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MURE 2 : SMURE, Serpent-MCNP Utility for Reactor Evolution User Guide -Version 1 Main Contributors

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In the following, we refer either to MURE (MCNP Utility for Reactor Evolution), MURE 2 or SMURE (Serpent/MCNP Utility for Reactor Evolution) 1 ; they represent the same package (MURE is the version 1 of SMURE/MURE 2). The main aim of the MURE [1, 2]/SMURE package is to perform nuclear reactor time-evolution using the widely-used particle transport code MCNP [START_REF]MCNP -A General Monte Carlo N-Particle Transport Code, Version 5[END_REF] (a Monte Carlo code which is mostly written in FORTRAN) or Ser-pent2 [START_REF]PSG2 / Serpent Monte Carlo Reactor Physics Burnup Calculation Code[END_REF][START_REF] Aufiero | An extended version of the Serpent-2 code to investigate fuel burn-up and core material evolution of the molten salt fast reactor[END_REF]. Many depletion codes exist for determining time-dependent fuel composition and reaction rates. These codes are either based on solving Boltzman equation using deterministic methods or based on Monte-Carlo method for neutron transport. Among them, one has to cite MCNPX/CINDER 90 [START_REF] Hendricks | MCNPX version 2.6.A[END_REF], MONTEBURN [START_REF] Trellue | User's Manual, version 2.0 for MONTEBURNS, version 5B[END_REF], KENO/ORIGEN [START_REF]SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluations[END_REF],

MOCUP [START_REF] Babcock | The MOCUP Interface: A Coupled Monte Carlo/Depletion System[END_REF], MCB [START_REF] Cetnar | MCB: A continuous energy Monte Carlo Burnup simulation code[END_REF], VESTA/MORET [START_REF] Haeck | An optimum Approach to Monte Carlo Burn-Up[END_REF][START_REF] Miss | First validation of the new continuous energy version of the MORET5 Monte Carlo code[END_REF], TRIPOLI-4D [START_REF] Brun | Systematic Uncertainty Due to Statistics in Monte Carlo Burnup Codes: Application to a Simple Benchmark with TRIPOLI -4 -D[END_REF], Serpent [START_REF]PSG2 / Serpent Monte Carlo Reactor Physics Burnup Calculation Code[END_REF], ... which provide neutron transport and depletion capabilities. However, the way to control (or interact with) the evolution are either limited to specific procedure and/or difficult to implement.

In (S)MURE, due to the Object-oriented programming, any user can define his own way to interact with evolution.

From an academic point of view, it is also good to have lots of M-C evolution codes to compare and benchmark them to understand physics approximations of each one. Moreover, SMURE provides a simple graphical interface to visualize the results. It also provides a way to couple the neutronics (with or without fuel burn-up) and thermohydraulics

using either an open source simple code developed in SMURE (BATH, Basic Approach of Thermal Hydraulics) or a sub-channel 3D code, COBRA-EN [START_REF] Chao | COBRA-3C/RERTR -A Thermal-Hydraulic Subchannel Code with Low Pressure Capabilities[END_REF][START_REF] Basile | an Updated Version of the COBRA-3C/MIT Code for Thermal-Hydraulic Transient Analysis of Light Water Reactor Fuel Assemblies and Cores Report[END_REF]. But SMURE can also be used just as an interface to MCNP or Serpent to build geometries (e.g. for neutronics experiments simulation).

SMURE is based on C++ objects allowing a great flexibility in the use2 . There are 4 main parts in this library:

1. Definition of the geometry, materials, neutron source, tallies, ...

2.

Construction of the nuclear tree, the network of links between neighbouring nuclei via radioactive decays and nuclear reactions.

3. Evolution of some materials, by solving the corresponding Bateman's equations. • Part 1 can be used independently of the 2 others; it allows "easy" generation of Serpent/MCNP input files by providing a set of classes for describing complex geometries. The ability to make quick global changes to reactor component dimensions and the ability to create large lattices of similar components are two important features that can be implemented by the C++ interface. It should be noted that some knowledge of MCNP or Serpent is very useful in understanding the geometry generation philosophy.

• Part 2 builds the specific nuclear tree from an initial material composition (list of nuclei). The tree of each "evolving"3 nucleus is created by following the links between neighbours via radioactive decay and/or reactions until a self-consistent set of linked nuclei is extracted. Nuclei with half-lives very much shorter than the evolution time steps, could be removed from the tree; mothers and daughters of these removed nuclei are re-linked in the correct way. Part 2 can also be used independently of the other two parts to process cross-sections for MCNP/Serpent at the desired temperature.

• Part 3 simulates the evolution of the fuel within a given reactor over a time period of up to several years, by successive steps of Serpent/MCNP calculation and numerical integration of Bateman's equations. Each time the MC code is called, the reactor fuel composition will change due to the fission/capture/decay process occurring inside. Changes in geometry, temperature, external feeding or extraction during the evolution can also be taken into account. Obviously this part is not independent of the 2 others4 (see figure 1.1).

• Part 4 consists of coupling the Oak Ridge National Laboratory code COBRA-EN (COolant Boiling in Rod Arrays) with MURE. COBRA is a sub-channel code that allows steady-state and transient analysis of the coolant in rod arrays. The simulation of flow is based on a three or four partial differential equations : conservation of mass, energy and momentum vector for the water liquid/vapor mixture (optionally a fourth equation can be added which tracks the vapor mass separately). The heat transfer model is featured by a full boiling curve, comprising the basic heat transfer regimes : single phase forced convection, sub-cooled nucleate boiling, saturated nucleate boiling, transition and film boiling. Heat conduction in the fuel and the cladding is calculated using the balance equation.

The use of this package requires the following installation:

1. a C++ compiler (mandatory). SMURE is developed using gcc (all version between 2.96 and 6.3.1 are known to work perfectly).

2. Serpent2, MCNP or MCNPX (mandatory, available at the NEA DataBank & RSICC). These codes will be refered as "MC " in the following.

(a) Nuclear data files process for MCNP (ACE format) and/or NJOY to process ENDF files into the ACE format (Nuclear data in ACE format are mandatory).

(b) Serpent 1 can not be used with MURE because it does not support unions.

3. COBRA-EN for the thermal-hydraulic part (available the atNEA DataBank & RSICC) 4. The ROOT graphical tools developed at CERN (http://root.cern.ch) is necessary if user wants to use the post treatment GUI tools. In the GUI, radiotoxicity of fuel/waste can be calculated and plotted if the LAPACK library is installed (Linear Algebra PACKage, see http://www.netlib.org/lapack/index.html or standard LINUX repositories (Redhat, Fedora, Ubuntu, ...) for pre-installed versions). If you are using ROOT-5 or before, you should modify the beginning of the Makefile of MureGui.

At present, SMURE has only been compiled and tested on LINUX/UNIX platforms.

Installation

TO BE NOTICED: for some evident reasons 5 , upgrading for MURE version 1 to MURE version 2 breaks some backward compatibility. Nevertheless, for "old" MURE user changes will be minors ; we have try to keep the essential of MURE, but given more flexibility. A chapter is devoted to the migration of old MURE users.

Compilation

• Uncompress the archive file where you want to install MURE source. This will create the "data", "documentation", "examples", "gui ", "lib", "source" and "utils" directories in the MURE directory.

• Configure and Compile MURE

-A bash script is given in the MURE directory ./install.sh -h : full flag option * main options are • -MCNP-version=Num where Num is the MCNP version (or its ACE data format) ; Num can be either 4 (for MCNP 4 (MCNPX <2.5) compiled with 32 bit data) or 5 (for MCNP ≥5 (or MCNPX ≥2.5) compiled with 64 bit data. MCNP Version 5 is the default.

• -ENSDF-path=path where path is a valid directory path (absolute or relative) to ENSDF main directory files ; these optional data can be obtained at http://ie.lbl.gov/databases/ensdfserve.html, download the "Complete ENSDF database" and unzip it in /path_to_ENSDF_data/ENSDF. * Quick install (with the default MCNP 5 version for binary ACE data format 64 bits)

./install.sh This script will create a config directory that contains Makefile.config and config.hxx necessary for all Makefiles and MureHeader.hxx respectively. Then, it compiles "external" libraries (ValErr and mctal ) and the MUREpkg library and put them in "MURE/lib". These libraries are shared libraries.

• Set the LD_LIBRARY_PATH (or SHLIB_PATH on HP-UX or LIBPATH on AIX) in tcsh/csh setenv LD_LIBRARY_PATH "${LD_LIBRARY_PATH}:/path_to_MURE/MURE/lib" or in bash/sh export LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/path_to_MURE/MURE/lib"

Remarks on MCNP/makxsf compilation

In MURE, the access to ACE MCNP cross-sections is done for different purposes (find if cross-sections exist, find the total cross-sections in order to write in MC input file only "significant nucleus" (see 5.1.6), use of "multi-group flux" evolution method (see item 5 of section 7.3), ...). The use of binary ACE files improves the reading time (and also the disk space necessary to store the cross-sections). In C/C++, reading/writing in unformatted files (binary) is done by reading records of 1 byte long. But some FORTRAN compilers such as IFORT of Intel read/write in unformatted file with 4 bytes records. Thus if you want to use such a compiler for MCNP/makxsf you have to force the record length in unformatted files to be 1 byte. In the Intel IFORT compiler this is done via the -assume byterecl flag of ifort command line (see the System.gcf file of the config dir of MCNP distribution where System is either Linux, AIX, . . . ).

Remarks on MURE with Serpent2

At the present time, Serpent2 seems only to handle ASCII file for ACE cross-section. Thus one has to use this ASCII data if one use Serpent. Conversion from the MCNP xsdir to Serpent xsdata is done either with the code provided with Serpent, either directly in MURE if one use the MURE:SetAutoXSDIR() method.

Building files for evolution

In this section, it is explained how to build the 2 necessary files BaseSummary.dat and AvailableReactionChart.dat (these files are not provided in the distribution). One supposes that a user has a standard MCNP5 ENDF B6 base provided with MCNP5. The provided xsdir file and the nuclear data are located in /path_2_ace_files directory (Verify that in the xsdir the absolute path to data files is present).

• Then go to MURE/utils/datadir.

• Compile the ExtractXsdir.cxx file (compilation line is at the end of the file).

• Then run it with "ExtractXsdir" -Answer ENDFB to the first question -/path_2_ace_files/xsdir to the third one and STD to the last one.

• After a while the BaseSummary.dat is created and contains the following 

Running some examples

The directory MURE/examples contains commented examples on how to use MURE. When this is possible, the same example exist for both MCNP and Serpent2; as it will be emphasis in the following, the differences in these 2 examples is generally limited to 3 or 4 lines to change, whatever the complexity of the system. A README file suggests an order to execute examples. For each example, a compilation line is put at the end of the file. Here • The 2nd and 3rd line of these files says that the resulting files will be either MCNP or Serpent input.

• Then a Connector plugin is built ; this connector links MURE object with Serpent or MCNP ones. It is MANDATORY.

• One first builds 2 Materials (Graphite & Fuel ).

• Then pure geometrical Shapes are defined: in this example, one uses only Sphere.

• The "put in" operator ("> >") is used to put 3 spheres like Russian dolls: Smallest and Small are called Inside Shapes of Medium.

• Then, this Medium "matrioshka" is duplicated with the Shape::Clone() method: the Medium2 clone is an exact copy of Medium: it contains a small sphere which contains a smaller one.

• Medium and Medium2 shapes are then translated (with their inside shapes) and then put in the Big sphere.

