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Communicated by N. Alamanos

Abstract. The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood,
Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the
latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an
extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations
means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded
to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a
correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly
solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM.

1 Introduction

Approaches to many-body physics are many-fold. Only
on the mean-field level there is consensus in practically
all fields of physics. On the level of two-body correla-
tions, the approaches diverge. There are the Quantum
Monte Carlo methods with a reference state (usually a
Slater determinant or a BCS state) on which a local two-
body operator in the exponential is applied [1, 2] which
will have some relation with the Self-Consistent RPA
(SCRPA) approach we will present here. There is the Cou-
pled Cluster Theory (CCT) [3,4] most directly applicable
for ground-state energies. The Density Matrix Renormali-
sation Group (DRMG) method is very successful mostly in
1D systems [5–7]. The correlated basis functions method
is still another many-body theory often applied to nuclear
matter [8]. Many more attempts to tackle with the diffi-
cult many-body problem, all taylored to specific problems,
could be cited. In such a diversity, it may be worth present-
ing recent progress with the equation of motion method
where the hierarchy of time-dependent density matrices
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is truncated at the three-body level in approximating the
latter by a quadratic form of two-body correlation func-
tions meeting in this way SCRPA as a sub-product of
the theory. These equations are attractive in the sense
that they are of the Schroedinger type still keeping all
appreciated properties of standard RPA, i.e., conserva-
tion laws and sum rules are fulfilled. In the case of broken
symmetries the Goldstone mode appears, Ward identities
and gauge invariance are maintained. Ground-state ener-
gies and excited states are obtained on the same footing.
We will demonstrate these properties with applications to
model cases. We are sure that Daniel Gogny would have
been very interested in this approach, since he had a deep
knowledge in many-body theory.

This short review is organised as follows. In sect. 2,
we will explain how we truncate and close the system of
density matrix equations expressing the three-body cor-
relator by a quadratic form of the two-body correlator.
In sect. 3, we consider the small amplitude limit of those
equations. In sect. 4 we give a reminder of Self-Consistent
RPA (SCRPA) and in sect. 5, the relation of SCRPA with
the Coupled Cluster Doubles (CCD) wave function [9] is
outlined and it will be explained how to obtain the oc-
cupation numbers. In sect. 6, we present applications to
the Lipkin and Hubbard models and in sect. 7 we give our
conclusion.
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2 Truncation of the time-dependent density
matrix equations

2.1 General formalism

We start from the two-body Hamiltonian for fermions in
second quantisation,

H =
∑

α

eαa+
α aα +

1
4

∑

αβγδ

v̄αβγδa
+
α a+

β aδaγ , (1)

where eα are some single-particle energies, a+, a are the
usual fermion creation and annihilation operators, and
v̄αβγδ = 〈αβ|v|γδ〉−〈αβ|v|δγ〉 is the antisymmetrized ma-
trix element of the two-body interaction.

The coupled equations for the one-body and two-body
density matrices are then of the following form [10]:

iρ̇αα′ =
∑

λ

(εαλρλα′ − ραλελα′)

+
1
2

∑

λ1λ2λ3

[
v̄αλ1λ2λ3Cλ2λ3α′λ1

−Cαλ1λ2λ3 v̄λ2λ3α′λ1

]
, (2)

iĊαβα′β′ =
∑

λ

(
εαλCλβα′β′ + εβλCαλα′β′

−ελα′Cαβλβ′ − ελβ′Cαβα′λ

)

+B0
αβα′β′ + P 0

αβα′β′ + H0
αβα′β′

+
1
2

∑

λ1λ2λ3

[
v̄αλ1λ2λ3Cλ2λ3βα′λ1β′

+v̄λ1βλ2λ3Cλ2λ3αα′λ1β′

−v̄λ1λ2α′λ3Cαλ3βλ1λ2β′

−v̄λ1λ2λ3β′Cαλ3βλ1λ2α′
]
, (3)

where Cαβα′β′ is the correlated part of the two-body den-
sity matrix, that is

ραβα′β′ = A(ραα′ρββ′) + Cαβα′β′ (4)

and C3 (in short-hand notation) contained in the three-
body density matrix

ραβγ,α′β′γ′ = AS(ραα′ρββ′ργγ′ + ραα′Cβγβ′γ′)
+Cαβγ,α′β′γ′ (5)

is the fully correlated part of the three-body density ma-
trix in (5) which is neglected in the original version of
TDDM [11]. In (4) and (5), A and S are the appropriate
antisymmetrisers and symmetrisers. The energy (mean-
field) matrix εαα′ is given by

εαα′ = eαδαα′ +
∑

λ1λ2

v̄αλ1α′λ2ρλ2λ1 . (6)

’
’
’

T 
T 

(a) 

’T 
T ’

’

(b) 

Fig. 1. Second-order T -matrix contribution to the Faddeev
series of the three-body correlation function.

The matrix B0
αβα′β′ in eq. (3) does not contain Cαβα′β′

and describes the 2p-2h and 2h-2p excitations,

B0
αβα′β′ =

∑

λ1λ2λ3λ4

v̄λ1λ2λ3λ4

×
[
(δαλ1 − ραλ1)(δβλ2 − ρβλ2)ρλ3α′ρλ4β′

−ραλ1ρβλ2(δλ3α′ − ρλ3α′)(δλ4β′ − ρλ4β′)
]
.

(7)

Particle-particle (p-p) and hole-hole (h-h) correlations are
taken care of by P 0

αβα′β′ ,

P 0
αβα′β′ =

1
2

∑

λ1λ2λ3λ4

v̄λ1λ2λ3λ4

×
[
(δαλ1δβλ2 − δαλ1ρβλ2 − ραλ1δβλ2)Cλ3λ4α′β′

−(δλ3α′δλ4β′−δλ3α′ρλ4β′−ρλ3α′δλ4β′)Cαβλ1λ2

]
.

(8)

H0
αβα′β′ contains the p-h correlations.

H0
αβα′β′ =

∑

λ1λ2λ3λ4

v̄λ1λ2λ3λ4

×
[
δαλ1

(
ρλ3α′Cλ4βλ2β′ − ρλ3β′Cλ4βλ2α′

)

+δβλ2

(
ρλ4β′Cλ3αλ1α′ − ρλ4α′Cλ3αλ1β′

)

−δα′λ3

(
ραλ1Cλ4βλ2β′ − ρβλ1Cλ4αλ2β′

)

−δβ′λ4(ρβλ2Cλ3αλ1α′ − nαλ2Cλ3βλ1α′)
]
. (9)

In eq. (3), the last four terms contain the correlated part
C3 of the three-body density matrix. In the past, usually
C3 was neglected. We here want to keep it, approximating
it by a quadratic form of C2’s which sums up an important
sub-class of correlations contained in C3. Inspecting (3),
we see that the C3’s have a+aa attached to the interac-
tion. Therefore, the C3’s are of the 2 particle-1 hole (2p-
1h) or 2h-1p type. Such type of correlations enter, e.g.,
the single-particle self-energy of the Dyson equation [12].
An important subclass of Feynman diagrams in C3 are the
one-line reducible ones where the 2p-1h states collapse into
1p ones (as this is, e.g., the case in first-order perturbation
theory). This class of correlations we want to incorporate
in our approach. They are graphically represented by a
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second-order T -matrix approach of the three-body Fad-
deev series in fig. 1.

This quadratic form of the three-body correlation ma-
trix is most systematically and straightforwardly obtained
from the identity between three-body and four-body den-
sity matrices

ραβγα′β′γ′ =
1

N − 3

∑

λ

ραβγλα′β′γ′λ. (10)

The above identity is written in terms of correlation ma-
trices as

Cαβγα′β′γ′ =
1
3

∑

λ

(
ραλCλβγα′β′γ′ + ρβλCαλγα′β′γ′

+ργλCαβλα′β′γ′ + ρλα′Cαβγλβ′γ′

+ρλβ′Cαβγα′λγ′ + ρλγ′Cαβγα′β′λ

−Cαβα′λCγλβ′γ′ − Cαβγ′λCγλα′β′

−Cαβλβ′Cγλα′γ′ − Cαγα′λCλββ′γ′

−Cαγβ′λCβλα′γ′ − Cαγλγ′Cβλα′β′

−Cαλα′β′Cβγγ′λ − Cαλα′γ′Cβγλβ′

−Cαλβ′γ′Cβγα′λ − Cαβγλα′β′γ′λ

)
, (11)

where Cαβγλα′β′γ′λ is a four-body correlation matrix.
Under the assumptions that ραα′ = δαα′nα and
Cαβγλα′β′γ′λ = 0, that is the fully correlated part, C4,
is neglected, the above relation is given as

Cαβγα′β′γ′ =
1

3 − nα − nβ − nγ − nα′ − nβ′ − nγ′

×
∑

λ

(
− Cαβα′λCγλβ′γ′ − Cαβγ′λCγλα′β′

−Cαβλβ′Cγλα′γ′ − Cαγα′λCλββ′γ′

−Cαγβ′λCβλα′γ′ − Cαγλγ′Cβλα′β′

−Cαλα′β′Cβγγ′λ − Cαλα′γ′Cβγλβ′

−Cαλβ′γ′Cβγα′λ

)
. (12)

The correlated part of the occupation numbers in (12)
may induce correlations of four-body type which we want
to neglect. Therefore, we will replace in (12) the nα by
their Hartree-Fock (HF) values zero or one. In princi-
ple the system of equations is now closed and, given ini-
tial conditions, one could start with a time-dependent
solution. However, also a static-equilibrium solution and
small-amplitude solutions around equilibrium are of par-
ticular interest. We want to elaborate those cases next.

