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The atmospheric flux of neutrinos has traditionally been seen as a background to the detection
of an astrophysical neutrino signal. In recent years however, it has been realised that in the few-
GeV range, this flux holds a key to resolve a fundamental question of particle physics: that of
the neutrino mass hierarchy, i.e. whether the mass eigenstate v3 is heavier (normal hierarchy) or
lighter (inverted hierarchy) than the v; and v; states.

The influence of the mass hierarchy on neutrino oscillations in matter leaves its imprint on the
atmospheric neutrino flux via the characteristic appearance/disappearance patterns of different
neutrino types as a function of energy and path through the Earth. ORCA - Oscillations Research
with Cosmics in the Abyss - will be a dense configuration of KM3NeT detection units, optimised
for studying the interactions of neutrinos in seawater at low energies. To be deployed at the French
KM3NeT site, ORCA’s multi-PMT optical modules will take advantage of the excellent optical
properties of deep seawater to accurately reconstruct both cascade and track events with a few
GeV of energy. This contribution reviews these methods and technology, and compares ORCA’s
power for not only determining the neutrino mass hierarchy, but placing new constraints on other
key parameters such as 6,3.
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1. Introduction

Past experiments, using solar, atmospheric and man-made neutrinos, have successfully mea-
sured three mixing angles and two absolute mass square differences between the neutrino mass
eigenstates. Global fits of all available input from experiments provide a coherent picture within
the three-flavour oscillation framework [1]. However, the picture is incomplete. Among the yet un-
known features of the neutrino sector figures the ordering of the neutrino masses. Conventionally,
V) denotes the mass eigenstate which couples most strongly to the electron and correspondingly
V3 has the weakest coupling to this state. From experiments with solar neutrinos it is known that
my, > my, due to matter effects which modify the oscillation probabilities of the neutrinos on their
path through the Sun. Experiments with atmospheric neutrinos or with man-made neutrino sources
on Earth were so far unable to detect Earth matter effects or to reveal sub-leading effects of a full
three-flavour treatment. It is therefore currently unknown whether my, > m,, (normal mass hier-
archy - NH) or my, > m,, (inverted mass hierarchy - IH). Unlike other unknowns in the neutrino
sector, such as the value of the CP-phase or the Majorana/Dirac nature of neutrinos, the neutrino
mass hierarchy (NMH) is considered to be in reach for experiments before the end of this decade.
It has been proposed to determine the NMH by measuring matter effects of atmospheric neutrinos
in the Earth in Mton water Cherenkov detectors [2]. Matter effects modify the oscillation pattern in
the opposite way for neutrinos and antineutrinos as well as for NH and IH. The effect is expected to
be easily detectable at the Earth mantle resonance energy of about 6 GeV. While the envisaged wa-
ter Cherenkov detectors cannot distinguish between neutrinos and antineutrinos due to the absence
of a magnetic field, the atmospheric neutrino fluxes are slightly larger than antineutrino fluxes and
the neutrino cross sections are about a factor two higher than those for antineutrinos. This ensures
a non-vanishing Earth matter differential effect between the two NMH hypotheses.

2. The ORCA Detector

The successful deployment and operation of the ANTARES neutrino telescope [3] has demon-
strated the feasibility of performing neutrino studies with large volume detectors in the deep sea.
The KM3NeT [4] technology builds upon this experience and improves the cost effectiveness of
the design by about a factor four. The 31 photo-sensors and the readout electronics are hosted
within pressure resistant glass spheres, so called Digital Optical Modules (DOMs) [5]. More de-
tails on the DOMs can be found also in these proceedings in the contribution by Ronald Bruijn.
The DOMs are distributed in three dimensional grid along flexible strings, one end of which is
fixed to the sea floor and the other end is held close to vertical by a buoy. A building block of
the KM3NeT detector consists of 115 such vertical strings, each equipped with 18 DOMs. The
ORCA detector will consist of one such building block. The sensitive energy range of the detector
is mostly determined by the photo-sensor density. The same detector units as used for the high
energy neutrino telescope, optimised for TeV/PeV energies, can therefore also be used for ORCA
with a different vertical spacing of the DOMs along the strings and a smaller inter-string distance.
The latter is fixed to values greater than about 20 m by deployment constraints. The vertical spac-
ing is currently being optimised in the range 6 m to 18 m. Correspondingly, the instrumented water
mass ranges from about 3.75 Mtons to 11.25 Mtons. If not otherwise mentioned, the results be-
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low are obtained with an inter-string distance of 20 m and a vertical DOM spacing of 6 m. The
design provides nanosecond precision on the arrival time and the time-over-threshold of all single
photons. Calibration units provide tools to achieve the necessary precision in the position measure-
ment (few centimetres) and orientation measurement (few degrees) of the photo-sensors based on
experience with ANTARES. The string concept is modular by design thereby facilitating a phased
and distributed implementation.