• Then, Cells are built (Serpent/MCNP cells): it associates a Shape with a Material. The exterior (outBig cell) is void and one has to specify a zero neutron importance because neutrons will not be followed (default importance is 1). For Serpent, this will correspond to the "outside" material. One has to build all Cells for all Shapes:

for Medium, Small and Smallest shapes, it is easy because they have been explicitly declared -Medium2 being a clone of Medium, it has also 2 inside shapes: thus one has to define cells for these inside shapes: one access to Shape::GetOriginalInsideShape() ; by convention, the most inner inside shape has the index 0, then the next one has the index 1, and so on.

• And finally, the Serpent/MCNP file is built ; name is "minp" for MCNP input file and "sinp" for Serpent input file.

Fuel Evolution in a Sphere

The aim of this example 7 of evolution (MURE/examples/Evolution/EvolvingSphere.cxx and MURE/examples/Evolution/Evo is to show basic burn-up calculation in MURE. The example describes a 50cm radius sphere with a inner sphere (R=30cm) of metal uranium, a middle ring (thickness=10cm) of UOx fuel and an external water reflector (thick-ness=10cm). The water will not evolve with time ; the thermal power of this "reactor" is 100 MW and it is kept constant for the whole evolution performed from t = 0 to t = 3 years.

• After defining the Connector 8 , the file begins with some general MURE settings: DATADIR, Temperature precision, Fission Product selection, ...

• Then 3 Materials are built: the water will not evolve whereas the metal and oxide uranium are evolving Materials.

• Then Shapes are defined (the 3 spheres and the exterior of the "reactor").

• The Cell part associates Shapes and Materials.

• Then one defines an isotropic, mono-energetic neutron source (500 n/batch) to run in critical mode (KCODE) with 30 active cycles, 10 inactive cycles and an estimated initial k ef f = 1.

• The directory for the evolution is set (where MC files and evolution results will be written).

• One important function concerning reactor evolution is to be called here : it is the thermal power at which evolution is to be simulated. This value is set using the gMURE->SetPower() where the argument must be in watts. (c.f. Steady-state Power Normalization in § D.1). 7 See comments in the file. 8 The "r" files of MCNP, in the MCNP version, will be removed (they are in general not useful and very large). 

NOTE:

For other applications or if the user already knows which neutron flux he wants to simulate, no power needs to be entered here but a tally normalization factor must then be specified. This Tally Normalization

Factor can be set directly through the gMURE->SetTallyNormalizationFactor() method.

• Then one defines the 6 time steps at which a MC run is done, in a vector. The first MC step is always at time t=0 ; if this step is not defined, it will be insert in the vector. The evolution is performed up to the end but the last MC run is just the antepenultimate time step. This is important to know because this means the last values for k ef f , fluxes, cross-sections are not MCNP values: for k ef f the last value considered is the antepenultimate one.

MURE Package structure

The distribution package contains:

• The PDF version of this user guide.

• A complete useful description of each class (headers)

The general structure of main MURE's classes is shown in figure 1.2.

As it can be seen in figure 1. 

MURE class

The MURE class is some kind of super class that handles connections between all the other classes. It controls all flows: MC input file writing, nuclei trees building, evolution, ... A global pointer (gMURE ) on this class is defined to allow interaction between classes. For example, when the geometry has been defined, as well as the MC source, tallies (or detectors), ...., the MC file will be written using gMURE->BuildMCFile("myfile"); this will generate an MC input file called "myfile" (if no argument is given to the previous method, the default input file name is "inp").

The name of MC exec command is given by gMURE->SetMCExec("mcnp"); or gMURE->SetMCExec("sss2");

By default, MCNP::Connector set the the default value for the MC executable to "mcnp5" and Serpent::Connector set it to "sss2 ".

MCNP Only: You can specify the particle running mode by either gMURE->SetModeN() (the default) to run MCNP with neutron transport, gMURE->SetModeNP() to transport neutrons and photons and so on. This is not take into account in the Serpent version.

Many methods exist and are grouped in sections to help the users ; therefore examination of MURE class header is strongly recommended (see Doxygen class description ).

MURE basic files

Different files are used or built in MURE. It is important to know what these files are to understand the behavior of MURE.

Files of "MURE/documentation"

This directory contains the most updated user guide and class documentations.

• the "MURE/documentation/pdf " directory contains the PDF files

• the "MURE/documentation/html " directory contains the HTML files, in particular an HTML version of the user guide (which is a translation of the PDF one). HTML links are easier to use as well as copy/paste for examples.

Moreover the "MURE/documentation/html/doxygen" directory contains the automatic Doxygen description of classes.

Files in "MURE/data"

In the root MURE tree, there is a very important directory called "data" (known in MURE as the DATADIR) ; this directory can be changed by using either the environment variable DATADIR, or using the MURE::SetDATADIR() method 9 . In this directory, you will find:

• chart.JEF3T: this (old) file contains, for each nucleus, the half-life time and the decay modes. It is a "handmade" file from nuclear data book and JEFF 2.0 library, from "Nuclides and Isotopes", [START_REF] Parrington | Nuclides and Isotopes[END_REF] and "Table of Isotopes", [START_REF] Firestone | Table of Isotopes[END_REF].

• chart.jeff3.1.1: this file contains, for each nucleus, the half-life time and the decay modes. It is the updated version of the previous one. Data are extracted from NUBASE-2003, ENSDF, LNHB, UKHEDD-2.x and UKADD-6.x (see [START_REF] Kellett | The JEFF-3.1/-3.1.1 radioactive decay data and fission yields sublibraries[END_REF]).

• Mass.dat and NaturalIsotopeMass.dat contain respectively the atomic mass for all nuclei and some natural compositions.

• FPavailable.dat and FPyield.bin are fission product yield files: the first one is an ASCII file containing the Z,A of fissiles, and the address of the fission yield (for the available energies) in the binary FPyield.bin file. These files are built from ENDF/B6 file. Source programs that build these files are in MURE/utils/fp. These files are part of the MURE package and have been built for 32 and 64 bits computers ; if you want to use other FP yield, you need to rebuild these files using MURE/utils/fp/GenerateFPYield.cxx (the compilation line is at the end of the file).

• xsdirprequ.dat is the "header" of a general xsdi r (from the top to the "directory" keyword). It is used in the automatic XSDIR construction for MCNP.

• BaseSummary.dat is the file that contains all available nuclei, their temperature and the corresponding xsdir line. 

Files of "MURE/utils"

This directory contains codes that can be very helpful to users.

• "endf2ace" directory contains a small interface to NJOY (see documentation in the directory)

• "fp" contains a utility to rebuild FPyield.bin and FPavailable.dat of MURE/data directory. Main file is GenerateFPYield.cxx which extracts from an ASCII ENDF file (containing the FP yields) the fission product yield in a format used by MURE.

• "datadir " contains programs that allows users to build or complete the BaseSummary.dat and AvailableReac-tionChart.dat.

-ExtractXsdir.cxx allows users to build/complete a BaseSummary.dat from an existing MCNP xsdir.

-ExtractTree.cxx allows users to build/complete a BaseSummary.dat from a directory tree of cross-sections ; this tree can be built by the "endf2ace" utility. The form of the directory tree is base_name/base_version/Z/AAA/Isomeric_state/temperature/bin/ where, for example, base_name=ENDFB, base_version=6.8, Z=92, AAA=235, Isomeric_state=0 (for ground state), temperature=600 (in K). In the directory "bin" one find the binary cross-section of the desired nucleus in the file "ace" and an xsdir line for this nucleus in a file named "dir " (for example the line looks like '92235.10c 233.025000 ace 0 2 1 621851 4096 512 5.1704E-08 ptable')

In both cases, the compilation line is at the end of the source code. (d) In Tally::Tally(int type,const char *particle) : if type < 0 , it's change the Tally units.

i. For example Tally *t=new Tally(-4,"P") define a tally in M eV /cm 2 rather than P articles/cm 2 .

(e) A new method MURE::SetModeP() can be used to allow only the photon transport.

12. July 2009:

(a) Improve the English in User Guide: many thanks to Erica Agostinho for this painful work.

(b) Implementation of PseudoMaterial : in order to take into account temperature effects, one can process the nuclear data at the desired temperature (using NJOY ) or use an interpolation between 2 already existing temperatures ; this later method is used in the PseudoMaterial techniques. This can be changed using the MURE::SetWriteBinaryData() and MURE::SetWriteASCIIData() methods.

(d) One can start an evolution from a given step : suppose that the evolution stops at step i ; an evolution can be started from the step i+1 using MURE::Evolution(T,i+1). Warning: it is probably not correct for OutCoreEvolutiveSystemVector...you must do the evolution from the first step as before.

Chapter 3

From MURE to SMURE : Choosing the

Monte-Carlo Transport Code

As already said, coupling MURE with a other MC code had 2 consequences:

• decouple MURE from MCNP, which was a big job because they were closely linked.

• couple MU RE to a MC code (Serpent or MCNP ), which is also a big job because the Serpent an MCNP philosophy are sometimes completely different.

The aim is with a minor change to input file, it will be able to generate output for MCNP or for Serpent 2. In this chapter, it is explained first how to switch from an MCNP input file to a Serpent input file (or vice-versa) and then how to migrate from MURE 1.0 to SMURE (MURE 2.0 ) .

Switching from MCNP to Serpent in a MURE input file

SMURE has been designed to make the change from Serpent input to MCNP input (or vice-versa) as simple as possible. Of course, Serpent is not MCNP and conversely. Thus each of these MC codes have their own possibility, not implemented in the other. Moreover, the maturity of the MURE coupling is much greater (few years of work for MCNP versus 4 months of work for Serpent). Thus this section deals only with things that are possible with both MC codes and has been implemented in MURE. Nevertheless, it seems to us that is it enough to make a standard reactor study (including evolution).

Principle of the implementation

In MURE, the choice of MC output is performed via a ConnectorPlugin ; this class has 2 sibling, a MCNP::Connector and a Serpent::Connector (see Fig. 3.1) ; thus the main trick is the use of a specific namespace (MCNP or Serpent).

Geometrical shapes are defined in MURE as MathShape (i.e. a "pure" mathematical Shape, e.g. a MathSphere).

Then, in each namespace, are defined concrete (or real) shapes that essentially provide a print method derivating from the MathShapes (see Fig. 1.3). For example, a Serpent::Sphere and MCNP::Sphere are daughters of Math-Sphere and implement a Serpent::Sphere::Print() or a MCNP::Sphere::Print() that will produce respectively the right output for the corresponding MC code. The same trick applies for tallies (or detectors in Serpent). Thus, using a Connector, a Sphere, ... in MURE is just "resolved" by the namespace (that should not be forgotten). In order it works without problems, appropriate header files must be included. 

A example

Switching from one MC code to the other can be performed very fast : edit the file (let say a MCNP version) and replace all "MCNP" string by "Serpent" string. This should change 4 occurrences: the header, the namespace and the source name (See example of Tab. 3.1). Then remove specific command for MCNP and add specific command for Serpent. To illustrate this, let us consider the "evolving sphere" example. The "red" parts of Table 3.1 correspond to a "replace all" "MCNP " string by "Serpent" string. The magenta words are "output" directory name, that here, are different to keep a trace of both evolution. The blue lines is an example of a pure specific method of one code (here MCNP ) of one of the 3 classes Connector, (MCNP/Serpent)Source or Tally. And then, in green, a MURE::AddSpecialCard() that in this case is only for Serpent.

As Shown on this example, the number of line to modify is very limited ; moreover, dealing withe a more complex case, this number will not increase significantly (probably less than a factor 2).

How migrate my old MURE V1.x file to the MURE V2.x file

What has definitely change

In this part, only the coupling with MCNP is considered (as in the old MURE v1). Main changes are due to

• Header file has change (row 1 of the Tab. 3.2) ; one must use a namespace MCNP.