2.2 Static limit: restriction to particles and holes

In the static limit, the first equation (2) becomes a gen-
eralised HF equation (6) where the single-particle basis
couples back to the ground-state correlations

0 =
∑

λ

(εαλρλα′ − ραλελα′)

+
1
2

∑

λ1λ2λ3

[
v̄αλ1λ2λ3Cλ2λ3α′λ1

−Cαλ1λ2λ3 v̄λ2λ3α′λ1

]
, (13)

Such equation has been considered in the past [13]. The
static equation for the two-body correlation function, for
convenience, is written in the basis where the mean-field
energies (6) are diagonal,

0 = (εα + εβ − εα′ − εβ′)Cαβα′β′ + B0
αβα′β′ + P 0

αβα′β′

+H0
αβα′β′ + Tαβα′β′ . (14)

As above the three-body part is given by

Tαβα′β′ =
1
2

∑

λ1λ2λ3

[
v̄αλ1λ2λ3Cλ2λ3βα′λ1β′ + v̄λ1βλ2λ3Cλ2λ3αα′λ1β′

−v̄λ1λ2α′λ3Cαλ3βλ1λ2β′ − v̄λ1λ2λ3β′Cαλ3βλ1λ2α′
]
. (15)

Again, approximating the C3’s by the quadratic
form (12) yields a closed set of equations. However, it may
be useful to solve those equations in the (generalised) HF
basis which defines particle (p) states above the Fermi sea
and hole (h) states below. One easily imagines then that
correlation functions with an odd number of p(h)-indices
are suppressed with respect to those with an even number.
We, therefore, will only consider the following four index
combinations of the C2’s:

Cpp′hh′ ;Cp1h1p2h2 ;Cp1p2p3p4 ;Ch1h2h3h4 .

That those combinations are the most important ones,
may also be warranted by the fact that the 2p-2h states
are the only ones which enter the B0 matrix in the HF
limit implying that among the four correlation functions,
again Cpp′hh′ is the most important one. Among the three-
body correlation functions the following are the dominant
ones (as long as one is not close to a macroscopic phase
transition or to systems with a Goldstone (zero) mode)
(please note that in the following the denominator of (12)
is equal to −1):

Cp1h1h2,p2h3h4 �
∑

p

Cp1ph3h4Ch1h2p2p, (16)

that is the product of two correlation functions with 2p-2h
indices is the most important one as argued above. There
exists only one further 3-body correlation function which
has this specific product property

Ch1p1p2,h2p3p4 �
∑

h

Cp1p2h2hChh1p3p4 . (17)

Respecting this approximation scheme, we obtain for
the four possible three-body terms

Tp1p2h1h2 =

1
2

∑

pp′hh′

[
v̄p1phh′Cp2p′h1h2Chh′pp′ − (p1 ↔ p2)

]

+
1
2

∑

hh′pp′

[
v̄pp′h1hCp1p2h2h′Ch′hpp′ − (h1 ↔ h2)

]
, (18)
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Tp1h1p2h2 =
1
2

∑

pp′hh′

v̄p1hh′pCp′ph2hCh1h′p2p′

+
1
2

∑

pp′p′′h

v̄p1pp′p′′Cp′p′′hh2Ch1hp2p

−1
2

∑

pp′hh′

v̄ph′p2hChh1pp′Cp1p′h′h2

−1
2

∑

pp′p′′h

v̄p′p′′p2pCp1ph2hChh1p′p′′

−1
2

∑

pp′hh′

v̄h1pp′hCh′hp2pCp′p1h′h2

+
1
2

∑

phh′h′′

v̄h1hh′h′′Ch′h′′p2pCpp1hh2

+
1
2

∑

pp′hh′

v̄ph′h2p′Cp1p′hh′Ch1hp2p

−1
2

∑

phh′h′′

v̄h′h′′hh2Cpp1h′h′′Ch1hp2p. (19)

The exchange matrix Th1p1p2h2 of Tp1h1p2h2 is given not
by changing p1 and h1 on the right-hand side of eq. (19)
but by using eqs. (15), (16) and (17). Then the exchange
property Th1p1p2h2 = −Tp1h1p2h2 is satisfied. Furthermore,
we have

Tp1p2p3p4 =

1
2

∑

phh′h′′

[
v̄p1hph′Cpp2hh′′Ch′′h′p3p4 − (p1 ↔ p2)

]

−1
2

∑

phh′h′′

[
v̄ph′p3hCp1p2hh′′Ch′′h′pp4 − (p3 ↔ p4)

]
, (20)

Th1h2h3h4 =

1
2

∑

pp′p′′h

[
v̄h1pp′hChh2p′′pCp′p′′h3h4 − (h1 ↔ h2)

]

−1
2

∑

pp′p′′h

[
v̄p′hh3pCh1h2p′′p′Cpp′′hh4 − (h3 ↔ h4)

]
. (21)

For the numerical solution of those static correlation func-
tions several possibilities exist. They are explained in [14].
The coupled set of equations for the four C2’s will be used
in the TDDM applications presented below.

The above coupled equations have a number of appeal-
ing properties. They are totally antisymmetric and they
are number and energy conserving.

We next want to elaborate on the small amplitude limit
of TDDM.

3 The small amplitude limit

3.1 Derivation of STDDM∗ with non-linear terms

Time-dependent Hartree-Fock (TDHF) leads in the small
amplitude limit, as is well known, to RPA with exchange

(we will keep the acronym RPA including exchange as this
is used in nuclear physics). Therefore, the corresponding
ground state is a Slater determinant. Including two-body
correlations, the ground state cannot be a Slater deter-
minant any longer. It must also contain correlations. The
small amplitude limit of TDDM will lead to an eigen-
value problem connecting the one-body sector with the
two-body one. It will be interesting to see in which way
the one-body sector will be modified with respect to RPA
including the ground-state correlations.

Let us, therefore, take the small amplitude limit of our
coupled equations derived above. With

ρ1 = ρ
(0)
1 + δρ1, C2 = C

(0)
2 + δC2

and

δρ1 =
∑

ν

[
χ̃νe−iΩνt + χ̃ν,+eiΩνt

]
,

δC2 =
∑

ν

[
X̃ νe−iΩνt + X̃ ν,+eiΩνt

]
,

we obtain coupled equations for the one-body and two-
body transition amplitudes χ̃ν

αα′ = 〈ν| : a+
α′aα : |0〉 and

X̃ ν
αβα′β′ = 〈ν| : a+

α′a
+
β′aβaα : |0〉:

(
a b

c d̃

)(
χ̃ν

X̃ ν

)
= Ων

(
χ̃ν

X̃ ν

)
. (22)

where : a+
λ aλ′ := a+

λ aλ′ − ρλλ′ and : a+
λ1

a+
λ2

aλ′
2
aλ′

1
:=

a+
λ1

a+
λ2

aλ′
2
aλ′

1
− [ρλ1λ′

1
ρλ2λ′

2
− ρλ1λ′

2
ρλ2λ′

1
]. The matrix d̃

is written as d̃ = d + Δd where d stems from the varia-
tion of the linear terms of the two-body correlation ma-
trix whereas Δd comes from the variation of the three-
body correlation matrix when it is approximated as, e.g.,
in eq. (16) and (17) by quadratic forms of C2’s (that is,
the leading contributions). The matrices c and Δd include
the two-body correlation matrix. The matrices in eq. (22)
are given in appendix A. Equations (22) with Δd = 0
have been called in the past STDDM (small TDDM) equa-
tions [15]. With the inclusion of the non-linear term Δd,
we want to call those STDDM∗ equations.

Inspection of a, b matrices tells us that the matrix
in (22) is highly non-symmetric. This stems from the fact
that the amplitudes χ̃ and X̃ are linearly dependent. In
the next section, we will clarify this point and introduce
a rotation of the vector which makes the corresponding
matrix essentially symmetric.

3.2 STDDM and STDDM∗ from an Extended Second
RPA (ESRPA): relation with SCRPA

In this section we will make a connection with eq. (22)
coming from a seemingly quite different side of attack. Let
us, therefore, consider the Equation of Motion (EOM) ap-
proach [16] with one- and two-body sectors included with-
out restriction of indices. We, thus, define the following
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generalised RPA operator:

Q+
ν =

∑ [
χν

λλ′ : a+
λ aλ′ : +X ν

λ1λ2λ′
1λ′

2
: a+

λ1
a+

λ2
aλ′

2
aλ′

1
:
]
.

(23)
As usual with EOM for such an ansatz, we suppose

Q+
ν |0〉 = |ν〉 and Qν |0〉 = 0.

Minimising the corresponding energy weighted sum rule
2Ων = 〈0|[Qν , [H,Qν

+]]|0〉/〈0|[Q,Q+]|0〉, see sect. 4, we
obtain the following eigenvalue problem:

(S B
C D

)(
χ

X

)
= Ω

(N1 T
T + N2

)(
χ

X

)
, (24)

where the various matrix elements are given in an obvi-
ous way by the corresponding double commutators (lhs)
and commutators (rhs) which correspond to the ones
contained in the sum rule for Ων . The one-body sector
Sχ = ΩN1χ will be given explicitly below in sect. 4.

The matrices in eq. (24) are given in [17] where this
equation was named ERPA (Extended RPA). However, a
more appropriate name is “Extended Second RPA” (ES-
RPA) because it includes the two-body sector and reduces
to the standard second RPA in the limit where the expec-
tation values are evaluated with the HF state. It has been
shown in the past that, under certain approximations, this
ESRPA is equivalent to the STDDM equation [18]. Let us
sketch this again. For this, in ESRPA, we neglect every-
where C3 (and C4). This concerns B, C, D, and N2. In D
we additionally neglect the terms which are named in [19]
the T32 terms. Those T32 terms correspond to the expec-
tation values of the commutator between two-body and
three-body operators [19]. Then we arrive at the following
structure of the above eigenvalue equation (24):

(
aN1 + bT + aT + bN2

cN1 + dT + cT + dN2

)(
χ

X

)
= Ω

(N1 T
T + N2

) (
χ

X

)
,

(25)
where the matrices a, b, c, d are as in (22) (see appendix A)
containing at most C2’s.

