cos θ). We take as linear polarization vectors
êθ(K) = (cos θ, 0,− sin θ) and êψ(K) = (− sinψ sin θ, cosψ,− sinψ cos θ).

The current sources. SR is emitted by the current density

j(t,X) = −eve(t) δ
3[X − Xe(t)] , (7)

where Xe(t) = (R cosφ−R, 0, R sinφ), φ = vt/R and ve = (− sinφ, 0, cos φ).
LEBF can be considered as emitted by the polarization current jpol induced by the channeled

wave in the fiber medium. For the mode {M, ω} defined in [7] the current density is

jpol(X, t) = 2Re{j{M, ω}(r) exp(ipz − iωt+ iη)} , (8)

η being a “classical” phase. Macroscopic Maxwell equations in medium give jpol = (ε−1) ∂tEreal,
whence

j{M, ω}(r) = −iω [ε(r) − 1]E{M, ω}(r) . (9)

j{M, ω} is complex, like E{M, ω} and ~E{M, ω} of Ref. [7]. In a straight fiber the current density
jpol is in uniform translation motion at speed vph, therefore does not radiate. In a bent fiber it
emits synchrotron-like radiation, the retarded field obeying the microscopic Maxwell equations

∇× B − ∂tE = jpol , ∇·E = ρpol ,
∇× E + ∂tB = 0 , ∇·B = 0 . (10)

The Volume Current Method [9, 10] consists in taking the jpol of the straight tangent fiber in
(10), replacing the variable z in (8) by the curvilinear abscissa along the fiber.

2.1. Angular distributions
The radiation field emitted by the current density j is expanded in free plane waves:

Erad(t, r) =

∫

d3K

(2π)3
f(ω) Re

{

Ẽ(K) eiK·X−iωt
}

, (11)
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f(ω) Ẽ(K) = −

∫

dt d3X exp(iωt− iK ·X) j⊥(t,X) , (12)

where ω = |K|, f(ω) = 1 for a polychromatic source (SR case), f(ω) = 2πδ(ω − ω0) for a
monochromatic source (LEBF case); j⊥ is the component of j orthogonal to K. In SR one
measures the spectral-angular distribution,

dW

dω dΩ
=

ω2

16π3

∑

µ
|ê∗µ(K) · Ẽ(K)|2 , (13)

and in LEBF, the angular power distribution,

dW

dt dΩ
=

ω2
0

8π2

∑

µ
|ê∗µ(K) · Ẽ(K)|2 ; (14)

µ = θ or ψ denotes the linear polarization axis.

Synchrotron case. We consider the radiation from one single pass of orbital motion. From (7)
and (12),

Ẽ(K) = eR

∫ π

−π
dφ exp{iKR(φ/ve − cosψ sinφ)} [sin φ êθ + sinψ cosφ êψ] . (15)

Using the ultra-relativistic approximations γ ≫ 1, ψ ≪ 1 we obtain

Ẽ(K) = e θ0R
[

−iθ0 A
′(ξ) êθ + ψA(ξ) êψ

]

eiζ , (16)

where
θ0 = (ωR)−1/3 , ξ = (γ−2 + ψ2) θ−2

0 /2 , (17)

ζ = ωR (cosψ sin θ − θ/v) (18)

and A(ξ) is a re-scaled Airy function

A(ξ) = 24/3π Ai
(

21/3ξ
)

=

∫ +∞

−∞
dτ exp(iξτ + iτ3/6) . (19)

Optical fiber case. We will assume that the fiber is sufficiently thin so that v ≡ vph is close to
1. Then we can use the same “ultrarelativistic” approximations as in SR and obtain

Ẽ(K) = −θ0R
{ [

j̃xA(ξ) + i j̃z θ0 A
′(ξ)

]

êθ

+
[

j̃y − ψ j̃z

]