• One has to define a ConnectorPlugin of type MCNP::Connector (see row 1 of Tab. 3.2) just after the main declaration. The connector is responsible for all pure MCNP methods. Row 3 of Tab. 3.2 give an ex- ample for removing MCNP "r" files; but the same apply for SetPRDMP(), SetMCNP4B() which are now in MCNP::Connector and no more in MURE.

• Method names of MURE containing "MCNP" are (in general) now named with "MC" ; examples are given from row 4 to 7.

• Evolution is no more in MURE class but in the EvolutionSolver class ; example of change are given in row 8 to 10. Almost all MURE evolution related method are now in EvolutionSolver excepted MURE;SetPower() and MURE::Evolution().

• Lattice implementation has changed :

-Replace the declaration from a simple Cell to a LatticeCell (row 11)

the Cell::Lattice() is replaced by LatticeCell::SetLatticeRange() and the lattice type is no more necessary (see row 12)

• ReactorChannel & ReactorMesh classes: the first one is, since a while, obsolete ; it is removed in MURE V2.0.

The second one has been deeply rewritten and rename as ReactorAssembly but the spirit has not change ; most of work (and thus time spen to migrate from MURE V1.x to MURE V2.0 will be in the change of this ReactorMesh to ReactorAssembly class but we think that the improvements of ReactorAssembly justify this "extra-work". For more details on the ReactorAssembly class see section 9.3.2.

The time spent to change a very big file from version 1 to version 2 is around 5 minutes maximum.

What is still existing but can be done in a more elegant way

In most of real case fro reactor physics, one has to use lattice, fuel pin, ... A new improvement of MURE version 2 is to implement a PinCell which in fact copy the elegant Serpent's pin definition. To illustrate the advantage of such a PinCell class, the main part of the lattice example in the "old" way is presented and then rewrite using PinCell.

For sake of clarity, only Shape and Cell part are presented. All sizes have been defined, as well as 3 Materials : H2O, Iron, and UOx. As shown on Tab. 3.3, the use of PinCell makes the code shorter (the 8 blue lines of the shape declaration have been suppressed), and easier to define and to read. The PinCell declaration make cell part slightly longer (4 "magenta" lines versus 6 "green" lines). To be noticed, the use of a PinCell without a layer allows to define the whole universe. And a last comment on the FillLattice methods : in the first version, a Shape is used as argument (red variables on the left) where as in the new version this is a PinCell (red variables on the right).

Thus user is strongly encourage to use these PinCells. 

Geometry Definition

Introduction

C++ logic for building geometries is slightly different for the MCNP or Serpent one ; therefore, each time a new geometry is built you should check it with MCNP/Serpent before using it.

There are two base classes to build a geometry: Shape and Cell. Shape describes only geometrical shapes, and Cell corresponds to an MC code cell (i.e., it has a material, importance, etc.).

Shape objects correspond to simple geometrical shapes (sphere, plane, ...) as well as more complex ones resulting from the intersection and/or union of simple shapes (Intersections/unions are defined by the Node class). A Node is a "tree" of intersections/unions of Shapes. For fast calculations, a node tree has to be as simple as possible. Special methods are available for simplifying the node trees which can (in general) determine whether or not a Shape is disjointed (or included) of (in) another Shape (see example in figures B.1 to B.4 in Appendix B).

These simplifications may result in the deletion of some Shapes. But, because one must not destroy a Shape in a Node if that Shape belongs to another Node, a special way to handle Shape creation/destruction has been implemented (via Reference_ptr, which is a C++ smart pointer).

In conclusion : the user must only use Shape_ptr (a "reference Shape") and not Shape. Shape_ptr is a pointer to Shape with Reference_ptr. In that way, the Shape_ptr will be destructed only if it is no longer referenced, otherwise, its "deletion" leads to a decrement of the number of references.

Definition of geometrical shapes

• There are 4 available base Shapes :

-Plane (infinite), -Cylinder (infinite), -Sphere, -Brick (finite or infinite)

• Then one can define Node (unions or intersections of Shapes) with 2 already defined Nodes:

-Tube -Hexagon (finite or infinite) A Brick is a rectangular parallelepiped (and can be infinite). A Tube is a finite cylinder with an optional inner radius that defines a "tube". Hexagons can have finite or infinite height. In general, a user will only need to use Spheres, Bricks, Tubes and Hexagons.

One can define the interior or the exterior of each Shape. The complement of a Shape can be defined by the Not() method as well as by the "!" operator (see examples given later on).

Other shapes available in MCNP(X) or Serpent may be added by any user. This is not too hard even if it requires some work. The best way to do it, is to read the implementation of existing shapes to have an idea.

Units

WARNING: In MURE, the length unit is the meter (whereas in MCNP and Serpent it is the cm). In particular, volumes in MURE are in m 3 . Length m

Energy eV

Temperature K Density g/cm 3 , atom/cm 3 or atom/(barn.cm) Proportion %mol, %mass, atom/cm 3 or atom/(barn.cm)

Examples of simple shapes

To define the interior of a origin center sphere of radius R:

Shape_ptr S(new Sphere(R));

To define the outer part of S one can do Shape_ptr Ext_S(!S);

or Shape_ptr Ext_S(S->Not());

or Shape_ptr Ext_S(new Sphere(R,0,0,0,1);

where 3 zeros correspond to the sphere center (the origin) and +1 to the exterior of the Sphere (default=-1).

For Hexagons and Bricks, two versions exist: finite or infinite Shapes. For finite bricks and hexagons, you should define it as: The infinite shapes obtained are parallel to the Z axis, but they may be rotated afterwards.

Examples of simple Nodes

A Node is the Union (+1) or the Intersection (-1) of Shapes (i.e., simple Shapes or Nodes).

To define the intersection of a sphere centered at (x 0 , y 0 , z 0 ) of radius R with a square brick of side a centered at the origin, one may use: whereas the union of the sphere and the brick may be defined as

Shape_ptr S(
Shape_ptr Union=S | B;

Moving a Shape

It is possible to move (translation/rotation) a Shape (or a Node) via the Shape::Translate and Shape::Rotate methods.

For example, to translate the Shape_ptr B of (dx,dy,dz), B->Translate(dx,dy,dz);

and to rotate clockwise B around (x 0 , y 0 , z 0 ) of φ, θ and ψ around the z, y and x axis respectively:

double center[3]={x0,y0 ,z0}; 
B->Rotate(phi,theta,psi,center);

Note that the translation/rotation of a Shape translates/rotates also the inside shapes (see next section).

To be noticed: Angles are in radians.

The "put in" operator > >

It is possible to put a Shape_ptr A inside another B one, via the "put in" Note:

• The brick B is an inside shape of S: this means that if one moves S, one moves also B.

• It is possible to link inclusion:

A> >B> >C;
means that A is put in B and the result is also put in C. A is an inside shape of B and C ; B is an inside shape of C.

• if after the previous example, one makes

C> >D;
Inside shapes of C are cleared and D has A, B and C as Inside Shapes.

Clone of a Shape

It may be sometimes very useful to clone a Shape, i.e., to create a new Shape with the same properties as the original one. Here is an example: B2 has exactly the same aspect as B1 (with 2 tubes inside) but it is translated by 1m in the x direction, whereas B1 is centered at the origin.

Boundary conditions

In MCNP, it is possible to use special boundary conditions: mirror, white or periodic boundary conditions. In Serpent, boundary conditions can be applied only on the shapes associated to cells with the "outside" Serpent's material. The only valid possibilities for Serpent are black (totally absorbing, the default), mirror or periodic.

To be noticed also, the "outside" cells of Serpent don't support unions. For any geometry, if the outside cell (Serpent namespace only) is not a "simple" shape (simple in the Serpent's sense, it includes Spheres, unrotated Tubes, Bricks or Hexagons), then the user define outside shape (the one which is in the 0 importance cell) is put into a Sphere.

In Serpent, boundary conditions only apply to Bricks (square, cuboid, ...) or Hexagons (hexxc, hexxprism, ...).

Mirror and Black boundary conditions have been implemented in MURE for unrotated Bricks or Hexagons in Serpent.

In any case, the use of boundary conditions in MURE could be used but have not been fully tested...so it is advised to use them carefully. In all cases, the exterior of the Shape_ptr with boundary conditions must have a zero importance.

You can apply only one type of boundary conditions to a Shape_ptr. Here is a brief description of these boundary conditions:

• Mirror conditions correspond to a standard reflection on a shape ; the method to define such conditions is Shape_ptr A(...);

A->SetMirrorBoundary();

• For some shapes, (Hexagons and Bricks) mix boundary conditions can be used (e.g. x-y surfaces are mirrors whereas top and bottom z-planes are open (black)).

• White conditions correspond to a reflection with a cosine direction distribution on the surface ; the method to define such conditions is Shape_ptr A(...);

A->SetWhiteBoundary();

• Periodic condition: when a particle leaves a given plane it re-enters through another one. This method could only be applied to Bricks or Hexagons, with the restriction that the Top and Bottom planes (before any reflections) are either Mirror boundaries, White boundaries or Infinite boundaries.The method to define such conditions is

Shape_ptr A(new Brick(1,1 ,1)); 
A->SetPeriodicBoundary(true,"mirror");

or Shape_ptr A(new Brick(1,1,1));

A->SetPeriodicBoundary(true,"white");

Recommendations

• It is generally simpler to define a geometry from the inner part to the outer part : for example, -define first shape A, then B and C and D.

-Put shapes inside each other like • Avoid complex shapes: it is more efficient (in term of CPU time at least for MCNP ) to divide a complex in several simpler shapes.

Definition of MC cells

A Cell is defined by a Shape_ptr, and if needed a Material.

MC cells are defined via the Cell class ; one has to give

• the Shape_ptr corresponding to the geometric shape of the Cell,

• the Material (see section 5.1) if exists (default=0 for void),

• the importance of particles2 (default=1), where B4C is a (Material*) 3 . In this example, one can define the exterior cell as Shape_ptr Exterior(!C);

Cell* exterior=new Cell(Exterior,0,0);

The first zero means that the material is void and the second one means that neutron importance is set to 0 in the exterior cell ("outside" material for Serpent). where Graphite and Iron are two Material *. Here, the result will be a tube of graphite containing a tube of iron containing a void tube. To define analog cells for B2 we have to do:

Cell *b2=new Cell(B2,Graphite);

Cell *tt1=new Cell(B2->GetOriginalInsideShape(1),Iron);

Cell *tt2=new Cell(B2->GetOriginalInsideShape(0));

Indeed, the "Inside shapes" of B2 are ordered from the most inner (B2->GetOriginalInsideShape(0) clone of T2), to the most outer (B2->GetOriginalInsideShape(1) clone of T1).

Lattice

Lattices are used in MC to fill cells of repeated structure. In MCNP, there are 2 types of lattice, hexahedra (type=1)

or hexagonal (type=2). In Serpent, circular lattice are also defined but they are yet not implemented in MURE.

In this section, four examples of lattices are presented (from the most simple to the most complex case). Of course the lattice type does not change the declaration (except that the lattice generator is a Brick for hexahedra lattice whereas it is an Hexagon for the the hexagonal one). Lattice philosophy is somehow different from MCNP and Serpent

; the MURE implementation is closer to the MCNP 's one.