Equation (25) is intimately related to the STDDM
equation as we will show now. Defining

(
χ̃

X̃

)
=

(N1 T
T + N2

)(
χ

X

)
, (26)

we obtain the following modified eigenvalue equation:
(

a b

c d

)(
χ̃

X̃

)
= Ω

(
χ̃

X̃

)
. (27)

The remarkable fact is that this equation is also obtained
in linearising around equilibrium the coupled EOM’s for
nα and C2 as is seen from eq. (22) without Δd. With the
use of eq. (26) the STDDM∗ equation eq. (22) with Δd
included can also be expressed as

(
aN1 + bT + aT + bN2

cN1 + d̃T + cT + d̃N2

)(
χ

X

)
= Ω

(N1 T
T + N2

)(
χ

X

)
.

(28)

Notice that with respect to (25) the matrix d is changed
into d̃ in (28). With respect to (22), we want to call
the set of equations (28), the STDDM∗-b equations (or
STDDM-b when Δd is neglected). Since T , N2 and Δd
contain C2, the [21] and [22] elements of eq. (28) have
additional quadratic terms of C2 that correspond to C3.
Thus, STDDM∗-b is, in principle, a better approximation
to ESRPA than STDDM.

Let us remark that in the left matrix the elements [12]
and [21] are Hermitian conjugates to one another. This
stems from the fact that already in (24) the matrices C
and B are the Hermitian conjugates of one another un-
der the condition that they are evaluated at equilibrium,
see [18,20] for a discussion of this point. The [11] element
of the left matrix is also symmetric because at equilib-
rium we have iρ̇ = 0. The one-body sector of eq. (25)
corresponds to Self-Consistent RPA (SCRPA), see below,
which was derived independently earlier [16]. So, in includ-
ing correlations, the standard RPA has been upgraded to
SCRPA. This is natural because, as mentioned, with cor-
relations the corresponding ground state cannot be the
HF state any longer. Therefore SCRPA has now found its
natural place when the time-dependent HF equations are
extended in a consistent way to include two-body correla-
tions. We will come back to SCRPA in sect. 4 and sect. 5.
The [22] element is not Hermitian because at this level
of our theory we do not fulfill that 3-body and 4-body
density matrices are stationary.

As already mentioned, in the above STDDM equation
b �= c+ and thus the corresponding matrix is strongly
non-symmetric. One, therefore, has to define left and right
eigenvectors. How this goes in detail is explained in [18]
where also applications with good success are presented.
On the other hand, (25) and (28) are much more sym-
metric versions of STDDM and STDDM∗. The remaining
non-Hermiticity in the [22] element of the interaction ma-
trix in STDDM∗ may be eliminated by the prescription
of Rowe [21,22] who explicitly symmetrised the matrix. If
the two versions (27) and (25) of STDDM (STDDM∗, if
Δd is included as in (28)) are solved in full, the results
will be the same. However, the fact of transforming the
non-symmetric form of STDDM in (27) to the more sym-
metric STDDM one in (25) has apparently transferred a
lot of correlations from the two-body sector to the one-
body sector (standard RPA vs. SCRPA). This may be of
importance if in STDDM (or in STDDM∗) further ap-
proximations are applied. An extreme approximation is
to neglect the 2-body amplitudes in both cases where
the difference clearly shows up. On the other hand, a
non-Hermitian eigenvalue problem may also entail some
problems concerning spurious solutions or non-positive
definite spectral functions. However, in the past applica-
tions [18, 23, 24], this has never caused any serious prob-
lems. In a way, the situation is rather similar to the dif-
ference which exists between the Dyson boson expansion
which leads to a non-Hermitian problem and, e.g., the
Holstein-Primakoff (Belyaev-Zelevinsky) boson expansion
leading to a Hermitian matrix [12]. The basic difference
between both methods is, as here, the treatment of the
norm matrix.
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In summary of the present section, we can say that the
linearisation of the TDDM equations has lead to a type of
extended second RPA (ESRPA) equation which we named
STDDM∗-b which contains an important part of the three-
body correlations (contained in the Δd matrix). The one-
body part of this equation is equivalent to what is known
as SCRPA in the literature. It also contains already a good
part of the three-body correlations as shown in [14]. The
structure of SCRPA is not affected by the inclusion or
not of Δd. So, SCRPA is already contained in STDDM-b,
that is, without inclusion of the three-body correlations.
SCRPA takes into account a correlated ground state as it
should be in a theory which goes beyond TDHF. Before
elaborating on SCRPA in the next sections, let us shortly
explain how to claculate occupation numbers and correla-
tion energies from ESRPA, STDDM-b, or STDDM∗-b.

3.3 Occupation numbers and correlation energy

We shall now consider how the occupation probabilities
nα are expressed by the transition amplitudes in ESRPA,
STDDM-b, or STDDM∗-b. We assume the following rela-
tion for the diagonal occupation matrix ραα′ = nαδαα′ :
∑

ν

χ̃ν
αα′ χ̃ν∗

β′β =
∑

ν

〈0| : a+
α′aα : |ν〉〈ν| : a+

β′aβ : |0〉

= δαβ′〈0|a+
α′aβ |0〉 + 〈0| : a+

α′a
+
β′aβaα : |0〉

= δαβ′δβα′nβn̄α + Cαβα′β′ , (29)

where n̄α = 1 − nα. From eq. (29) we obtain
∑

ν

χ̃ν
ααχ̃ν∗

αα = nα(1 − nα) + Cαααα = nα − n2
α. (30)

The above equation gives for the occupation numbers

nα =
1
2

⎛

⎝1 ±
√

1 − 4
∑

ν �=0

χ̃ν
ααχ̃ν∗

αα

⎞

⎠ . (31)

In RPA and SCRPA there is no diagonal one-body am-
plitude such as χν

αα, whereas in ESRPA, STDDM-b, or
STDDM∗-b χν

αα can couple to X ν
αβα′β′ which has the same

quantum numbers as the ground state. Thus the occu-
pation probabilities in ESRPA, STDDM-b, or STDDM∗-
b are determined by two-phonon states expressed by
X ν

αβα′β′ , which is in contrast with SCRPA. We use eq. (31)
to calculate the occupation probabilities in ESRPA, etc.
Let us notice that relation (31) has the same structure
as the occupation numbers obtained from the BCS theory
when expressed via the BCS amplitudes viui = κi [12].

The correlation energy is usually defined as the differ-
ence of the total correlated energy minus the Hartree-Fock
energy. In this work, we thought it more appropriate to
consider what one could call the 2-body correlation energy
(for example in the case of BCS theory, this would reduce
to the pairing energy) E2bcor defined by

E2bcor =
1
4

∑

αβα′β′

v̄αβα′β′Cα′β′αβ . (32)

The equation for χ̃ν
αα′ in STDDM, aχ̃ν + bX̃ ν = Ων χ̃ν ,

gives

Ων χ̃ν
αα′ = (εα − εα′)χ̃ν

αα′

+(nα′ − nα)
∑

λλ′

v̄αλ′α′λχ̃ν
λλ′

+
1
2

∑

λ1λ2λ3

(
v̄αλ1λ2λ3X̃ ν

λ2λ3α′λ1

−v̄λ1λ2α′λ3X̃ ν
αλ3λ1λ2

)
. (33)

Multiplying by χ̃ν∗
β′β and using

∑

ν

X̃ ν
αβα′β′ χ̃ν∗

γ′γ = δαγ′Cγβα′β′ − δβγ′Cγαα′β′

+nγα′Cαββ′γ′ − nγβ′Cαβα′γ′

−nβγ′Cαγα′β′ + nαγ′Cβγα′β′

+Cαβγα′β′γ′ , (34)

and (29), we obtain
∑

μα

Ων χ̃ν
ααχ̃ν∗

αα =
∑

αλλ′

v̄αλαλ′Cαλ′αλ

− 1
2

∑

αλλ′λ′′

v̄λλ′αλ′′Cαλ′′λλ′ . (35)

The first term on the right-hand side has no contribution
in the solvable models discussed below. In general, Cphph′ ,
Cpp′pp′′ , Chphp′ and Chh′hh′′ are smaller than Cpp′hh′ and
Chh′pp′ in a perturbative regime. Therefore, E2bcor can
approximately be expressed as

E2bcor ≈ −1
2

∑

να

Ων χ̃ν
ααχ̃ν∗

αα. (36)

Equation (36) has only diagonal elements χ̃ν
αα, which

means that in ESRPA E2bcor is determined by two-phonon
states similarly to the occupation probabilities (eq. (31)).
We calculate E2bcor in ESRPA, etc., using eq. (36) in the
applications below. It will also be the expression we use
for the applications in sect. 6. Since with (31) we have the
occupation numbers, we can also calculate the one-body
part of the energy and, thus, the total energy is given as
well.

4 Self-consistent RPA

4.1 General outline

As we have mentioned, the one-body sector of STDDM-b
and STDDM∗-b is equivalent to what is known in the
literature as SCRPA. Because the one-body sector is of
importance for applications but also in its own right, we,
for completeness, will again dwell on it in this and the
next section.