The ORCA detector will be located 40 km offshore from Toulon, France, about 10 km East
of the existing ANTARES telescope, at a depth of 2475m. The first main electro-optical cable
was deployed successfully in December 2014 and the first junction box needed to connect strings
has been deployed and connected in summer 2015. Funds have been obtained to build, deploy
and operate the first 6 strings which is foreseen until the end of 2016. Once more funds become
available, the full ORCA array will be constructed and become operational within 3 years.

3. Simulation Tools and Reconstruction Methods

Neutrino and antineutrino induced interactions in the energy range from 1 to 100 GeV have
been generated with a software package based on the GENIE [6] neutrino event generator. The
events are weighted to reproduce the conventional atmospheric neutrino flux following the Bartol
atmospheric neutrino flux model [7]. The background due to down-going atmospheric muons is
generated with the MUPAGE [8] program. MUPAGE provides a parameterised description of
the underwater flux of atmospheric muons including also multi-muon events. All particles in the
vicinity of the equipped detector volume are propagated with a GEANT based software package.
It generates Cherenkov light from primary and secondary particles and simulates hits taking into
account the light absorption and scattering in water as well as the DOM and PMT characteristics.
The optical background arising from the decay of radioactive “°K in seawater is taken into account.

Two methods are being developed to reconstruct neutrino events with apparently different
signatures: a track and a cascade reconstruction. The track reconstruction is designed to identify
muon tracks created by charged current (CC) interactions of v,;, whereas the cascade reconstruction
focuses on Vv,-CC interactions. However, most other interaction channels yield as well a cascade
signature. A neutrino interaction is fully described by eight parameters: its vertex position (3),
time (1), direction (2), energy (1) and inelasticity (1) - defined as the fraction of the neutrino
energy which is transferred to the hadronic system. To determine all parameters, both methods
use a multi-step approach: In the two initial steps the lepton direction and the vertex position are
obtained in several iterations between these two steps. To obtain the neutrino energy, the total light
yield is exploited in conjunction with the already determined vertex position and lepton direction.
The inelasticity is estimated from the ratio of the direct Cherenkov light (close to the theoretical
Cherenkov angle with respect to the fitted lepton direction) compared to off-angle light, which has a
higher probability to be emitted by hadrons. The effect of the inelasticity on the angular distribution
of the emitted photons is illustrated in Figure 1 (left). Neutrino interactions are only kept for
subsequent analysis steps, if their reconstructed vertex is within a fiducial volume and the majority
of the produced light is seen by the detector. The measurement of the NMH is normally done by
examining the event yield as function of neutrino energy and zenith angle [2]. However, it has been
demonstrated, that the sensitivity can be improved by additionally using the inelasticity [9]. More
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Figure 1: Left: Angular distribution of emitted photons with respect to the true electron direction for v,-CC
interactions for different inelasticities, Right: Output of the BDT algorithm to distinguish misreconstructed
atmospheric muons from up-going v, -CC events after applying a containment criteria. Dashed and full lines
are for different choices of the track-fit quality cut.

details on the two reconstruction methods (cascades and tracks) can be found in these proceedings
in the contributions by Jannik Hofestddt and Salvatore Galata.