The general philosophy for lattice declaration is the following:

1. In the Shape section As it can be seen, the version using PinCell is more compact and more easy to understand (Blue part disappear and magenta part is replaced by green one ; the lattice is thus filled by the PinCell). These two implementations give the same result which is shown in Figure 4.2. Note that in the first implementation, outside of the cladding (OutClad Shape) has the same universe than the Clad Shape because it is define as the complementary Shape of Clad (the ! operator). Note also than OutClad and Exterior shapes must be defined before the "put-in" operator (> >) because this latter modify the definition of Vessel or Clad. Few words for Serpent users: the "lat" card of Serpent need an origin, and a pitch. These quantities are deduced from the generator shape ; translating it will thus change "lat" origin. The sizes of the generator shape will determine the pitch (number of values as well as values depending on the dimension (2D or 3D) of the lattice). Explicit lattices are filled with different universes, allowing to put different structures at some given position. To illustrate this, let us modify the previous example slightly: we want to fill the Vessel with 2 types of hexagons: the first ones are full water hexagons (the reflector) in the outer part of the Vessel and the second ones are the previous hexagons with the small pin rod inside. For shortness, we chose to fill the Vessel with second hexagon type if it is inside a "virtual" cylinder of radius 90cm. Both implementations using Shape only or PinCell has been proposed in Tab. 3.3. Here, a focus is made on the PinCell implementation. The principal changes take place between the lines named "Line A" and "Line B" . We have to replace this part by: • A new PinCell (whole) is defined ; because just a surrounding material is defined, this PinCell represents the whole space (it is a "pseudo-PinCell").

//--------------------Line A -------------------- PinCell*
• Then the lattice range is defined as (2range+1)×(2range+1) matrix (in x and y direction and infinite in z ). The "range" has been defined to cover at least the entire vessel.

• Then, each position of hexagons in the lattice is computed ; if a hexagon is inside the virtual cylinder of radius 0.9m, a hexagon with the pin rod is used (PinCell pinUox in the Cell::FillLattice method) at the given position pos else the "whole" PinCell is used (and as always with lattices, it is automatically cut by the lattice meshes).

The result is shown in Figure 4.3.

Note: if one prefers use only shapes (and not PinCell), one can used the following trick (but it is not implemented for Serpent!!!)

• In the Shape part, define a Shape_ptr corresponding to the Whole space (intersection of nothing4 ): In this example, we consider a hexahedra lattice. Each brick of the lattice will have parts of "stadiums" on each (x,y) sides (see Figure 4.4, this is the base geometry of the MSRE reactor). • In the Shape part:

-A Tube (Circle0) is created at the origin ; then it is cloned in 3 other Tubes (universe number of Circle0 is given to its clones). Then these Tubes are translated to the right place.

-2 Bricks are created (with the same universe as Circle0) and translated to the left and the top of the square.

All elements of all stadiums have, here, the same universe.

-Then 2 stadiums are constructed as the union of 2 tubes and a brick. The right and bottom stadiums are cloned from the 2 previous ones, and a union of all stadiums is constructed.

• In the Cell part:

-The lattice cell is defined, and filled by the universe of AllStades.

then, stadiums cells and exterior of these stadium are built. Chapter 5

Materials, Sources, Tallies, ...

Definition of material

A Material is a set of nuclei with their proportions (default units is %mol), it has a density and a temperature.

For example to define B 4 C of density 2.52 g/cm 3 at 296 K:

Material *B4C=new Material();
B4C->SetDensity(2.52); //default units are g/cm3 B4C->AddNucleus(5,10,0.199); //Boron is composed 19.9% of 10 5 B B4C->AddNucleus(5,11,0.801); // and 80.1% of 11 5 B B4C->AddNucleus(6,0,0. where Z is an integer corresponding to the proton number of the nucleus, A, an integer for the number of nucleons, I, an integer for the isomeric state and prop, a double for the proportion of the nucleus in the Material. For natural isotopes A=0 ; for ground state I=0 (this is the default value when not specified). See § 5.1.3 for units.

• A Material can contain one nucleus which is a "moderator": this means that the special treatment S(α, β) is applied for low energy in MC run for this nucleus. In order to say that a nucleus is a moderator, one has to add a string for the last parameter of Material::AddNucleus (see 5.1.4 for a full description) ; defining thermal treatment for hydrogen in light water leads to:

H2O->AddNucleus(1,1,2.,kpMOL,"H2O"); //here the unit of proportion must be given explicitly H2O->AddNucleus(8,16,1.);

Clone

A Material can be cloned via the Material::Clone(double Temperature) method. There are 2 types of clones depending on:

• whether the material does not evolve and the Temperature argument of Material::Clone() is negative (the default) (see example of B4C_Light in § 5.1.7): the clone is only used because it makes possible to define a material with the same number in MCNP but also present at different densities in different cells. A call to Material::SetTemperature() will have no effect on such a clone!

• or whether the material will evolve and/or the Temperature argument is positive or null (see example of Fuel2 and B4C_Hot in § 5.1.7): the clone is a "true" clone, i.e., all compositions and proportions are duplicated (2 different material numbers in MCNP ). Of course the density, temperature,... of the clone could be changed after cloning, as well as new nuclei could be added. This kind of clone is the correct way to handle 2 evolving cells starting with the same composition but evolving independently. Note that by default the density of the clone is the one of the original material.

Mix (Mix.cxx)

Two Materials of different densities can be mixed together to create a third material. This is useful in many situations, e.g., the case of reactor fuels with a given enrichment of fissile isotopes. The principle is the following:

M12=M1->Mix(M2,part,kpMOL);
M12 is a new material and is created from the molar part mixture of materials M1 and M2 (for example Uranium and Plutonium Oxides). M1 and M2 can not be used in the problem, because the Material::Mix method forces them to be fictitious materials by using the Material::ForbidPrint() method: THIS IS DONE IN THE Material::Mix() METHOD.

The density of the new material M12, is calculated as

ρ 12 = 1 ω 1 /ρ 1 + ω 2 /ρ 2
where ω i and ρ i are the mass fraction and density of material i. The temperature of the new material is the same as that of material M1.

Units

Density

Default units (k=constant, d=density) for density is kdGCM3 (g/cm 3 ); but, to avoid confusion, you must set the density unit in Material::GetDensity() (either kdGCM3 (g/cm 3 ), kdATCM3 (at/cm 3 ) or kdATBCM (at/barn.cm)).

User may give the density in atom/barn.cm by using Material::SetDensity(density, kdATBCM). NOTE: If the density is not given (i.e. set to the default value 0), it could be automatically found if the proportions are given in atoms/barn.cm or in atoms/cm 3 .

Proportions

Default units for proportions are in molar percentage. To give proportion in other units, use where UNITS stands for (k=constant, p=proportion): kpMOL ("%mol" (default)) or kpMASS ("%mass" ) or kpAT-BCM ("at/barn.cm") or kpATCM3 ("at/cm3"). The moderator category can also be any real MT file name such as "lwtr " or "u/o2 ", ...

Pseudo Materials

PseudoMaterials are particularly useful for thermal-hydraulics problems. Normally, the material temperature dictates which extension (e.g. ".60c") for cross-sections will be used from the evaluated data libraries. The default behvaiour in MURE is that the nearest available temperature is used, the maximum tolerable difference between this temperature and the desired material temperature being defined in the TemperatureMap class. However, there are occasions where it is useful to perform a stochastic interpolation at the desired temperature by adding two identical nuclei at different temperatures in the material in varying proportions. These types of materials are called PseudoMaterials, because, in principle, they behave as a material at a precise temperature, T, even though the cross-sections in the evaluated data libraries at this precise temperature do not exist. To declare a Material (Mat) to be a PseudoMaterial requires the following simple line:

Mat->SetPseudoMaterial();

From this point onward, MURE will automatically create two identical nuclei with different extensions/temperatures and in the correct proportions for, every nucleus which is added to this material. No other commands are necessary.

However, in the case of an evolving material (a reactor fuel rod for example), this can cause the addition of many, many extra nuclei to the material, thus slowing down MCNP calculations by perhaps as much as 20%. In the case that the user only wants to declare certain nuclei to be PseudoNuclei (for example, the most important ones, such as the fissile and fertile nuclei) the following kind of lines can be added after the creation of a Material: Now, only the selected nuclei will be treated as pseudo nuclei and automatically inserted twice into the MCNP file at the two nearest data base temperatures in the correct proportions. The proportions, ω 1 and ω 2 , for the interpolation are calculated in the following way:

ω 2 = √ T - √ T 2 √ T 2 - √ T 1 ω 1 = 1 -ω 2 50
where T 1 and T 2 are the nearest two temperatures in the evaluated data base files straddling the desired temperature T .

MC material Printing

This section concerns only evolving Materials. When evolution is required, at the beginning, many nuclei are present in the material but in a very small proportion. Each time a neutron enters in a cell, MC code tries to find the nucleus on which the potential reaction could happen. Thus, the more complex is a material, the longer is the MC run. The idea is to suppress only for the MC print, the nuclei which do not contribute "significantly" to neutron transport to save CPU time. The criterion is based on the evaluation of total cross-section σ T and nucleus proportion p. If a nucleus of a material has a p × σ T < ε, it is not printed. The value of ε is by default set to 0.1% × 1mb = 10 -6 .

This can be changed via MURE::SetMCNPNucleusThreshold(). To be noticed that perturbative tallies of all evolving nuclei are written (in order to evaluate the cross-section...). The effect of this procedure is thus to accelerate MC runs at the beginning of the evolution where time steps between MC are generally smaller, and add more and more nuclei as far as the evolution is going on (with larger time steps between MC runs).

Examples

Please take a look at Material_test.cxx and Material_test2.cxx and the corresponding Serpent version for the second one. The use of Nucleus::SetXSExtension or Material::SetDefaultXSExtension supposed that the user provide a correct xsdir file with all necessary information.

Automatic extension finding

Here is a short description of the automatic nucleus extension finding.

Making the BaseSummary.dat file

In order to work, a specific file, BaseSummary.dat, must be present in the data directory. The aim of this file is to facilitate the search for a given Z,A,I and related xsdir/xsdata information (see also § 1.4.2 and 1.4.3).

Extracting the MC nucleus code from the BaseSummary.dat file Suppose the desierd ZAI exists in the BaseSummary.dat file. Then the choice of the desired nucleus is based on 2 criteria: the first one is related to the preference in a nuclear base (ENDB, JEFF, JENDL) and the version of this base, and the second criterion is related to the nucleus temperature. A score is calculated for each criterion, and the best score is chosen. Two classes are in charge of these criteria: BasePriority and TemperatureMap.

• BasePriority class: a priority base is organized in 3 levels (base names) and maximum 3 sub-levels (base versions).

Level 1 has a greater priority than level 2 and so on. By default, the 3 levels are: (1) ENDFB (USA), ( 2) JEFF (European) and ( 3) JENDL (Japan). Only 1 sub-level is defined for each base (6.1 for ENDFB, 3.0 for JEFF and 3.3 for JENDL). If a user defines for each level the same base (e.g., (1) ENDFB, (2) ENDB, (3) ENDB), then this imposes the base choice (i.e., no other choice is possible).

For example

BasePriority *BP=new BasePriority(); BP->SetBasePriority(0,"JEFF"); //1st prefered base

The MCNPSource SerpentSource classes enable the definition of particle sources (up to now only neutron sources may be defined for Serpent). Nevertheless, some source definition methods are common to both classes. Two type of source can be defined, source for criticallity calculation (called kcode mode) and fix sources for non fissile or subcritical system only. For Serpent, source possibilities are much more simpler than for MCNP ; in MURE, the source implementation for Serpent is also much less developed. Mainly position and energy of punctual monoenergetic isotrope source can be defined. Criticallity is defined also by the "SerpentSource::SetKcode" method. In the following section, the MCNPSource is used because of its greater complexity, but looking to SerpentSource methods and their analog counterpart in MCNPSource is self understandable.

The source may be defined with MCNP card or as an external source. In the latter case (MCNPSource::SetExtern()), external source will be read in a special file. This is valid in subcritical mode as well as in critical (KCODE ) mode (not true for Serpent). One chooses to run in subcritical mode (default) or in KCODE mode via the MC-NPSource::SetKcode() method.