Let us start writing down the most general single-
particle RPA operator as

Q+
ν =

∑

αβ,α�=β

χν
αβ : a+

α aβ :, (37)
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where, as usual,
|ν〉 = Q+

ν |0〉 (38)

is the excited state. The RPA operator also is supposed
to possess the killing property (see sect. 5)

Qν |0〉 = 0. (39)

We can define an average excitation energy using the en-
ergy weighted sum rule

Ων =
1
2
〈0|[Qν , [H,Q+

ν ]]|0〉
〈0|[Qν , Q+

ν ]|0〉
. (40)

Varying Ων with respect to the amplitudes χαβ leads to
the following eigenvalue problem

Sχμ = ΩμN1χ
μ, (41)

where

S(αα′ : λλ′) = 〈0|[a+
α′aα, [H, a+

λ aλ′ ]]|0〉 =
(εα − εα′)(nα′ − nα)δαλδα′λ′

+(nα′ − nα)(nλ′ − nλ)v̄αλ′α′λ

−δα′λ′
1
2

∑

γγ′γ′′

v̄αγγ′γ′′Cγ′γ′′λγ

−δαλ
1
2

∑

γγ′γ′′

v̄γγ′α′γ′′Cλ′γ′′γγ′

+
∑

γγ′

(v̄αγλγ′Cλ′γ′α′γ + v̄λ′γα′γ′Cαγ′λγ)

−1
2

∑

γγ′

(v̄αλ′γγ′Cγγ′α′λ + v̄γγ′α′λCαλ′γγ′), (42)

N1(αα′ : λλ′) = (nα′ − nα)δαλδα′λ′ . (43)

This is the same equation as the one-body part
of (24), (25), (28). If we replace the RPA ground state by
the HF one, then the matrix S reduces to the HF stability
matrix and N (0)

1 becomes the metric matrix of RPA [12]
and, thus, the standard RPA equations are recovered. The
normalisation of the amplitudes χν

αβ is given by

∑
χν∗

αβN1(αα′ : λλ′)χν′

λλ′ = δν,ν′ , (44)

where χν∗
αβ is the left eigenvector. The above eigenvalue

problem is equivalent to SCRPA [16] with amplitudes
χαβ where there are no restrictions on the indices besides
α �= β. This stems from the fact that N1 acts as a norm
matrix like it appears in problems where one works with a
non-orthonormal basis [12]. In such cases, in general, one
has to diagonalise the norm matrix and divide the Hamil-
ton matrix from left and right with the square roots of
the eigenvalues. Configurations with zero (or near-zero)
eigenvalues have to be excluded for obvious reasons. In
the SCRPA case, this just happens for diagonal, or nearly
diagonal amplitudes χαα which, thus, cannot be included.
This can only be done, as we discussed before, if the two-
particle sector is also considered.

The fact that the diagonal amplitudes cannot be in-
cluded in (41) allows us to rewrite this equation in a form
which has the mathematical structure of standard RPA.
To this end, we rewrite the RPA excitation operator (37)
in a somewhat different form, see also [25],

Q+
ν =

∑

k1>k2

(Xν
k1k2

δQ+
k1k2

− Y ν
k1k2

δQk1k2), (45)

with
δQ+

k1k2
= N

−1/2
k1k2

a+
k1

ak2 (46)

and
N

1/2
k1k2

=
√

nk2 − nk1 . (47)

This leads straightforwardly to the following RPA
eigenvalue problem:

(
A B

−B∗ −A∗

)(
X

Y

)
= Ων

(
X

Y

)
, (48)

with

Ak1k2,k′
1k′

2
= 〈[δQk1k2 , [H, δQ+

k′
1k′

2
]]〉

Bk1k2,k′
1k′

2
= −〈[δQk1k2 , [H, δQk′

1k′
2
]]〉. (49)

The X, Y amplitudes have the usual orthonormalisa-
tion relations of standard ph-RPA with the replacements
p ↔ k1 and h ↔ k2. Of course the A and B matrices are
closely related to the S matrix of (42).

In order to calculate the C2 correlation functions en-
tering the SCRPA matrix, one can either get them from
the static solution of the TDDM equations with quadratic
decoupling of C3 with respect to the C2’s (this will later
be called the C-RPA scheme) or one establishes a self-
consistent cycle, for which we must give a relation be-
tween C2 and the RPA amplitudes X, Y . For this, it is
convenient to introduce the “bosonic” density matrix R

R =
∑

ν

(
Y ν∗Y ν Y ν∗Xν

Xν∗Y ν Xν∗Xν

)
≡

(
R K

K+ 1 + R+

)
, (50)

obeying the relation (N0R)2 = −N0R where N0 =
(

1 0
0 −1

)

and where we can make the following identifications:

Rk1k2k′
1k′

2
≡ N

−1/2
k1k2

[nk2 n̄k1 + Ck1k′
2k2k′

1
]N−1/2

k′
1k′

2

Kk1k2k′
1k′

2
≡ N

−1/2
k1k2

Ck1k′
1k2k′

2
N

−1/2
k′
1k′

2
. (51)

It may be interesting to rewrite the RPA equations in
still a different form. With

(
A B

−B∗ −A∗

)
≡ H (52)

we can write (48) as

RH+ −HR = 0. (53)

This form recalls the BCS (or HFB) equations of su-
perconductivity [12] with, however, some different signs
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Fig. 2. Screening terms and self-energy corrections contained
in the SCRPA kernel. Symmetric graphs exist where the in-
teraction (full dot) is attached to the hole line (arrow to the
left).

due to the bosonic structure of the RPA equations. The
introduction of the density matrix R has the advantage
that one can easily restore a missing antisymmetry.

It remains to express the occupation numbers in terms
of the RPA amplitudes to establish fully self-consistent
RPA equations. Because of the Fermi surface the occupa-
tion numbers can be divided in hole and particle occupan-
cies nh and np. How the latter are connected to C2’s and,
thus, to the RPA amplitudes will be shown in sect. 5.

At this point, it may be appropriate to interpret the
different terms of the A and B matrices. The standard
terms are, of course, trivial and have been discussed in
text books [12]. The other terms are displayed graphically
in fig. 2. Analogous graphs exist (not displayed) where the
interaction (full dot) is attached to the hole line with ar-
row to the left. Their interpretation is clear. The first two
terms constitute instantaneous ph and pp(hh) exchange
terms with respect to the external p and h lines. They,
therefore, screen (eventually anti screen) the bare interac-
tion. Such screening terms have been discussed in the liter-
ature since very long. The iteration of the equations gives
raise to so-called “bubble into bubble” terms [26]. The par-
ticularity of our formalism here is that those terms emerge
from a general formalism and that they are instantaneous.
They can, therefore, be incorporated into standard RPA
programs. The third term in fig. 2 obviously corresponds
to a self-energy correction due to RPA modes. Those cor-
respond to the famous particle vibration corrections to
the mean field. Again the particularity here is that this
correction is instantaneous.

For the solution of the SCRPA equations, several
routes are possible. The standard way is to express the
correlation functions by the X and Y amplitudes as dis-
cussed just above. With the present formalism one can
also evaluate the correlation functions C2’s from (53) and
then insert them into the A and B matrices. Also the
single-particle occupancies can be included in this way
via eq. (66), see sect. 5, below. The results will depend
on whether we take the non-antisymmetrised or the an-
tisymmetrised form of R. Only the non-antisymmetrised
form will be equivalent to the standard way in expressing
everything by the X, Y amplitudes. A further possibil-
ity is to take the C2’s directly from the static limit of the
TDDM equations quadratic in the C2’s. As mentioned, we

call this the C-RPA (correlated RPA). We will see with
the applications in sect. 6 that all these variants give quite
close answers at least up to coupling strengths where the
standard HF equations become unstable indicating that
the system undergoes a phase transition.

4.2 Properties of SCRPA

Let us outline some properties of SCRPA. One of the most
important ones, fulfilled by the standard RPA, is the so-
called energy weighted sum rule,

S1 =
∑

ν

Ων |〈ν|F |0〉|2 =
1
2
〈0|[F, [H,F ]]|0〉, (54)

where F =
∑

αβ fαβa+
α aβ is supposed to be a Hermitian

one-body (excitation) operator. Then for the right-hand
side we can write

S1 =
1
2

∑

ν

Tr[f+χνSχν,+f ]

=
1
2

Tr[f+
∑

ν

ΩνN1χ
ν,+f ]

=
∑

ν

Ων |〈0|F |ν〉|2. (55)

Therefore also SCRPA fulfills the f -sum rule. This has,
e.g., been discussed in [20,27–29]. From the fulfillment of
the sum rule, it also follows that the Goldstone theorem
is satisfied. For example in nuclear physics the transla-
tional motion is always broken, if one works in a localised
single-particle basis. Then the SCRPA separates the so-
called spurious mode at zero energy, if the single-particle
basis is chosen from the generalised mean-field equation
〈0|[H,Q+

ν ]|0〉 = 〈0|[H, a+
α′aα]|0〉 = 0 which is the static

limit of the first equation of motion (2), see also [29]. This
has been demonstrated analytically in [20]. Actually the
Goldstone mode is already obtained employing the HF
basis as long as one works with the m-scheme where anti-
symmetrisation can be fully and explicitly respected [20].
The fulfillment of the sum rule and the Goldstone mode
stems from the fact that the RPA operator (37) contains
all types of indices, that is not only ph but also pp and
hh ones. The RPA operator (37) contains as a particular
case, e.g., the total momentum operator P̂ which com-
mutes with the Hamiltonian. From (40) we then see that
the zero mode appears. The fulfillment of the Goldstone
theorem has already explicitly been demonstrated in [25].
However, in that work it was crucial to satisfy (2) in defin-
ing a generalised single-particle basis. This is due to the
fact that in [25] collective generators for the RPA oper-
ator were used what did not allow to fully respect anti-
symmetrisation. Consequently SCRPA as defined in this
section has some important properties in common with
standard RPA. This is a very rewarding feature because
generally it is not easy to set up a practical scheme, go-
ing beyond standard RPA, which obeys conservation laws,
sum rules, and the Goldstone theorem. However SCRPA
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is an approximation to STDDM-b (or STDDM∗-b) and,
therefore, also fails in some respects. For example in the
superfluid (superconducting) case, the symmetry operator
is the particle number operator which in the quasiparticle
basis has a diagonal (Hermitian) piece. This cannot be in-
cluded into SCRPA because the norm matrix (43) has a
zero eigenvalue. Thus, self-consistent quasi-particle RPA
will not give the zero mode. However, in infinite matter
this is not a serious problem, since one can approach the
zero mode asymptotically covering, thus, almost all of the
Bogoliubov-Anderson Goldstone mode. For finite discrete
systems, the consideration of the STDDM approach is nec-
essary, which allows to include diagonal elements as ex-
plained in sect. 3.3. It may, however, be possible to include
the 2-body sector only in approximate, eventually pertur-
bative form. This possibility remains to be investigated.