For the NMH determination a pure sample of well-measured up-going atmospheric neutrinos
is needed. Misreconstructed down-going atmospheric muons can potentially pollute this sample.
After applying basic cuts on the reconstructed zenith angle (up-going) and the vertex position
(containment criteria) a boosted decision tree (BDT) is applied to ensure the separation of the
neutrinos from atmospheric muons. The BDT output variable is shown on Figure 1 (right). A
contamination of a few percent of atmospheric muons can be reached, keeping a high efficiency for
the neutrino sample. This is subject to further optimisation.

The above mentioned algorithms have been tuned on samples of v;,-CC and v,-CC events.
However, in real data both are mixed, moreover other types of events occur as well, such as neu-
tral current (NC) events. Therefore it is important to distinguish the two main event topologies,
to allow their separate reconstruction and analysis. To this end a machine learning algorithm is
used, a random decision forest (RDF [10]), that is trained on Monte Carlo events to distinguish
between the two classes, track-like and cascade-like events. A RDF consists of many decision
trees that individually categorise an event into different classes and whose decisions are combined
into a majority vote with a configurable threshold. The algorithm relies on several discriminating
observables that combine information extracted from the event. The results of the above described
reconstruction algorithms, in particular their fit qualities, are key ingredients to the correct classifi-
cation of a cascade-like or track-like event.

4. Performance

Deep sea water is characterised by an effective scattering length of more than 200 m in the
relevant wavelength range for ORCA. Therefore the majority of the detected photons from neu-
trino interactions inside the equipped volume are unscattered Cherenkov photons. This feature is
exploited in the reconstruction procedures and yields a zenith angle resolution better than 10° for
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Figure 2: Dependence of resolution functions of v,-CC events on vertical spacings of the DOMs, Left: Me-
dian zenith angle distribution, Right: Fractional neutrino energy resolution.

neutrino energies above 10 GeV. At lower energies the resolution is dominated by the kinematic
angle between neutrino and charged lepton. The angular resolution for different vertical spacings
of the DOMs along the detector strings is shown in Figure 2 (left) for v,-CC events. It depends
only weakly on the vertical spacing in the considered range of 6-18 m. For v;,-CC even slightly
better results are obtained.

The neutrino energy is determined by exploiting the total light yield of the events. Therefore
the energy resolution for the two signal samples (v;,-CC and v,-CC) is better than what could
be expected by merely reconstructing the charged lepton emerging from the interaction point. A
close-to Gaussian resolution function is obtained for the selected event samples in the relevant
energy range from 5-12 GeV with a width of 15-20% for v,-CC (see Figure 2 (right) ) and around
25% for v;,-CC. The dependence of the resolution on the vertical spacing of the DOMs is moderate,
as illustrated as well in Figure 2 (right).

The result of the event classification RDF is shown in Figure 3 (left). The probability to clas-
sify as track-like is shown for all reaction channels. For relevant neutrino energies of 10 GeV, about
10% of the events in the cascade signal channels v,, v,-CC are mis-classified as tracks, whereas
67% and 88% of v,,-CC and v,,-CC are correctly classified as such, respectively.

On Figure 3 (right) the effective mass for the selected event samples is shown as function of
the neutrino energy for different vertical spacings of the DOMs. The asymptotic values at large
neutrino energies illustrate the increase in instrumented volume for a constant number of DOMs
while increasing the vertical spacing between them. However, this increase is accompanied by a
shift in the effective energy threshold towards higher energies. The optimisation of the vertical
spacing in terms of the sensitivity in determining the NMH is currently under study.

5. Systematic Effects

The determination of the NMH is a high precision measurement. Each year more than ten
thousand neutrino interactions will be detected by ORCA. The distinction of the two NMH hy-
potheses NH/IH is based on few percent differences in the event count for certain regions in the
energy-angle-inelasticity space. To succeed, a very good control of systematic uncertainties is
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Figure 3: Left: Fraction of events classified as tracks for the different reaction channels, Right: Effective
mass as function of neutrino energy for different vertical spacings of the DOMs.

needed. A first class of such uncertainties is related to the detector itself. The absolute efficien-
cies of the photo-sensors must be permanently monitored over the lifetime of the experiment. It
has been shown by ANTARES, that this can be done, using coincidence signals from *°K decays,
which can be seen as a natural occurring very stable calibration source. As only decays in the vicin-
ity of a DOM contribute to these coincidences, the “°K calibration can be done independently from
assumptions on water properties. These instead have to be monitored as well by different means.
LED and laser beacons are used to measure the absorption length. Light scattering is expected
to play only a marginal role due to the limited size of ORCA compared to high-energy neutrino
telescopes.