Setting Source for MURE

Once an MCSource has been defined, one has to give this source to MURE class:

MCNPSource *mysource=new MCNPSource(1000); //1000 source particles gMURE->SetSource(mysource);

Criticallity calculation: Kcode mode

To be noticed that, for Kcode, the number of source particles defined in the constructor of MCSource is in fact the number of neutrons per cycle.

To initiate a KCODE, a SDEF (or KSCR) card is needed (if no external source is given!). By default in MCNP, the position of this initial source is (0,0,0). If you want to change the source position, use the MCNPSource::SetPosition().

In Serpent the default positions are chosen in cells containing fissile materials. where the source file olds is the result of a previous run. In case of evolution, if you do not specify any argument, the source will be calculated as specified by inactive cycles, and then for next MCNP runs, the source is taken from the previous cycle.

More elaborated sources (MCNP only)

The MCNPSource gives more details on MCNPSource class possibilities. Two simple examples are presented:

First

MCNPSource *source=new MCNPSource(1000); //1000 particles per cycle source->SetKcode(500,20,1); //critical mode (500 active cycles, 2O inactive, supposed keff=1) source->SetKSRC(); //use fission spectrum for netron energy source->AddPosition(0,0,0); //add one position for the source at (0,0,0) source->AddPosition(0.1,0.1,0.1); //add an other one at (10cm,10cm,10cm) source->AddPosition(0,0,0.2); //add an other one at (0,0,20cm) source->AddPosition(0,0,-0.2); //add an other one at (0,0,-20cm)

and the second One can define energy distribution source using the Spectrum class and the MCNPSource::UseThisEnergyDistribution() method. Any call to that method will dump in MCNPSource_YourEnergyDistribution.dat, the ASCII spectrum of this source (for user own use) as well as the total number of particles emitted (for normalization purpose).

To be noticed: this method will change the source particle type according to the Spectrum type (neutrons for NeutronSpectrum, γ for GammaSpectrum, . . . ). This method only change energy distribution of the source (using MCNP distribution source cards (D, SI, . . . ) numbered by default from 800).

Tube Source (MCNP only)

It is possible to define volumic cylindrical sources with the help of the Tube class. Two methods are available :

MCNPSource::AddTubeSource(Tube * tube, string energy) and MCNPSource::AddTubeSource(Tube * tube, Spectrum* spectrum). In both cases, the tube is used to define the shape of the source. The first one allows to use either monoenergetic sources or using source distributions "D" card. In the latter case, the user need to provide himself the distribution description via the MCNPSource::AddBias() method (see TubeSource.cxx example). The method using Spectrum class argument use Spectrum to define both particle type of the source (neutrons for NeutronSpectrum, γ for GammaSpectrum, . . . ) and energy spectrum (see TubeSource2.cxx example). Theses 2 methods use internally source distribution cards (D, SP, SI, . . . ). The starting number of these distribution is 900. Thus don't use number above 900 to define your own source distribution and biasing.

Of course you can add more than one Tube source ; but it is only possible to add more Tube sources with same calling method (either MCNPSource::AddTubeSource(Tube * tube, string energy) or MCNPSource::AddTubeSource(Tube * tube, Spectrum* spectrum). One cannot mix them.

Define MCNP Source from the result of an evolution (MCNP only)

If one want to use the energy distribution of a spent fuel which has cooled for a time t, use MureGui and dump the source in a MURE format ("Save Data" button, then select the "MURE INPUT Spectrum" radio widget). The generated file can be inserted in a MURE "cxx" code (c.f. MureGui section 8.3.6).

Tally class

The Tally class enables tallies for MCNP/Serpent to be defined.

WARNING : NEVER USE : "Tally *f=new Tally[N]" BUT USE INSTEAD "vector<Tally*> f(N) ; for (int i=0 ; i<N;i++) f[i]=new Tally;". The reason is that when tallies are deleted, one need to use either "delete []" or "delete" ; in MURE, the second case is chosen which is incompatible with the former declaration.

MCNP tallies or equivalent Serpent detectors are used to store quantities from a run ; Serpent detectors and MCNP tallies have lots of common points but the MCNP version has more possibilities (Group tallies, tally normalization, ...). The implementation of tallies in MURE is (at least for historical reasons) much more developed for MCNP.

Nevertheless, surface tallies (type 1 and 2 in MCNP) are not fully implemented (Surface calculation, ...) even if one can use them with special precaution/verification.

There are 2 main tally types: Surface tallies (type 1 and 2 in MCNP, same convention is kept for Serpent) and Cell tallies (4,...). At present, only Cell tally of type 1 (current through a surface), 2 (flux through a surface), 4 (flux in cell), 6 (energy deposition in a cell) and 7 (fission energy deposition in a cell) are implemented in MURE. Surface tallies have not been tested at all and stochastic surface calculation is not implemented in MURE .

A Tally consists of • a tally type (what is the desired quantity, e.g. flux in a cell),

• a list of TallyBin: this may be SimpleBin (a cell or surface number), GroupBin (a group of cells or surfaces) or a LatticeBin which allows to obtain tallies in cells with universes. The GroupBin does not exist in Serpent ; the LatticeBin is not implemented in MURE for Serpent.

• a Time and/or Energy binning (linear, log or arbitrary binning)

• a list of TallyMutiplicator (Tally Multiplicator) that allows to obtain cross-sections, .... A TallyMutiplicator is composed of a multiplicative constant, a material number and a Reaction. The multiplicative constant is not used in Serpent.

Of course Cell tally bin types could not be mixed with surface tally bin type. Tally bins are added with the Tally::Add() method (for cell/surface bins) whereas energy and/or time bins are added with Tally::AddEnergy() or Tally::AddTime().

Tally multiplicator may be added with Tally::AddMultiplicator() to obtain cross sections, reaction rates and so on.

Example of Tallies:

Tally *t1=new Tally(); //default tally type is 4: flux in cell t1->Add(cell_1); t1->Add(cell_2);

LatticeBin *lpb=new LatticeBin(rod); //rod is a cell associated to an element of a Lattice lpb1->AddContainer(core); //core is a cell fills by "rods" t1->Add(lpb); t1->AddEnergy(1e-2,1.e7); //log energy binning from 0.01 eV to 10 MeV with 10 bin/decade (default) t1->AddMultiplicator(mat_1,new Reaction(102)); //capture reaction rate t1->AddMultiplicator(mat_1,-6);//fission reaction rate and reduce the number of nuclei in the calculation and hence the calculation time. To simplify a nuclear tree requires these short-lived nuclei to be cut out of the tree and their reaction/decay parents and daughters re-linked into the tree correctly. There are two types of simplification for a particular tree branch, depending on whether the nucleus X in question is produced via decay (see figure 6.3) or nuclear reaction (see figure 6.4) .

Note that this means that in some cases a single type of reaction can produce multiple daughters with different probabilities (branching ratios), since the reaction daughter had more than one decay daughter itself, and was cut out of the tree because its half-life was too short (see figure 6.4). After the simplification process, these reaction daughters will have weights which are proportional to the decay branching ratios of the nucleus that was removed from the tree.

For a particular tree many nuclei towards the neutron drip-line end up getting cut out due to their progressively shorter half-lives. In figure 6.5 we can see the nuclei explored and then removed from the tree right up to the edge of the nuclear chart.

The difference/similarity of material trees

Two nuclei X, and Y will have identical trees if there is a pathway of decays and reactions that produces Y from X and also a pathway of decays and/or reactions that produces X from Y. Reactions (n, γ) and (n, 2n) move up/down in mass, and decays only move down in mass. Once the mass is sufficiently low that (n, 2n) reactions are not permitted, then decays will only take nuclei as far as the valley of stability and a stable nucleus are reached. At this point the tree branch ends. However, successive neutron captures are always possible, therefore fuels containing lighter elements, such as the Oxygen in Uranium Oxide (UOX) fuel, will have a different tree from a pure fuel's one such as the 232 Th (see figure 6 cross-section (from ENDFB base). All the available reactions are plotted in figure 6.9.
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For a realistic half-life cut, the actinide nuclear tree still contains several hundred nuclei. However, simplification has reduced considerably the complexity of the problem(see figure 6.10) 1 .

Fission Products

Fission products are built according to the fission yields available in nuclear data libraries (ENDF B 6.8). They are the major contributor to nuclei increased in the reaction tree. Thus, the more FP in nuclear libraries, the longer the MCNP/Serpent execution time will be due to the increase in tally number. Thus, in order to obtain a first approximation, it may be convenient to run only a selection of fission products that may be considered as "fundamental". We provide a method, NucleiTree::FissionProductSelection() to choose the most important FP. All other FP will not evolve (no resolution of Bateman equations) but instead are added in the real materials of the MC input file in order to have a good flux description. A default selection has been entered with the nuclei of Table 6.1 ; nevertheless the user can provide a 1 In this figure, we also show the MURE cross-section data base built at IPNO/LPSC ; this base stores nuclei from ENDF, JENDL and JEFF. The relatively small difference in nuclei number between MCNP and MURE bases is due to the fact that this tree has been built at 300K. When choosing higher temperatures (as in standard reactors), the difference will increase because the MURE base has been processed for different temperatures (500K, 600K, 800K, 1000K, 1200K, 1500K) for minor actinides and main fission products. This base is not part of the MURE package. . The blue curve shows the number of nuclei in the tree if the simple rules for allowed reactions are used (see figure. 6.1). The black curve shows the number of nuclei in the tree if allowed reactions are taken from the MCNP default reaction data base. The green curve corresponds to the MURE data base built at IPNO/LPSC (not part of the MURE package). The red dot shows the number of nuclei in the tree for the default cut (1 hour).

Isomer Production from (n,gamma) or (n,2n) reactions

TO BE NOTICED: Before July 2012, MURE only takes into account the case of 241 Am. In the previous treatment, all ground state production was replaced by 242 Cm ; this was of course wrong and lead to an over estimation of 242 Cm production and an under estimation of 242 P u. This has been corrected since July 2012.

In some cases, (n, γ) (or (n, 2n)) reactions can lead to either ground state and isomeric state of a nucleus. For example, let take the case of 241 Am. Neutron capture on this nucleus leads to 242 Am(T 1/2 ∼ 16h) and 242m Am(141y).

Ground state decays in 242 P u(17.3%) by electronic capture and in 242 Cm(82.7%) by β-decay. A file (IsomerProduction.dat) is provided to give the branching ratio (for thermal and fast spectrum) to produced its ground and isomeric states of some nuclei. The format of this file is

Z A ReactionCode BRth BRf halflife CutFlag ...
where Z, A, ReactionCode, BRth and BRf are respectively the Z (95 for 241 Am), A (241 for 241 Am), the reaction type (allowed type are n_gamma or n_2n) and the thermal (87.33% for 241 Am) and fast (85% for 241 Am) branching ratio of the (n, γ) reaction that leads to ground state (of 242 Am). The "halflife" parameter is the half life of the produced ground state (T 1/2 ∼ 16h for 242 Am) follows by its unit (here "h") ; this parameter in not used, it is just an indication that can help the user to decide if the last parameter (CutFlag) is a "X" or a "M". "M" means that MURE decide what to do according to MURE::GetShortestHalfLife() method. "X" forced the replacement of the ground state (e.g. 242 Am) by its decay daughters. To be noticed, if "M" is chosen, wrong results can be obtained in 242 P u and 242 Cm for example, if no cross section is available for the ground state ( 242 Am).