Another important property of standard RPA which is
fulfilled by SCRPA is gauge invariance. Gauge invariance
of standard RPA is nicely demonstrated by Feldman and
Fulton [30]. The extra terms containing the two-body cor-
relation functions in (42) cancel in the limit where the two
open legs are put on the same spot in position space. Actu-
ally, gauge invariance of standard RPA as well as SCRPA
can easily be verified from (49). If in these equations the
operator δQαβ is transformed into r-space and the diag-
onal element is taken, as demanded to show gauge in-
variance (see [30], eq. (3.69)), we immediately realise that
this diagonal operator commutes with the remainder (also
written in r-space), once the Hamiltonian H is replaced
by its interaction part V , that is, the Coulomb interaction.
Therefore, gauge invariance is fulfilled. This argument is
valid discarding spin but, as shown in [30], this does not
invalidate the general proof. These considerations also en-
tail that the so-called “velocity-length” equivalence in the
dipole transition is preserved [30], see also [29].

5 Occupation numbers from SCRPA and the
coupled cluster wave function

To be self-contained, in this section, we will re-derive
SCRPA from a different perspective [31]. This will have
an interesting connection with TDDM and will give some
insight into which kind of ground state is implicitly used
in STDDM∗ and/or STDDM.

Formally the SCRPA equations have been written
down several times in the past [13, 16] and references
therein. They can be qualified as some sort of Hartree-
Fock-Bogoliubov (HFB) equations for fermionic ph pairs
and they most of the time have been presented as a
non-linear eigenvalue problem to be solved by iteration.
SCRPA theory has recently known important new devel-
opments concerning its theoretical foundation [31]. This
stems from the fact that it was shown in that reference
that the CCD coupled cluster wave function

|Z〉 = eẐ |HF〉

with Ẑ =
1
4

∑

p1p2h1h2

zp1p2h1h2a
+
p1

a+
p2

ah1ah2 (56)

is the vacuum to the following generalised RPA operator:

Q̃+
ν =

∑

ph

[X̃ν
pha+

p ah − Ỹ ν
pha+

h ap]

+
1
2

∑

php1p2

ηphp1p2a
+
p1

ap2a
+
h ap

−1
2

∑

phh1h2

ηh1h2pha+
h1

ah2a
+
h ap. (57)

That is, there exists the killing condition

Q̃ν |Z〉 = 0 (58)

with the following relations between the various ampli-
tudes

Ỹ ν
ph =

∑

p′h′

zpp′hh′X̃ν
p′h′

zpp′hh′ =
∑

ν

Ỹ ν
ph(X̃−1)ν

p′h′

ην
p1p2ph =

∑

h1

zpp2hh1X̃
ν
p1h1

ην
h1h2ph =

∑

p1

zpp1hh2X̃
ν
p1h1

. (59)

The amplitudes zpp′hh′ are antisymmetric in pp′ and
hh′. With the above relations, the vacuum state is en-
tirely expressed by the RPA amplitudes X̃, Ỹ . We remark
that this vacuum state is exactly the one of coupled clus-
ter theory (CCT) truncated at the two-body level [9, 32].
However, the use we will make of this vacuum is very dif-
ferent from CCT. Of course, for the moment, all remains
formal because this generalized RPA operator contains,
besides the standard one-body terms, also specific two-
body terms which cannot be handled in a straightforward
way. For instance, this non-linear transformation cannot
be inverted in a simple manner. However, we find the
mere existence of an exact killing operator of the coupled
cluster ground state quite remarkable. One may develop
approximate methods to cope with those extra two-body
terms. A first simple approximation consists in replacing
in (57) the occupation number operators in the η terms
by their expectation values, that is a+

p2
ap1 → 〈a+

p1
ap1〉δp1p2

and a+
h1

ah2 → 〈a+
h1

ah1〉δh1h2 where we supposed that we
work in a basis where the single-particle density matrix is
diagonal. With the definition of the occupation numbers
nk = 〈a+

k ak〉, we then obtain the following approximate
form of the Q-operator in (57):

Q̃ν =
∑

ph

[
X̃ν

pha+
h ap − Ỹ ν

pha+
p ah

]

+
1
2

∑

php1

ηp1p1phnp1a
+
p ah

−1
2

∑

phh1

ηh1h1phnh1a
+
p ah. (60)
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Evidently, this approximation, though suggestive, violates
the killing condition (58). However, as has been shown
in [31], the violation remains quite moderate. On the other
hand, this approximation leads to a renormalisation of the
Ỹ amplitudes in (60) and, therefore, we are back to the
usual RPA operator with the one-body terms in (60) only.
For simplicity, we will not change the nomenclature of the
Ỹ amplitudes in the following. In spite of the approxima-
tion, we will henceforth assume that the killing condition
still holds. However, we always should be aware that this
only is true approximately with the atrophied form of the
generalized RPA operator (60). The amplitudes (X̃, Ỹ )
form a complete orthogonal set of vectors as explained,
e.g., in [12]. We therefore can invert the approximate RPA
operator to obtain

a+
p ah =

√
Nph

∑

ν

[
Xν

phQ+
ν + Y ν

phQν

]
, (61)

where we defined new amplitudes X, Y via

X̃ν
ph = Xν

ph/
√

Nph , Ỹ ν
ph = Y ν

ph/
√

Nph (62)

and new RPA operators

Qν =
∑

ph

[
Xν

pha+
h ap − Y ν

pha+
p ah

]/√
Nph ,

so that the state |ν〉 = Q+
ν |Z〉 is normalized, i.e., 〈ν|ν〉 =

〈Z|[Qν , Q+
ν ]|Z〉/〈Z|Z〉 = 1 with

∑

ph

[|Xν
ph|2 − |Y ν

ph|2] = 1. (63)

The use of the CCT state |Z〉 has the great advantage
that now in the calculation of the expectation values where
we also need the occupation numbers expressed in terms
of the X, Y amplitudes, this can be achieved in a natural
manner (this was in the past always a certain problem with
SCRPA without the use of the CCT state). For example,
we have

a+
h ah|Z〉 = eẐ J̃hh|HF〉, (64)

with Jhh = a+
h ah and J̃hh = e−ẐJhheẐ = Jhh + [Jhh, Ẑ].

Evaluating the commutator and then using the relation
∑

ν

(X̃−1)ν
p′h′Qν = a+

h′ap′ −
∑

ph

zpp′hh′a+
p ah, (65)

we arrive at

nh = 〈a+
h ah〉 ≡

〈Z|a+
h ah|Z〉

〈Z|Z〉

= 1 − 1
2

∑

p

〈a+
p aha+

h ap〉

= 1 − 1
2

∑

p

[npn̄h − Cphph]. (66)

This relation can be used in (53) to have a fully closed sys-
tem of equations. For the evaluation of the two-body term

in terms of the Y -amplitudes, we will use the inversion of
the Q-operators and obtain

nh ≡ 〈a+
h ah〉 = 1 − 1

2

∑

p,ν

(nh − np)|Y ν
ph|2. (67)

The same can be repeated for np,

np ≡ 〈a+
p ap〉 =

∑

h

1
2

∑

h

〈a+
p aha+

h ap〉

=
1
2

∑

h

[npn̄h − Cphph]

=
1
2

∑

h,ν

(np − nh)|Y ν
ph|2, (68)

leading to a linear system of equations for np, nh which can
be solved. The quadratic occupation number fluctuations
can be treated in a similar way. They are related to C2’s
with either four particle or four hole indices. They can be
approximated to leading order by quadratic forms of C2’s
with pphh indices as shown in [10],

Cp1p2p3p4 � 1
2

∑

hh′

Cp1p2hh′Chh′p3p4 + . . . (69)

Ch1h2h3h4 � 1
2

∑

pp′

Ch1h2pp′Cpp′h3h4 + . . . . (70)

We now can express all correlation functions and densities
in A and B matrices by the RPA amplitudes X, Y and,
thus, have a fully self-consistent system of equations for
X, Y . It should be mentioned, however, that due to the
fact that the present RPA operator only contains ph(hp)
configurations, sum rules, Goldstone theorem, etc. are not
strictly fulfilled. The violations usually remain very weak
though, see [31].

There exists, however, a different closing of the equa-
tions employing the so-called self-consistent particle-
particle RPA (SCppRPA [33, 34]). It can be shown that
the coupled cluster wave function is not only the vacuum
to a generalised RPA operator in the ph channel but also
in the pp(hh) channel. This is explained in ref. [31]. From
SCppRPA one can naturally obtain the C2’s with four par-
ticle or four hole indices, that is Cp1p2p3p4 and Ch1h2h3h4 .
Also the SCppRPA couples via the non-linearity back to
the particle-hole SCRPA considered here [16].

Iterating SCphRPA and SCppRPA simultaneously
sums up ph and pp(hh) correlations in a democratic way.

6 Applications to Lipkin and Hubbard models

6.1 Preliminaries

In order to guide the reader in the following applications
with the various approximations used, let us make a short
summary here.