A(ξ) êψ

}

eiζ (20)

where

j̃ =

∫

dx dy exp(−iKy y) j{M, ω}(x, y) (21)

is calculated for a straight fiber and we use again the definitions (17-18).
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Figure 3. Optical device reproducing the hybrid impact parameter distribution of SR or LEBF
on a screen. For the horizontal (resp. vertical) coordinate, the adiabatic lens is focused on the
z = 0 (resp. −∞) plane (the “vertical” axis ŷ is out of the figure plane). The hollow dots on
the light cylinder are the classical emission points when the electron is in positions 1, 2 and 3.
Rays emitted in 1 and 3 reach the same point on the screen, therefore interfere.

2.2. Impact parameter representation
We collect the light with an optical device, shown in figure 3, centered on the z axis and of
aperture O such that θ0 ≪ O ≪ 1. Thus êθ(K) ≃ x̂ and êψ(K) ≃ ŷ. We are interested only
in the component b of the impact parameter parallel to the curvature plane, so we choose an
astigmatic device horizontally focused at z = 0 and vertically focused at z = −∞. We thus
observe the partial Fourier transform

Ě(ω, x,Ky) =

∫

dKx

2π
exp(iKxx) Ẽ(K) (22)

≃ [ωθ0/(2π)] Ẽ(0,Ky , ω)A (χ) , (23)

with χ = [bcl − x]/b0 and b0 = Rθ2
0. The factor A(χ) comes from the Fourier transform of

eiζ . According to the Parseval-Plancherel formula one passes from the Kx-distribution to the
x-distribution by the substitution |Ẽ|2 → |Ě|2 and dKx/(2π) → dx. We obtain thus the hybrid
(x, ψ) distribution

dW

dxdψ (dω or dt)
=

ω

2π
θ2
0 A

2(χ)
dW

dθ dψ (dω or dt)
, (24)

which applies both to SR (with dω) and LEBF (with dt). The simplicity of this result comes
from the uniform rotation of the source, which gathers the θ dependence in the phase factor eiζ .

The Airy fringes. The oscillating Airy function in (24) gives the crescent-shaped fringes on the
screen. These can be explained by the interference between waves emitted from points of the
light cylinder which are symmetric about the (x, y) plane, like the hollow points above 1 and 3 of
figure 3. The same oscillations are present in the full (x, y) impact parameter distribution (see
figure A5 of [2]). Note that the fringes are characteristic of the impact parameter representation
of a caustic wave [11]. It is therefore possible to gather the fringes in one single peak in x,
with an optical system which transforms the caustic into a true focus, for instance a curved
mirror with a cubic deformation. This single peak would be more convenient and give a better
resolution for beam profile measurements.
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Figure 4. Relation between the fields Erad, Eret and Eadv.

“Far-field” conditions. The x- or (x, y)-distribution of Erad cannot be measured with a probe
put in the z = 0 plane, close to the electron beam or to the fiber : one would record the intensity
of the retarded field Eret (of the electron for SR, of the polarization current for LEBF). Due to
the identity Erad = Eret − Eadv pictured in figure 4 the error would be equal to the advanced
field Eadv. If, for the purpose of deflecting the light toward a focusing optics, one puts a mirror
close to the electron beam, one adds a parasitic diffraction radiation by the mirror edge. We
must therefore put any collecting system far enough from the source. Eadv is still there, but
propagating at large angle to the optical axis, as can be guessed from figure 4; therefore it cannot
reach the image screen.

3. Conclusion

The strong similarity between synchrotron radiation (SR) and light escaping a bent fiber (LEBF)
allows a deeper understanding of both processes. For example the cutoff frequency of SR and
the critical curvature of a fiber are both derived from angular momentum considerations and
reveal a tunneling mechanism. The Airy-type fringes of the impact parameter distribution, yet
observed neither in SR nor in LEBF, could provide a tool for beam position monitoring. The
principle of the optical system could be cheaply tested with LEBF.
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