Branching Ratio Evaluated branching ratio data for isomer production can be obtained at NNDC-ENDF, in the "advanced " or "extended " retrieval tab, by choosing "n,g" in the Reaction line and "MRNP" (Multiplicities for production of radioactive elements, MF=9) in the Quantity line. The branching ratio given in MURE/data/IsomerProduction.dat are effective branching ratio computed on a typical thermal and fast spectrum as explained in [START_REF] Oettingen | Comparison of MCB and FISPACT burn-up performances using the HELIOS experiment technical specifications[END_REF]:

BR ef f = ∞ 0 BR(E)σ react (E)φ(E)dE ∞ 0 σ react (E)φ(E)dE
The NNDC-ENDF site gives either the branching ratio to the ground state or to the isomeric state(s) ; but in MURE the branching ratio given is always to the ground state.

Nuclei Tree: the implementation

Important files

All provided data files are located in MURE/data. One can use either, gMURE->SetDATADIR(path) or the environment variable DATADIR (setenv DATADIR path in csh).

• When building trees, nuclear mass data are are also incorporated: the two files used for the input are Mass.dat (a modified version of the "The 2003 Atomic Mass Evaluation" data from the National Nuclear Data Center (BNL)) and NaturalIsotopeMass.dat that is used for non evolving natural isotopes (i.e. with A=0) ; this file has been built from the NNCD nuclear wallet card. The names of these files can be defined by gMURE->SetMassDataFileName() and gMURE->SetNaturalIsotopeMassFileName() respectively. which has been constructed from the ref. [START_REF] Kellett | The JEFF-3.1/-3.1.1 radioactive decay data and fission yields sublibraries[END_REF]. The name of this file is set through the command gMURE->SetNucleiChartFileName().

• Reaction data: Allowed reactions are defined in ReactionList class. This class allows different kinds of possibilities for allowed reaction initialization. The reactions allowed by using the simple rules (see Fig. 6.1) are defined in ReactionList::InitJon() ; the automatic detection from available cross-sections is defined in Reac-tionList::InitPTO() (see next paragraph for more details). It uses cross-sections in ACE format. The Avail-ableReactionChart.dat helps to save times (this file informs if cross-section are available or not for each nucleus of chart.jeff3.1.1 file). This file could be made by using MURE/utils/fp/CheckReaction. Other initialization functions are free to be defined by the user. This is particularly useful for prohibiting all reactions except a few of particular interest to the given problem.

One can choose a given method to generate ReactionList with gMURE->SetReactionListInitMethod(new TSpecificFunctor<ReactionList>(0, &ReactionList::InitMethod ));

where InitMethod could be InitJon, InitPTO, ..., ReactionList::InitPTO() being the default.

• Isomer production: a file IsomerProduction.dat is provided in MURE/data that contains information to produce isomer state and ground state from (n, γ) reactions. This file contains Z,A, thermal and fast branching ratio for a mother nucleus (e.g. 241 Am) as well as half-life of the produced ground state (e.g. 242 Am) and a string flag (either "M" or "X") to know if user want to replace the ground state by its daughters (e.g. electronic capture 242 P u and β -decay 242 Cm daughters). "M" means that MURE decide what to do according to MURE::GetShortestHalfLife() method. "X" forced the replacement of the ground state (e.g. 242 Am) by its decay daughters. If a file IsomerProduction.dat exists in the local run directory, this file is used instead of the MURE/data/IsomerProduction.dat one.

• Fission: Two files are needed for the inclusion of spontaneous fission decays and neutron induced fission reactions:

FPavailable.dat and FPyield.bin, which have been built by MURE/utils/fp/GenerateFPYield. The first file is in ASCII format and contains the fission energies for each available ZAI, and the position (records) of the fission product yields in the binary file FPyield.bin (see for example Fig. 6.11 and 6.12). Even if these files are provided with MURE, you can regenerate them by providing the appropriate ENDF fission yield file.

Reaction Auto-detection

Reaction auto-detection is based on information found in the ACE binary2 3 format files. Nuclei, for which reaction cross-section database information is available, can be found. The auto-detection process relies on the ReactionList class. 

How does it work?

• First, try to find out if auto-detection has been performed for the given ZAI by reading the binary file "Re-actionList/Z.bin" where Z in the proton number of the ZAI. This file contains an array of Boolean for each reaction.

• If ZAI is not found in "ReactionList/Z.bin", start auto-detection:

-Try to find in BaseSummary.dat file the ZAI (or an isomeric state of the ZAI) -If it is found, read the ACE file and, among all reactions found in this file, find those which are significant according to a given threshold (see next paragraph) -Allow significant reactions and disable all others in ReactionList and add the ZAI to the "Reaction-List/Z.bin" file with its reactions. PLEASE NOTE: if the BaseSummary.dat file is modified (add new nucleus, or new base) or if the threshold used to find significant reactions is changed, THE ReactionList DIRECTORY MUST BE REMOVED. Otherwise, your modifications will not be taken into account.

What are significant reactions?

A quantity Ξ i is calculated as

Ξ i = σ i d log E d log E
where i stands for reaction i. Then if and only if Ξ i ≥ σ min where σ min is a minimum threshold, the reaction is take into account ; The default threshold has been set to 0.01 barn4 . This can be modified by MURE::SetReactionThreshold() called before any MURE ::SetReactionListInitMethod() or Material definition. In order to save time, the procedure to allow or disable a reaction for a given nucleus is performed only the first time an evolution for that nucleus is asked ;

then the result for that nucleus (i.e., a ReactionList object) is stored in a file (one per Z) in a specific local directory named ReactionList.

NOTE Any change of the MURE ::SetReactionListInitMethod() or MURE::SetReactionThreshold() after a first run will be taken into account only if the nucleus has not been already processed: thus you must destroy the ReactionList directory in order to have these changes taken into account.

The recursion depth cut

It is possible to put a limit on the recursion depth of the reactions when calling the NucleiTree::ExtractZAI method.

For example prohibiting 30 or more successive neutron captures limits the nuclei included in the tree to the top of the actinide region (e.g Fermium, Californium, etc.) where experimental cross-section information does not exist, and many successive neutron captures are the only way in which these nuclei can be produced. The recursion depth parameter should be used with care. Figure 6.13 shows the effect of the recursion depth. The default value is 10000... 

Chapter 7

Evolution in MURE

Preliminary Remark

Before doing any evolution you must provide a system (geometry based on Cells, all Materials, running MC code mode (critical or subcritical), ...). This system definition is normally provided by the MURE geometry input file (a C++ code). But if you have a very large MCNP file already defined, it is possible to perform an evolution using this file without redefining the whole MCNP geometry in MURE style. The way of doing this is explained in section 7.5.

This has not been yet implemeted for Serpent.

General Considerations

Simulating time evolution involves solving the well-known Bateman equations for every given nucleus in every given cell for which evolution is desired, and carrying out this integration over a discrete number of time steps. Simulating the fuel burn-up may also involve adjusting the neutron flux value at every step of the integration process so as to model constant reactor power, adjusting poison concentration to keep a given value for k ef f , ... Implementation of evolution related methods are handle via the EvolutionSolver class. An object of that class is automatically built in MURE constructor, thus on can access to it via gMURE->GetEvolutionSolver().

The general scheme for the evolution is shown in figure 7.1:

• The nuclei tree is built once and for all at the first MC run ; it is controled via the Material::SetEvolution() method which must be called for each evolving Material before any cell definitions are made. Initial compositions of all materials are entered by the user and these will evolve automatically. • All the necessary tallies for calculating mean neutron fluxes and cross-sections in evolving cells are automatically built.

System Definition

• The MC input file with the composition at a given time t i is built and a MC run is performed.

• Bateman equations are solved for (Runge-Kutta method) using fluxes and cross-sections of the MC run over a given ∆t i

• A new MC file with the composition at t i+1 = t i + ∆t i is built, and so on.

At the present time:

• User must provide all t i in a vector of double where the ith element is the value of instant t i at which the Monte-Carlo transport is to be performed.

• EvolutionControl is used to define evolution conditions (constant power, k ef f adjustments, ...). Using inheritance, you may develop your own EvolutionControl class (see for example the PoisonEvolutionControl class and § 7.4).

The results of an evolution consist of a number of files stored in an "evolution" directory ; the name of this directory should be defined by the user via the MURE::SetMCRunDirectory function. Two general sorts of files can be found in this directory : On the one hand, there are the MC input and output files ("o", "m", "s" and so on for MCNP and "_res.m", "_det0.m", ... for Serpent) and on the other, the MURE-generated summary files (DATA_i, BDATA_i, ...) that can be read by a ROOT (see ROOT home page) C++ interface: MureGui.

Time discretization

There are 3 levels of time discretization:

• The first level is the MC step, i.e., the number of ∆t i or MC runs. These steps are user-defined and may be unregular.

• The second level is the discretization within a ∆t i . Each ∆t i is divided in N RK equally spaced Runge-Kutta δt steps (which we'll also refer to as RK steps). At each t k = kδt, Bateman equations are built with given crosssections. Special methods controlling the evolution could be called at these times (e.g. the flux is renormalized to keep the constant power, ...).

• Then the last discretization step is performed automatically by the adaptive step size RK method. During this step (discretization of δt in dt rk ) cross-sections as well as fluxes are kept constant.

The Bateman's Equation

Here is the general form of the first-order differential equation that has to be solved for every nucleus in every evolving cell.

∂N i ∂t = -λ i N i + j λ j→i j N j Decay + j N j σ j→i j φ -N i ∀r σ (r) i φ Reaction
The writing and solving of these equations are systematically carried out by using internal methods of the Evolu-tiveSystem class. Only the general approach will be specified here. This approach involves the definition of what is called the evolution matrix E for every evolving cell. The user does not need to know in detail how it works and it is only being described here for the record.

The evolution matrix

Internally, every evolving cell knows which nuclei it contains (initially) or will eventually contain due to the evolution of its initial composition, thanks to the prior construction of the nuclei tree (c.f. NucleiTree in chapter 6). The approach taken in MURE is to assign unique indexes to every nucleus in the cell's composition so as to build its evolution matrix E. It is a square matrix of n dimensions, n being the total number of nuclei in the composition of the cell.

After completion of the matrix, the ith nucleus of a given cell will evolve according to its own Bateman's equation which will then be simply written as the sum over all nuclei:

∂N i ∂t = j E ij × N j
where E ij is the corresponding element of matrix E and represents the contribution of the jth nucleus in the cell's composition to the rate of change in time of the ith nucleus.

The actual writing of the matrix follows the natural structure of Bateman's equations and is done in two separate parts : first by taking into account all parent/daughter decay relations between nuclei considering proper decay branching ratios. After this, the parent/reaction daughters term is added, where, in the case of fission, fission yields are properly considered.

The evolution matrix is rebuilt in this way at every Runge-Kutta step (c.f : Time Discretization) for all evolving cells. The solving for the material's composition new proportion vector -→ N = {N 0 , N 1 , . . . , N n } is done automatically using a fourth-order Runge-Kutta-type integration method.

Multi-Threading parallelization

Since gcc version 4.1, OpenMp multi-threading is available with gcc compilation. Depending on the distribution, libgomp library (omp.h and libgomp) need to be installed. The multi-threading behavior is controlled by the OMP_NUM_TH environment variable. Setting it to 1 is equivalent to the single processor mode. Setting it to the maximum number of cores available, will run on all that cores (which is the default when this variable is not set). This variable only controls the behavior of the evolution NOT the MC run itself (which is still controlled by the MURE::SetOMP() method).

Cooling period

Whereas in general the evolution is useful when the reactor runs at its given power, it is also possible to introduce some cooling period, where the power (and thus the flux) is set to 0. This is done by using an array of booleans of same size than the time vector at which MC runs are normally performed. Each time this array contains a "true", the flux is imposed to 0 for the considered step, else the evolution is a standard one. The array is passed to MURE via gMURE->SetCooling() method.