First, there is the TDDM method, described in sect. 2.
It allows to calculate the occupation numbers nk and the
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four types of 2-body correlation functions considered. Dis-
posing of those quantities allows to calculate the total
ground-state energy or various partial quantities thereof,
as, e.g., the so-called 2-body correlation energy. The nk

and C2’s so obtained can also be used to set up the cor-
related RPA matrix, in which case we talk about the C-
RPA scheme. The C-RPA and SCRPA schemes appear
naturally as the one-body sector of the linearised TDDM
equations. The latter equations have been called either
STDDM∗-b or STDDM-b equations according to whether
one includes the approximate form of the 3-body corre-
lation function C3, eq. (12), or not. Let us recall that
the structure of the one-body sector of STDDM-b and
STDDM∗-b is not affected by C3 when the 2-body space
is decoupled from the 1-body one. The non-linearity in
C2’s only affects the 2-body sector as seen when compar-
ing (25) with (28). There also exist STDDM and STDDM∗

equations which are equivalent but very non-symmetric
versions of STDDM-b and STDDM∗-b, respectively. Fi-
nally there exists the so-called Extended Second RPA (ES-
RPA) equation which does not follow from the TDDM ap-
proach but is obtained from a minimisation of the energy
weighted sum rule involving 1-body and 2-body opera-
tors. Since STDDM-b and STDDM∗-b equations can be
shown to be approximate forms of ESRPA, we consider,
in principle, ESRPA somewhat superior to all the other
kinds of equations we have established. One should re-
alise, however, that STDDM-b, STDDM∗-b, and ESRPA
which all include the 2-body sector can be solved for the
model cases presented below which involve limited config-
uration spaces but for realistic problems, such as the ho-
mogeneous electron gas or nuclear matter, etc., one must
be content if the equations of the 1-body sector, that is
C-RPA and/or SCRPA can be tackled with the present-
day computer powers. This, for instance, in the light that,
e.g., STDDM equations have to be solved in full space to
preserve their properties concerning conservation laws and
Goldstone theorem (see also discussion at the end of this
paper). One should appreciate the following results in the
light of these preliminary remarks.

6.2 Lipkin model

We first consider the Lipkin model [35]. The Lipkin model
describes an N -fermions system with two N -fold degen-
erate levels with energies ε/2 and −ε/2, respectively. The
upper and lower levels are labeled by quantum number 1m
and 0m, respectively, with m = 1, 2, . . . , N . We consider
the standard Hamiltonian

Ĥ = εĴz +
V

2
(Ĵ2

+ + Ĵ2
−), (71)

where the operators are given as

Ĵz =
1
2

N∑

m=1

(a+
1ma1m − a0m

+a0m), (72)

Ĵ+ = Ĵ+
− =

N∑

m=1

a+
1ma0m. (73)

The operators Jz, J± are pseudospin operators and fulfill
commutation relations of angular momenta.

The ground state in TDDM is obtained using the adia-
batic method: Starting from the HF ground state, we solve
the TDDM equations (eqs. (2) and (3)) by gradually in-
creasing the residual interaction such that V ′ = V × t/T ,
as described in [14]. We use T = 4 × 2π/ε. For the 3-
body terms in eq. (3) we use the approximations eqs. (16)
and (17) which are supposed to be the leading terms. All
possible single-particle indices are taken into account one
by one (the so-called m-scheme, see also [36]). The original
basis is kept.

In a first application, the occupation numbers nα and
2-body correlation functions Cαβα′β′ are determined from
the TDDM calculation and the RPA matrix is set up with
these values. We refer to this scheme as the correlated
RPA (C-RPA), see sect. 4.1, to distinguish it from SCRPA
which takes into account self-consistency. We found that
the factor 1/2 in eq. (67) is essential when we consider
non-collective amplitudes as χμ

0m′,1m and χμ
1m,0m′ in ad-

dition to χμ
0m,1m and χμ

1m,0m, that is all possible RPA-
amplitudes. This is in line with the straightforward deriva-
tion which leads to the expression (67). When we keep
only the collective amplitudes, the results deteriorate and
in addition the factor 1/2 (67) has to be suppressed. This
is in agreement with the discussion about the factor 1/2
in the occupation number expressions by Rowe in [21,22]
given a long time ago. Let us, however, stress again that
in our formalism we should work in the full space.

In a second application we also performed self-
consistent RPA calculations corresponding to eq. (41),
taking again all kinds of amplitudes, collective and non-
collective, that is, we also included all the amplitudes
χμ

0m′,1m and χμ
1m,0m′ and consequently the factor 1/2

in eq. (67) was kept. In SCRPA the two-body corre-
lation matrices Cp1p2p3p4 and Ch1h2h3h4 which are not
directly related to the one-body transition amplitudes
(X,Y ) are calculated using eqs. (69) and (70). To cal-
culate the 2p-2h elements figuring in the above expres-
sions for C1m1m′0m0m′ of the two-body correlation ma-
trix, we use their relation with the RPA amplitudes given
in eq. (51) with eq. (50). The occupation probability n1m

of the upper state and the two-body correlation matrix
C1m1m′0m0m′ calculated in TDDM (solid line) and ESRPA
(red squares) are shown in figs. 3 and 4, respectively, as a
function of χ = (N−1)|V |/ε for N = 4. The RPA solution
becomes unstable at χ = 1 as shown below in fig. 6. The
results of SCRPA (round dots) are shown up to χ = 1.6
because beyond χ ≈ 1.6 the numerical solution becomes
unstable.

The Lipkin model is simple enough to solve the com-
plicated self-consistent ESRPA equations (24), however
still some approximations have been applied. For the
three-body correlation functions, again the approxima-
tions eqs. (16) and (17) are employed. The 4-body correla-
tion functions C4 contained in the D-matrix are neglected.
Furthermore, in the ESRPA calculations we included only
the one-body amplitudes with the same quantum num-
ber (this corresponds to the collective subspace as usually
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Fig. 3. Occupation probabilities np ≡ n1m of the upper state
calculated in TDDM (solid line), ESRPA (red squares), C-
RPA (green squares) and SCRPA (blue circles) as a function
of χ = (N − 1)|V |/ε for N = 4. The exact solution is shown
with the dot-dashed line. The occupation probability and cor-
relation matrix in TDDM are used in the C-RPA and ESRPA
calculations.

Fig. 4. Same as fig. 3 but for the two-body correlation matrix
Cpp′−p−p′ ≡ C1m1m′0m0m′ .

considered in RPA) such as χμ
0m,1m, χμ

1m,0m, χμ
0m,0m and

χμ
1m,1m and used eq. (31) to obtain n1m.

All two-body amplitudes Xαβα′β′ with either pα = pα′ ;
pβ = pβ′ or pα = pβ′ ; pβ = pα′ are included, where pα is
the 1m quantum number given in eqs. (72) and (73).

It should be mentioned that, since in the Lipkin model
the even or odd number of ph excitations decouple, the
ESRPA equations also decouple into two subsets for even
and odd parity. For example in fig. 6, the second excited
state corresponds to even parity whereas the first one is of
odd parity. Equally for the occupation numbers in fig. 3
only the odd parity amplitudes enter. Furthermore, since
the ESRPA matrix has been set up with the results from
TDDM, concerning nk and C2’s, one appreciates the nu-
merical consistency when at the end the occupation num-
bers and two-body correlation functions are calculated
from the ESRPA amplitudes as done in fig. 3 and fig. 4.

Fig. 5. Same as fig. 3 but for the ground-state energy.

The occupation numbers and 2-body correlation func-
tions shown in figs. 3 and 4 are very sensitive quantities
concerning the underlying wave function. Let us mention
again that it is important for the accuracy of the results
to work with all possible amplitudes (collective and non-
collective), that is with the m-scheme. Taking into account
only collective amplitudes sensitively deteriorates the re-
sults (not shown in the figures). SCRPA and C-RPA are
about on same grounds, since they both work with the
m-scheme and take the non-linearities in the C2’s into
account. ESRPA and TDDM are also more or less equiv-
alent, since they both take into account two-body am-
plitudes, see sect. 3.3. We may, however, remark that in
realistic situations ESRPA may be inapplicable, besides in
very restricted configuration spaces, because of its numer-
ical complexity whereas this is not the case with TDDM.
As a general remark, we can say that all approximations
perform quite well up to χ = 1 but start to deviate more or
less strongly from the exact result (dot-dashed line) there-
after. SCRPA and C-RPA are simpler than the approaches
including the two-body sector because the dimensions of
the matrices remain much smaller in the first case. The
value χ = 1 is the one where standard RPA becomes un-
stable and a change of the single-particle basis becomes
necessary (the “deformed” basis). Here, we do not oper-
ate a change of basis but still the system seems to feel the
entering into a new “phase”. We should also remember
that N = 4, is the worst case, see [31] where the quantum
fluctuations are the strongest (the N = 2 case, being more
or less trivial, becomes exact in SCRPA; this is also the
case in the 1D Hubbard model, treated below, see [37]).
The results improve for higher values of N .

The ground-state energies in TDDM (solid line), ES-
RPA (red squares), C-RPA (green squares) and SCRPA
(blue circles) are shown in fig. 5 as a function of χ for
N = 4. The exact values are again given with the dot-
dashed line. The ground-state energy in ESRPA is calcu-
lated using n1m and C1m1m′0m0m′ given in figs. 3 and 4.
All calculations agree well with the exact values. The
ground-state energy is a more robust quantity than, e.g.,
the occupation numbers.

The excitation energies of the first and second excited
states are displayed in fig. 6 as a function of χ. We see
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Fig. 6. Same as fig. 3 but for the excitation energies of the
first and second excited states.