A second class of uncertainties is not detector related. Uncertainties on neutrinos fluxes, their
cross sections as well as on the modeling of the hadronisation fall in this category. They are
shared by all experiments with similar goals and methods. Most of the resulting uncertainties
can be parametrised in the form of nuisance parameters and incorporated into the global fit. The
leading effect of all the mentioned uncertainties is the modification of the total event count. This
is absorbed into a free, unconstrained normalisation. Other effects are taken into account as energy
scale factors, an energy slope correction EY as well as modifiable ratios of different event classes
(v/v, track/cascade, NC/CC). Preliminary studies indicate that none of these effects compromise
substantially the ability of ORCA to determine the NMH.

Finally the uncertainties of some of the neutrino oscillation parameters themselves have an
impact on the measurement. The mixing angle 6y, and m%,z — m%], which control solar neutrino
oscillations, do not influence the NMH measurement, so they are fixed to their world best values.
The angle 0;3, determined in reactor experiments, is allowed to vary with a Gaussian prior within
its current uncertainty. ORCA cannot improve the precision of ;3 but a larger value increases the
sensitivity of the NMH measurement. The mass splitting |Am2,| (or equivalently |[Am3,|) as well
as 0,3 can both be measured together with the NMH. Therefore both values are fitted together with
the NMH without constraining priors. It is found that a certain level of degeneracy exists between
the NMH hypotheses and the octant choice 6,3 < 45° versus 6,3 > 45°. The reachable precision
for both parameters is shown in Figure 4. For 6,3 a true value of 42° is assumed. ORCA could
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Figure 4: Measurement precision (68% C.L.) as function of running time of ORCA. The impact of system-
atic uncertainties is illustrated by comparing dashed and solid lines, Left: Am%2 Right: 6,3.

substantially improve the precision for both parameters.

6. Mass Hierarchy Sensitivity

The NMH sensitivity is determined by examining event numbers from pseudo-experiments in
20 bins in log(Ey ) and 20 bins in cos ¥, the measured zenith angle. The inelasticity is currently not
used. Track-like and cascade-like samples are treated separately. A likelihood ratio is calculated
by testing both hypotheses (NH/IH) on the event distributions. At the same time, the oscillation
parameters and the above discussed nuisance parameters are fitted as well. This is repeated for a
large number of pseudo-experiments for different sets of input parameters. This allows to determine
the separation of the two hypotheses and therefore its reachable sensitivity. Figure 5 shows the
evolution of the sensitivity with time. Both cascade and track channels are used. The cascade
channel is crucial for the overall distinction power between the two hypotheses. However, the
track-channel is indispensable in constraining the oscillation parameters.

7. Conclusion

The ORCA experiment aims at measuring matter-induced modifications of neutrino flavor
oscillation probabilities by the detection of atmospheric muon and electron neutrinos that have
traversed the Earth interior. Differences in the zenith angle and energy dependent count rates open
the possibility to determine the neutrino mass hierarchy. Detailed detector simulations show that the
long scattering length of light in water allows attaining promising direction and energy resolutions
for both channels and indicate sensitivity to the reaction inelasticity which will be exploited in
further studies. Employing detailed detector response functions for both signal and background,
the median sensitivity is estimated to about 3¢ in 3 years assuming the current best fit value for the
mixing angle 6,3 in the first octant.

In a first construction phase, the deep-sea neutrino telescope technology developed in the
KM3NeT project will be employed to construct and operate a densely instrumented 6 string detec-
tor off the coast of Toulon, France. It will serve to demonstrate the feasibility of the measurement
and to validate and optimise the detector design.
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Figure 5: NMH sensitivity as function of data taking time with ORCA for both NMH hypotheses and two
values of 63. With the exception of the CP-phase all considered systematic uncertainties are taken into
account.
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