Different way of evolution

We suppose that the evolution is done at a constant power. Evolution can be performed in different ways that can influence the result.

1. Evolution with a "constant" reaction rate: this is the default. Between 2 MC steps, reaction rates are keep "constant" ; a new reaction rate evaluation is performed at the next MC run for the next step. In fact, they are not really constant: due to renormalization of the flux to keep constant power, reaction rates used in Bateman equations are in fact, ασφ where α is the flux renormalization coefficient. Thus, periodically within a MC step, these reaction rates are readjusted (this explains the use of the term "constant" in quotes). An example of such evolution can be found in MURE/examples/Evolution/EvolvingSphere.cxx or MURE/examples/Evolution/EvolvingSphere_serpent.cxx 2. Cross-section evolution: this is no longer the default. Previous MC runs are used to linearly extrapolate the reaction rates for the next step.

3. Window average evolution: a mean (σφ) is calculated from the previous MC runs and the actual one ; this mean value is used to solve Bateman's equations. The window to compute average is based on Evolution-Solver::GetFitRangeNumber() previous runs (default is 4).

Predictor-corrector methods.

There are 3 Predictor-corrector (PC) methods implemented. This is actually new and not fully tested (despite the fact that it currently works). Suppose that the MC run at time T N has been done (leading to reaction rates (σφ) N ). The evolution has to be performed up to T N +1 .

(a) PC at middle point: the predictor run is performed with "constant" reaction rates (σφ) N up to T C = T N +T N +1 2

; then a corrector MC run is performed and leads to (σφ) C . Starting with the composition of T N , the evolution is done again from T N to T N +1 with the "constant" reaction rates (σφ) C evaluated at the middle point.

(b) PC at end-point: the predictor run is performed with "constant" reaction rates (σφ) N up to T C = T N +1 leading a composition C P N +1 ; then a corrector MC run is performed and leads to (σφ) N +1 . Starting with the composition of T N , the evolution is done again from T N to T N +1 with the "constant" reaction rates (σφ) N +1 leading to a composition C C N +1 . Then, the composition used for the next predictor run (for

T N +1 to T N +2 ) is C N +1 = C P N +1 +C C N +1 2 .
(c) Kind of PC at end-point: the predictor run is done like in b) but for the corrector run, we used a linear interpolation of reaction rates from (σφ) N to (σφ) N +1 . The next composition for

T N +1 to T N +2 is C N +1 = C C N +1 .
First tests seem to give an advantage to method b) for the quality of its results (compositions, dispersion of composition for M identical run with different random seeds, ...).

5.

Multi-Group evolution [START_REF] Haeck | An optimum Approach to Monte Carlo Burn-Up[END_REF]. If this method is used, not that reaction rate tallies are not built in the MC input file ; instead, a thin energy binning flux will be built for each evolving cell. Then, after the MC run, reaction rates are calculated as φ(E)σ r i (E)dE where the sum is done over each energy group, σ r i is the pointwise cross-section of reaction r for nucleus i read in the ACE file used for MC run (if ASCII Time Reaction Rate

MCNP value

Where Extrapolation is calculate Va l ue used

Step k

Step k+1 In order to better consider the rapid variation of a reaction rate slope, we have slightly improved the method as follows (here N f it =EvoltionSolver:: GetFitRangeNumber()) :

• a linear regression is performed on N f it to obtain a and b for the reaction rate evolution

• a linear regression is performed on N f it -1 to obtain a and b

• then if the 2 slopes a and a are of opposite sign, the slope taken for the evolution is the mean a = a +a As already mentioned, the control of the whole evolution is done via the EvolutionControl class. This class already includes some useful methods, but the best thing to do in order to implement your own control is to write a derived class. In a first example, the reactivity control uses the original EvolutionControl class ; then the way of implementing your own control will be given. The EvolutionControl class inheritance tree is shown on Fig. • The general MCNP block will be read, but all the material description ("M" and "MT" cards) will be skipped and replaced by the MURE material definition. Note that if one wishes to use source MURE definitions, particle MODE definitions or PRDMP MURE definitions, any "SDEF", "KSRC", and "KCODE" (for source) or "MODE"

or "PRDMP" must be removed from the original file. If you have defined tallies, they will be copied (line by line)

and the necessary tallies for evolution will be constructed starting from your highest tally number : for example, if you defined 2 tallies F34 and F44, the automatic tallies for evolution will start at F54 ; tally numbers 4,14 and 24, are not used.

For material declaration, you must use the special Material constructor that takes as a single argument the material number ; this number is the one you have written in the MCNP input file. Don't forget to declare ALL materials of the geometry (evolving or non evolving). For non evolving materials, you must ask MURE to include them in the MCNP output file by using Material::AddToGlobalNucleiVector() after the last input nucleus.

For cell declaration, you must use the special Cell constructor ; it takes the cell number (the one you have written in the MCNP input file), an evolving Material pointer and the cell volume (in m 3 ). ONLY evolving cells should be declared.

The Original MCNP input name is defined by MURE::SetUserGeometryInputFile() method. You can also defined all desired cards of the general data block (source, physical card, ...). The rest of the evolution is completely analog to what is explained in the above sections. Don't forget to provide a mean to calculate the tally normalization factor (you may either give a predefined power or use the MURE::SetTallyNormalizationFactor()).

An example is shown in UserGeo.cxx with the UserMCNPGeo MCNP input file.

More complex evolution conditions

Sometimes, the evolution is performed with power variations, some parameters such as boron concentration, temperature, ... are changing. This can be achieve through the EvolutionWrapper class (see EvolutionWrapper class) .

Such conditions are illustrated on the following example:

EvolutionWrapper *EC=new EvolutionWrapper(); // create EvolutionWrapper EC->AddPhase(100,3,1); // create a new 100 days phase with three MCNP steps, (1=logarithmic discretization) EC->SetPowerLinear(0,4e4); // raise power from 0 to 40 kW EC->SetMaterialBoronLinear(Cell_of_BoratedWater->GetMaterial(),1000e-6,500e-6); //boron depletion from 1000 to 500 ppm EC->AddPhase(100,1,0); // a new single-step 100 days cooling phase EC->SetPowerCooling(); EC->AddPhase(100,3,0); // a new 100 days phase with three equal(0=linear discretization) MCNP steps EC->SetPowerConstant(4e4); // power is kept constant at 40kW in that phase EC->Evolve(); // run the evolution (DO NOT CALL the MURE:Evolution method ; it is done here)

Equilibrium of Xe-135

In some circumstances, flux oscillations in weak coupled systems creates numerical (unphysical) Xe oscillations. These Xe oscillations enhanced the flux oscillations causing numerical instabilities. To reduce these instabilities, a special treatment has been implemented. To use this treatment, one has to call the EvolutionSolver::SetXe135Equilibrium(double teq) method, where t eq is the time from which the treatment is really applied (default time value is

3 × T 135 Xe 1/2 ∼ 27h).

Here is the description of what is done:

• if t ≥ t eq , then the 135 Xe Bateman equation is imposed to be at equilibrium : dN Xe dt = 0 -the 135 Xe is calculated as

N Xe = y Xe Σ f ission φ + λ135 I N135 I λ135 Xe + σ Xe n,γ φ (7.1)
where y Xe is the fission yield for 135 Xe, Σ f ission φ is the number of fissions, λ i is the decay constant for nuclei i and φ is a "mean" flux in the cell calculated as

φ = φ previous MCNP run + φ current MCNP run 2
if there is a factor greater than 1.5 between φ previous MCNP run and φ current MCNP run , else φ = φ current MCNP run the 135 I used in (7.1) is calculated in the same way :

N I = y I Σ f ission φ + λ135 T e N135 T e λ135 I + σ I n,γ
φ but this value is only used in for the (7.1). To be noticed, that in general, due to its very short period (T 1/2 ∼ 19s), the 135 T e is absent of the evolution ; it is then taken into account in the iodine fission yield y I as explained in the Nuclei Tree section (c.f. 6).

To run these scripts from anywhere it is a good idea to add the TclScripts directory to your path. You must also set the DATADIR environment variable.

• The ExamTree.tcl script is useful for exploring the evolution nuclear tree, which can be written out for the global nuclei vector of the MURE class using gMURE->WriteAsciiTree("myfile.dat"); or the tree for a material object Material->DumpTree("myfile.dat"); To explore the tree, type

ExamTree.tcl myfile.dat Everything else is intuitive and self-explanatory. Just click either on the nuclear chart, or the Nucleus X window.

Reading the data files with ROOT graphical interface

This is a C++ GUI base on ROOT. Thus, before using this GUI, you must install a recent ROOT version (5.0 or any later version). This is easy because binary files can be downloaded from the ROOT home page (http://root.cern.ch).

We have chosen ROOT because:

• it provides a large number of widgets

• it is a very simple way of modifying, saving graphs: zoom on axis, grid, log scale, changing font, color, text position and so on as well as various picture saving formats are available (eps, jpeg, png, gif, ...).

The GUI is in MURE/gui ; to build this GUI, a simple "make" in this directory will do the job. The install.sh script should have set the flags according to your ROOT installation 1 and check if Lapack package is avilable. LAPACK is a Linear Algebra PACKage use to solve the set of coupled differential equations for decays by a matrix diagonalization procedure. If this package is not installed, you have to install it (see § 1.4.4) to run the radiotoxicity module (but all other MureGui capabilities can run without Lapack). A simple "make" will build the MureGui executable: ... are other directories to compare evolutions. The line style of plotted graphs is different for each directory (solid=DirName1, dash=DirName2, dot=DirName3, dash_dot=DirName4, ...). NOTE: when comparing evolutions, you must be sure that the cell composition of the different evolutions are the same: the list of non empty proportion nucleus must be in the same order.

• Optional -type follows by a character which is either "A" (or "a") or "B" (or "b") ; "A" is to read DATA_* files (i.e. ASCII files) and "B" is to read BDATA_* files. The latter is the default (it is faster to read and a bit smaller) ; the ASCII files may be read when binary formats are not recognized (big endian->little endian, ...)

• Optional -dataname follows by a string which is the data evolution prefix file name ; default is BDATA_* for binary reading and DATA_* for ASCII reading 2 .

A module in the transport code DRAGON has been developed to copy the results in DATA ASCII file format.

The interface has a Main windows composed of 8 tabs (Inventories, Cross-sections, Fluxes, Reaction Rates, K_effective, Breeding Ratio, Radiotoxicity and Spatial Variables, see Fig. (one for each tab).

Whereas MureGui is graphical interface, the "Terminal" window used to run this program is often used for some important warnings/information/output: don't forget to look at it! 8.3.1 The 8 tabs of the main window

• In the Inventory Tab, colors of nuclei (see Fig. 8.1) correspond to the total mass scale importance (red: large mass->black: small mass). Nuclei are sorted in 4 categories (Actinides, Fission Products, Gas, and Miscellaneous) but a nucleus could belong to more than one category (a gaseous fission product is in FP and in Gas). "FP"

and "AM" check boxes allows respectively the plotting of total fission products and total minor actinides (Np and Am, Cm, ...) . The total mass of checked nuclei can also be automatically performed using the "Sum of Selected " check boxes 3 . Finally, nuclei inventories are given in "g" or "Mol". When several physical cells i are selected (see later with Spatial Variable combo box), the total inventory of one nucleus is simply given by the sum of inventories in each region. Thus we have:

N tot = i N i
• In the Cross-section Tab, colors only help users to see the isotopes (all reactions for a same isotope are on the same color). The "FP" ' check box allows the plotting of the mean fission products total cross-section. Similarly with the Inventory tab, the total cross-section can be obtained with the "Sum of Selected " check box (but FP and AM check boxes are not taken into account in the sum). Microscopic and macroscopic cross-sections are available. When several physical cells i are selected (see later with Spatial Variable combo box), an equivalent cross-section Σ is computed for all reactions to maintain their total reaction rate:

Σ = i n i σ i φ i V i φV tot
where the nuclei density is n i = Ni Vi , the mean flux is φ = i φiVi i Vi and the total volume of all cells is V tot = i V i . The numerator is the total number of reactions in all i-cells. Thus, one can define an equivalent microscopic cross-section:

σ = Σ n = Σ niVi i Vi = i n i σ i φ i V i N tot φ .
Note:

when the density of one nuclei is null, a very small and uniform density is used to compute the equivalent microscopic cross-section (n = 10 -20 at.cm -3 ).