Fig. 7. Excitation energies of the first and second excited
states calculated in STDDM-b (triangles), STDDM∗-b (circles)
and ESRPA (squares) as a function of χ = (N − 1)|V |/ε for
N = 4. The exact solution is shown with the dot-dashed line.

that ESRPA performs extremely well, even far beyond the
RPA instability point of χ = 1. C-RPA and SCRPA also
are very good but deteriorate after the instability point.
Apparently the self-consistency (SCRPA) brings, in the
domain where the results are stable, a slight advantage
over the non–self-consistent one (C-RPA) but this may
not be very significant in general cases. In the case of the
second excited state which can be obtained with ESRPA,
deviation from the exact solution becomes larger with in-
creasing χ. This can be explained either by the neglect of
the coupling to higher amplitudes or by the fact that in
ESRPA non-collective amplitudes are not included. The
excitation energies of the first and second excited states
calculated in STDDM-b (triangles), STDDM∗-b (circles)
and ESRPA (squares) are shown in fig. 7 as a function
of χ = (N − 1)|V |/ε for N = 4. The exact solution is
again shown with the dot-dashed line. Figure 7 shows
that STDDM∗-b is a good approximation to ESRPA but
up to χ = 1, STDDM-b also works quite well. All two-

body amplitudes have been taken into account, that is
X1m1m′0m0m′ , X0m0m′1m1m′ , X1m0m′1m0m′ , X1m1m′1m1m′ ,
X0m0m′0m0m′ , X1m0m′0m0m′ , X0m0m′0m1m′ , X1m1m′1m0m′ ,
and X0m1m′1m1m′ where the last four terms are of odd
parity and the first five terms of even parity.

Let us remind that the difference between ESRPA and
STDDM-b and STDDM∗-b is that in STDDM C3 is to-
tally neglected. The small difference between STDDM∗-b
and ESRPA originates in the fact that the matrix D in
eq. (24) is not the same as cT + d̃N2 in eq. (28). Other-
wise the remarks as given above for the ESRPA results
prevail also for STDDM-b and STDDM∗-b.

6.3 Hubbard model

Finally we consider the one-dimensional (1D) Hubbard
model with periodic boundary conditions. In the momen-
tum space the Hamiltonian is given by

H =
∑

k,σ

εka+
k,σak,σ

+
U

2N

∑

k,p,q,σ

a+
k,σak+q,σa+

p,−σap−q,−σ, (74)

where U is the on-site Coulomb matrix element, σ is the
spin projection and the single-particle energies are given
by εk = −2t

∑D
d=1 cos(kd) with the nearest-neighbor hop-

ping potential t. We consider the case of six sites at half
filling. In the first Brillouin zone −π ≤ k < π there are
the following wave numbers:

k1 = 0, k2 =
π

3
, k3 = −π

3
,

k4 =
2π

3
, k5 = −2π

3
, k6 = −π. (75)

The single-particle energies are ε1 = −2t, ε2 = ε3 = −t,
ε4 = ε5 = t and ε6 = 2t. The ground state in TDDM is ob-
tained using the adiabatic method starting from the HF
ground state where the six lowest-energy single-particle
states are completely occupied: T used here is 5 × 2π/t.
The mean-field energy in ESRPA is calculated from the
occupation probabilities given by eq. (31) and the correla-
tion energy in ESRPA given by eq. (36): The first term on
the right-hand side of eq. (35) vanishes due to p-h symme-
try in the case of half-filling considered here. In SCRPA
all p-h and h-p amplitudes are taken and the factor 1/2 in
eq. (67) is kept. That is, we considered the following RPA
excitation operator:

Q+
ν =

∑

ph

[
Xν

pha+
p ah − Y ν

pha+
h ap

]
, (76)

where p, h = (p,h, σ) includes momenta and spin indices.
Of course, in the end the SCRPA matrix will turn out
to be block-diagonal in transferred momenta and charge
and spin quantum numbers. However, in the set up of
the SCRPA matrix, in the construction of the two-body
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Fig. 8. Mean-field energy EMF calculated in ESRPA (squares)
and SCRPA (circles) as a function of U/t for the six-site Hub-
bard model with half-filling. The TDDM results and the exact
values are shown with the solid and dot-dashed lines, respec-
tively.

Fig. 9. Same as fig. 8 but for the 2-body correlation energy
E2bcor.

correlation functions all possible contributions are kept.
Therefore, there is indirect coupling between all channels.
This is different from [37] where the channels have been
decoupled.

The matrix elements Cp1p2p3p4 and Ch1h2h3h4 are cal-
culated using eqs. (69) and (70) in SCRPA. In the ESRPA
calculations we take only the 2p-2h and 2h-2p components
of Xμ

αβα′β′ to facilitate the numerics. Since the three-body
correlation matrix is an approximate one, the stationary
condition for the three-body correlation matrix is not com-
pletely fulfilled, which makes the Hamiltonian matrix of
eq. (24) non-Hermitian, especially in the case of the Hub-
bard model which has more general two-body interaction
than the Lipkin model.

The mean-field energy

EMF =
∑

k

, σεknk,σ +
U

2N

∑

k,p,σ

nk,σnp,−σ,

Fig. 10. Same as fig. 8 but for the ground-state energy Etot.

Fig. 11. Excitation energy of the first excited state calculated
in SCRPA (circles) and ESRPA (squares) as a function of U/t
for the six-site Hubbard model with half-filling. The exact val-
ues are shown with the dot-dashed line. The open circles depict
the results in RPA.

the correlation energy E2bcor and the ground-state en-
ergy Etot calculated in ESRPA (squares) are shown in
figs. 8–10 as a function of U/t. The results in SCRPA
are also given with the circles up to U/t = 3 but cannot
be distinguished from those in ESRPA. Beyond U/t ≈ 3,
SCRPA cannot give meaningful solutions because of nu-
merical instabilities as is the case for the Lipkin model.
The TDDM results and the exact values are shown with
the solid and dot-dashed lines, respectively. The results
in ESRPA agree well with those in TDDM. The excita-
tion energy of the first excited state is shown in fig. 11 as
a function of U/t. The results in ESRPA (squares) show
good agreement with the exact values (dot-dashed line).
The SCRPA results (blue circles) are reasonable and avoid
the instability of RPA (open circles). The SCRPA results
in fig. 11 are, however, less good than the ones in [37].
For the second excited state (not shown) the situation be-
comes even worse. This fact needs some discussion. The
reason for the present SCRPA results for the excitation
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energies apparently is due to the implicit cross channel
couplings meaning that in the block matrix belonging to,
e.g., a certain momentum transfer q, implicitly via the
non-linear terms other momentum transfers also can en-
ter. In [37], we discarded those “intruder” channels for the
following reason: since SCRPA does not strictly satisfy the
killing condition (58), the various RPA operators Q+

ν are
not independent of one another. In [31], it was shown that
this violation of independence is very weak. Apparently it
is, however, still strong enough to perturb the equilibrium
of the screening terms in the case of excitation energies.
For correlation functions and ground-state energies, the
problem seems to be much less severe. It may, thus, be
better to discard the implicit channel coupling for the ex-
citation energies in SCRPA which is an approximation to
ESRPA or STDDM∗ (STDDM∗-b). The channel couplings
can be restored if the two-body amplitudes are taken care
of as is seen in fig. 11 which, however, renders the problem
much harder to be solved.

6.4 Summary of applications

We applied TDDM, STDDM-b and STDDM∗-b, ESRPA,
SCRPA, and C-RPA to two exactly solvable models. We
found that the ground-state properties obtained from the
excites states in ESRPA agree well with those in TDDM
and the exact values. This indicates that the TDDM equa-
tions (eqs. (2) and (3)) build a ground state which is con-
sistent with excited states. We also found that the results
of SCRPA (and C-RPA) agree with those in ESRPA ex-
cept for strongly interacting regions where the systems
enter a new phase as, e.g., “deformation” in the case of
the Lipkin model or anti-ferromagnetism in the case of the
Hubbard model.

Let us mention that the TDDM scheme has also been
tested in an eventually more realistic problem, see [38].

7 Conclusions and discussions

In this contribution, we outlined a new decoupling scheme
of the Time-Dependent Density Matrix (TDDM) ap-
proach. Instead of neglecting totally the genuine three-
body correlations, we approximated them by keeping an
important sub-class of diagrams. Since the three-body cor-
relations are of the 2p-1h or 2h-1p type, there exist con-
tributions which are one fermion line reducible. The ver-
tices for 2p-1h (2h-1p) to 1p(1h) transitions involve two-
body correlation functions. Since those transitions inter-
vene twice, one has a quadratic form in C2’s for the three-
body correlations and, thus, the system of equations is
closed on the level of C2’s. In applications to exactly
solvable models, it turned out that the inclusion of this
approximate form of three-body correlations is very im-
portant. We further linearised the new equations around
equilibrium. This gives rise to extended second RPA equa-
tions, coupling the one-body sector to the two-body one.
We named those equations the STDDM∗-b equations. The
one-body sector turns out to have the structure of the

Self-Consistent RPA (SCRPA) which was derived inde-
pendently earlier. SCRPA, contrary to standard RPA, is
built on a correlated ground state. Since this correlated
ground state contains RPA correlations, naturally, one
ends up with a self-consistency problem. Of course, ne-
glecting correlations in the ground state, the STDDM∗-b
equations reduce to the standard second RPA ones. As
an important side product, we could show that SCRPA as
well as STDDM∗-b conserve all the appreciated properties
of standard RPA, i.e., fulfillment of sum rules, conserva-
tion laws, appearence of Goldstone (zero) modes in cases
of spontaneously broken symmetries, and gauge invariance
in the case of charged systems.

We applied our approaches to two exactly solvable
models: the Lipkin and 1D Hubbard models. The results
are in general very promising. Besides the full STDDM∗-b
or the very related ESRPA approaches, we also investi-
gated the solution of the one-body sector (SCRPA or C-
RPA) alone. Usually the results are also very good as long
as one does not go with the coupling strength beyond the
first phase transition point. The whole scheme can also be
applied in the symmetry broken phase [25], however, the
transition region needs further investigations. For prac-
tical reasons it is, of course, tempting to treat the one-
body sector alone. One should, however, be aware that
only STDDM∗-b (and STDDM∗) is a completely consis-
tent theory when two-body correlations are incorporated.
It will be very interesting to see whether STDDM∗-b in
the symmetry broken phase matches with the one in the
unbroken phase at the transition point.

At the end, let us discuss how our formalism is related
to other works. For example, there has recently been a
breakthrough with the standard second RPA approach in
applications to nuclei, see, e.g., [39] and references therein.
Indeed, there was the longstanding problem that SRPA
pushed the p-h states to much too low energies when cou-
pled to the 2p-2h sector. This was experienced mostly with
effective forces like Skyrme or Gogny ones. The problem
came from the fact that those effective forces implicitly
contain already quite some amount of higher (mp-mh)
correlations. The cure consists then in substracting the
static part of the 2p-2h sector, so that the two-body sector
completely decouples from the p-h sector at zero energy,
see [39]. This procedure has also the appreciable prop-
erty that the zero-energy spurious modes are preserved.
The approach is very useful as a phenomenological pro-
cedure. The objective of the present formulation of ex-
tended second RPA is different. It aims at an ab initio
calculation for cases where the bare force is well known
like, e.g., in Coulomb systems or, more recently, in nu-
clear physics where the nuclear forces are derived from
chiral effective field theory. The practical advantage of the
phenomenological approach is that it is formulated in the
standard p-h and 2p-2h sub-spaces whereas the present
formalism has to work in the full space in order that
Goldstone theorem, sum rules, and gauge invariance re-
main fulfilled. This enlarges the space by a huge factor.
On the other hand, as the applications show, the SCRPA
sums already much of the correlations, so that the exten-
sion to second RPA can often be omitted in a first step.



Page 16 of 17 Eur. Phys. J. A (2016) 52: 307

We should also mention that, contrary to the phenomeno-
logical approach where no self-consistency is involved, in
our theory strong non-linearities, i.e., self-consistencies
are contained, which, of course, makes the numerical prob-
lem even worse. On the other hand recently a formalism
named “self-consistent configuration mixing method” was
put forward [40]. There a generalised mean-field equation
is solved together with the amplitudes of higher correla-
tions and numerically applied to the 12C nucleus. This
method seems to demonstrate that self-consistent solu-
tions including higher-than-one–body correlations is pos-
sible. However, the example chosen is 12C with a small
configuration space and a full fetched solution without
truncation is still to come. Also that formalism rather is
akin to what we called “odd particle number RPA” in the
past [41]. In any case, we think that it is time to go beyond
the standard HF-RPA approach with effective forces and
to include higher correlations either into the ground state
or explicitly in the form of some kind of improved second
RPA.

Past collaborations on SCRPA with J. Dukelsky, D. Delion, M.
Jemai are acknowledged.

Appendix A. Matrices in STDDM

The matrices a, b, c, d and Δd in eq. (22) are given below.

a(αα′ : λλ′) = (εα − εα′)δαλδα′λ′

+
∑

β

(v̄αλ′βλnβα′ − v̄βλ′α′λnαβ), (A.1)

b(αα′ : λ1λ2λ
′
1λ

′
2) =

1
2
(v̄αλ′

2λ1λ2δα′λ′
1
− v̄λ′

1λ′
2α′λ2δαλ1),

(A.2)

c(α1α2α
′
1α

′
2 : λλ′) = −δα1λ

{
∑

βγδ

[(δα2β − nα2β)nγα′
1
nδα′

2

+nα2β(δγα′
1
− nγα′

1
)(δδα′

2
− nδα′

2
)]v̄λ′βγδ

+
∑

βγ

[
1
2
v̄λ′α2βγCβγα′

1α′
2
+ v̄λ′βα′

1γCα2γα′
2β

−v̄λ′βα′
2γCα2γα′

1β

]}

+δα2λ

{
∑

βγδ

[(δα1β − nα1β)nγα′
1
nδα′

2

+nα1β(δγα′
1
− nγα′

1
)(δδα′

2
− nδα′

2
)]v̄λ′βγδ

+
∑

βγ

[
1
2
v̄λ′α1βγCβγα′

1α′
2
+ v̄λ′βα′

1γCα1γα′
2β

−v̄λ′βα′
2γCα1γα′

1β

]}

+δα′
1λ′

{
∑

βγδ

[(δδα′
2
− nδα′

2
)nα1βnα2γ

+nδα′
2
(δα1β − nα1β)(δα2γ − nα2γ)]v̄βγ|v|λδ

+
∑

βγ

[
1
2
v̄βγλα′

2
Cα1α2βγ + v̄α1βλγCα2γα′

2β

−v̄α2βλγCα1γα′
2β

]}

−δα′
2λ′

{
∑

βγδ

[(δδα′
1
− nδα′

1
)nα1βnα2γ

+nδα′
1
(δα1β − nα1β)(δα2γ − nα2γ)]v̄βγλδ

+
∑

βγ

[
1
2
v̄βγλα′

1
Cα1α2βγ + v̄α1βλγCα2γα′

1β

−v̄α2βλγCα1γα′
1β

]}

+
∑

β

[v̄α1λ′βλCβα2α′
1α′

2
− v̄α2λ′βλCβα1α′

1α′
2

−v̄βλ′α′
2λCα1α2α′

1β + v̄βλ′α′
1λCα1α2α′

2β ], (A.3)

d(α1α2α
′
1α

′
2 : λ1λ2λ

′
1λ

′
2) = (εα1 + εα2 − εα′

1
− εα′

2
)

×δα1λ1δα2λ2δα′
1λ′

1
δα′

2λ′
2

+
1
2
δα′

1λ′
1
δα′

2λ′
2

∑

βγ

(δα1βδα2γ − δα2γnα1β − δα1βnα2γ)

×v̄βγλ1λ2

−1
2
δα1λ1δα2λ2

∑

βγ

(δα′
1βδα′

2γ − δα′
2γnβα′

1
− δα′

1βnγα′
2
)

×v̄λ′
1λ′

2βγ

+δα2λ2δα′
2λ′

2

∑

β

(v̄α1λ′
1βλ1nβα′

1
− v̄βλ′

1α′
1λ1nα1β)

+δα2λ2δα′
1λ′

1

∑

β

(v̄α1λ′
2βλ1nβα′

2
− v̄βλ′

2α′
2λ1nα1β)

+δα1λ1δα′
1λ′

1

∑

β

(v̄α2λ′
2βλ2nβα′

2
− v̄βλ′

2α′
2λ2nα2β)

+δα1λ1δα′
2λ′

2

∑

β

(v̄α2λ′
1βλ2nβα′

1
− v̄βλ′

1α′
1λ2nα2β). (A.4)

We now give the expression for Δd which arises from
the quadratic forms in C2’s of the 3-body correlation
functions. We use eqs. (16) and (17) for the three-body
correlation matrix;

Δd(αβα′β′ : λ1λ2λ
′
1λ

′
2) −

1
2
v̄α(h)λ′

1(h)λ1(p)λ2(p)

×Cλ′
2(h)β(h)α′(p)β′(p)

+
1
2
v̄α(p)λ′

1(p)λ1(h)λ2(h)Cλ′
2(p)β(p)α′(h)β′(h)

−1
2
δβλ2δα′λ′

1
δβ′λ′

2

∑

λ(h)λ′(p)λ′′(p)

v̄αλλ′λ′′Cλ′λ′′λλ1(h)

−1
2
δβλ1δα′λ′

1
δβ′λ′

2

∑

λ(p)λ′(h)λ′′(h)

v̄αλλ′λ′′Cλ′λ′′λλ2(p)
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+
1
2
v̄β(h)λ′

1(h)λ1(p)λ2(p)Cλ′
2(h)α(h)α′(p)β′(p)

−1
2
v̄β(p)λ′

1(p)λ1(h)λ2(h)Cλ′
2(p)α(p)α′(h)β′(h)

+
1
2
δαλ2δα′λ′

1
δβ′λ′

2

∑

λ(h)λ′(p)λ′′(p)

v̄βλλ′λ′′Cλ′λ′′λλ1(h)

+
1
2
δαλ1δα′λ′

1
δβ′λ′

2

∑

λ(p)λ′(h)λ′′(h)

v̄βλλ′λ′′Cλ′λ′′λλ2(p)

+
1
2
v̄λ′

1(p)λ′
2(p)α′(h)λ2(h)Cα(p)β(p)β′(h)λ1(h)

−1
2
v̄λ′

1(h)λ′
2(h)α′(p)λ2(p)Cα(h)β(h)β′(p)λ1(p)

+
1
2
δαλ1δβλ2δβ′λ′

1

∑

λ(p)λ′(p)λ′′(h)

v̄λλ′α′λ′′Cλ′
2(h)λ′′λλ′

−1
2
δαλ1δβλ2δβ′λ′

1

∑

λ(h)λ′(h)λ′′(p)

v̄λλ′α′λ′′Cλ′
2(p)λ′′λλ′

−1
2
v̄λ′

1(p)λ′
2(p)β′(h)λ2(h)Cα(p)β(p)α′(h)λ1(h)

+
1
2
v̄λ′

1(h)λ′
2(h)β′(p)λ2(p)Cα(h)β(h)α′(p)λ1(p)

−1
2
δαλ1δβλ2δα′λ′

1

∑

λ(p)λ′(p)λ′′(h)

v̄λλ′β′λ′′Cλ′
2(h)λ′′λλ′

+
1
2
δαλ1δβλ2δα′λ′

1

∑

λ(h)λ′(h)λ′′(p)

v̄λλ′β′λ′′Cλ′
2(p)λ′′λλ′ .

(A.5)

The terms with and without summation describe self-
energy corrections and vertex corrections, respectively,
and indices p (h) mean that the corresponding single-
particle state is a particle (hole) state.
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