-This mean cross-section is useful to compute "simplified" Bateman equations. But one has to be very attentive to its physical signification when lot of cells with different fluxes and concentrations are involved ; then this mean value may be greater than all individual cross-section of each cell due to an under estimation of the denominator.

-Sometimes, it may be useful to compute the mean microscopic cross-section over the spectrum:

σ = σ(E)φ(E)dE φ(E)dE
Then one can compute a average cross-section over the cells as

σ = i σ i φ i V i i φ i V i
. In MureGui, one can plot this king of microscopic cross-section by selecting the "Micro (spectrum)" radio widget.

• In the Flux Tab, the "All cell " and "Sum of Selected " check boxes allow users to plot a mean flux over all or selected evolving cells i. The mean flux is given by:

φ = i φ i V i i V i
• In the Reaction Rate Tab, the "FP" and "Sum of Selected" check boxes allow users to plot total reaction rate of fission products and the sum of selected reaction rates respectively. The generated power can also be obtained using the "Power " check box. Power results are returned in the terminal when the graph is refreshed. The "(Un)Select Fissil " button selects (or unselects) all available fission reactions automatically. Note that released energy per fission values (Q_values) are automatically selected according to the transport code previously used (DRAGON, MCNP or Serpent). In this Tab, it is also possible to plot Neutron Balance normalized per 1000 fissions. Once the user has selected the wanted reaction rates (or all reaction rates for the fissile ("(Un)Select

Fissile" button) or for all nuclei ("(Un)Select All" button), the neutron balance is plotted using histogram bars. The box "Threshold to Others" allow user to group all reaction rates less than the threshold (default 0.1 per mil) in a category named "Others" (see fig. • In the Keff Tab, the "Keff " check box allows user to plot the multiplication factor k ef f of the assembly with evolution time. The "Average Keff " check box computes and plots the average neutron multiplication factor k ef f of an assembly along its life. It is particularly useful in CANDU reactors at the refueling equilibrium state. The average value k ef f is given by: as fissile for the calculation of Breeding Ratio (BR) and Fissile Inventory Ratio (FIR). The (instantaneous) BR is computed at a given time t as the ratio of the total production rate of the so-defined fissile nuclei at time t over the total disappearance rate of the same nuclei at the same time. Up to now, only fissile nuclei among 233 U , 235 U , 239 P u and 241 P u can be defined as fissile and taken into account for BR calculation, with a special treatment for 233 U (which production rate is 233 P a decay rate) and 241 P u (which disappearance rate includes its decay rate).

k ef f (t) = 1 t t 0 k ef f (t )dt
The FIR is computed as the ratio of fissile nuclei between actual and initial time :

F IR = M FN (t) M FN (0)
Note that if the initial fissile nuclei mass is 0, no plot is returned. In the case of 233 U selected as fissile, selecting 233 P a as fissile too gives access to the effective FIR values, with each calculation time as a possible End Of Cycle. Indeed this accounts for 233 P a out-of-flux decay, producing 233 U without loss. In this case, a warning is printed to inform the user that 233 P a is used this way only for FIR (BR is still computed without Pa-233 defined as fissile, and using its decay rate as 233 U production rate).

• In the Radiotoxicity Tab (see also section 8.3.6), shown in Fig. 8.4, (only if Lapack library has been used), decay calculations can be performed for the final inventory after an evolution has been done. Determination of total and partial radiotoxocities, heat released and activities as a function of time can be computed for a given system. Note that if, for radiotoxicity post-treatment, MureGui is used from in a directory where the MURE "data" directory is not present just above the current path, you must define the DATADIR variable.

-Users should click on the red "Build Mat" button before taking any further action. This will compute the Material and the matrices. The material is based on the material defined in the DATA or BDATA files where all the nuclei are copied, and all their decay children. No cut-off is used to select the children. By default, spontaneous fissions are not taken into account ; in order to allow it, check the "with SF " button BEFORE clicking the "Built Mat" button. The matrices for decay calculations A are also computed once and for all. The variation of the isotopic vector N is given by:

dN (t c ) dt c = -A.N (t c )
where t c represents the cooling time (after irradiation). The solution of this equation is simply given by:

N (t c ) = N (0).exp(-A.t c )
This equation represents a set of coupled differential equations for the decays which is solved by a matrix diagonalization procedure based on the LAPACK standard libraries (resolution is performed at the beginning). Inventory composition over time is then directly obtained from the initial composition.

-The "Nuclei Extraction" frame allows user to specify what percentage of nuclei of the current composition is taken into account for activity, radiotoxicity, ... calculation. When one choose "Partial fuel extraction" a new window appears to choose the per cent of category you keep: 100% means that all that category is kept. For example, putting 100% for all categories except 1% for U and Pu mean that the radiotoxicity is -In the "Miscellaneous" frame, one can also select the value to be plotted: "Activity", "Radiotoxicity", "Heat" released and "Inventory". By selecting the "By mother " check button, the radiotoxicity is computed by mother nucleus (i.e. present at the starting time) in order to see the contribution to the activity of a given nuclei (the daughters of this nucleus are part of its activity). Note, the "By mother" calculation takes much more CPU time! "FP", "MA" and "Total" check boxes allow one to plot the total value for fission products, minor actinides, and all nuclei respectively. A combo box can be used to plot "selected" nuclei, "selected nuclei & their sum" or "only the sum" of selected nuclei (FP and MA check boxes are not taken into account in the sum).

-In the "Irradiation" frame, see Fig 8.5, one can choose the burn-up of the spent fuel (i.e., the MCNP step given at a time). The "Dir # num" allows to choose which evolution directory to consider in the case or more than one evolution directory is given to MurGui arguments. The evolution (cooling) of the spent fuel is specified by the evolution parameter: the cooling starts at t = 0, but the plot start at the first value of the "Evolution Period " frame ; the final time, number of time-steps and whether the steps are logarithmic or linear are then given. Note that the graph are on a log scale, thus, initial time has to be strictly positive (minimum value is 1 minute). The number of steps does not affect the results, but only the smoothness of the curve. User should create a file name DATA_000 in a given directory (let say "TestDir"). This file must contain

V -1 UNIT n Z1 A1 I1 M1 P1 Z2 A2 I2 M2 P2
...

Zn An In Mn Pn

where UNIT is a string among "At", "Mol", "Wgt(g)", "Wgt(kg)", "Wgt(t)" giving the unit of each "proportion Pi" ;

"n" is the number of different isotopes (Zi,Ai,Ii) and "Mi" is the molar mass of the isotope. For example, to see the evolution of 2.975 kg of 238 U the DATA_000 file is Then launch MureGui as :

MureGui -type a TestDir and go in the "Radiotoxicity" tab ; this gives a total radiotoxicity of about 1mCi for 238 U at t = 0 ; then it reaches the secular equilibrium after 2 million years to 14 × 1mCi (13 radioactive daughters of 238 U + 238 U ).

Frame "Cell Spatial Var" in the Main window

Users can define Spatial variables for cells (see the Cell class). The aim of these variables is only to extract results in a simpler way (this means that you can add spatial variables after the evolution is done and redo the evolution keeping 

Frame "Time Interpolation" in the main window

A linear interpolation is performed on the plotted data for the selected Tab at the corresponding time (and not the selected data of this Tab). Results are returned in the terminal. Note that no time unit is specified, thus it must be coherent with the plotted data. . This is correct only if φ and (σφ) are not correlated...which is obviously not the case. Thus only error for k ef f and fluxes are really correct.

For the average flux φ on several individual cells (with an individual flux of φ i ), we have:

∆ φ = 1 Vtot i (V i ∆φ i ) 2 
If the sum of cross-sections is computed, the associated errors is given by:

∆σ sum = 1 Ntot j (N j,tot ∆σ j ) 2 
For the average reaction rate N j,tot σφ of one specific reaction j (linked to the corresponding nucleus) on several individual cells i, we have:

∆(N j,tot σ j φ) = i ∆(N j,i σ j,i φ i ) 2 = i (N j,i σ j,i φ i ) 2 ∆σj,i σj,i 2 
+ ∆φi φi 2
For the error associated with the power computation, we can used similar formula as for reaction rates, i.e.:

∆( j P j ) = j i (Q j N j,i σ j,i φ i ) 2 ∆σj,i σj,i 2 
+ ∆φi φi 2 8.3.5
The Plot/Save/Quit buttons in the main window

• "Plot (All)" button: Except for the "Cell Spatial Var " frame in the main window where by selecting a variable, the plot is automatically done, you must push the "Plot(All)" button to plot a graph ; The plot window is selected according to the Tab in the main window.

• "Save Data" button: This button is used to save plotted graph data from the selected plot window in an ASCII file.

• "Exec Macro" button: This button is used to apply a ROOT/C++ interpreted (no compilation required) function to selected plot window. See for instance the MyMacro.cxx example in the MURE/gui directory.

To use this macro (which does a linear fit of the ith graph), just click on the "Exec Macro" button and type

MyMacro.cxx(i) where i is the number of the graph desired. It is possible to obtain activity, inventory, heat of a user input mixture composed of n nuclei as a function of time in a "cooling" phase (i.e. outside of a flux) in a very easy way. User has to create a directory (let's call it "tox ") containing a file named DATA_000. This file has the following form:

V -1 units n Z0 A0 I0 M0 X0 Z0 A0 I0 M0 X0
...

Zn An In Mn Xn

where units is one of "At", "Mol", "Wgt(g)", "Wgt(kg)" or "Wgt(t)" (At=atomes, Mol =moles, Wgt(g)= mass in g, Wgt(kg)= mass in kg and Wgt(t)=mass in metric tons) that corresponds to the unit of the X i values input for each nuclei defined by its Z i (proton number), A i (atomic number), I i (isomeric state, 0 for ground state, 1 for 1st isomeric state, ...). M i is the molar mass in g/mol of the i th nuclei. For example, one can see how 2.975 kg of 238 U reaches the secular equilibrium with This file is saved in the tox/DATA_000. The activity of this initial composition is obtained by doing

MureGui -type a tox

One can see that the activity starts from 1 mCi and reaches secular equilibrium (14 mCi) after ∼ 2 × 10 6 years.

Remarks:

• The "type -a" is necessary because the DATA_000 file is in ASCII and not in binary (the default of MureGui )

• Depending on your installation, you probably need to set the environment variable DATADIR to the correct path (for example in csh, setenv DATADIR /MURE_install_path/MURE/data) 8.3.6.2 Gamma, Beta, Alpha, and Neutron spectra of an evolving material User can plot spectra of an evolving material. This feature is "hidden" in the Radiotoxicity Tab : press the "CHARS logo" or depending on your installation, the small down arrow, between "Irradiation" and "Cell Spatial Var" to make it appear (fig. 8.10) .

First of all, spectra has to be built pressing the "Build Spectra" button. It will create a γ spectra for the "Gamma Spectrum" tab, β, α and neutron spectra in the corresponding tabs for each nucleus. This step could take a while especially for the Gammas. In the "Gamma Spectrum" tab (see fig. 8.10), gammas produced by decay modes selected in the "Decay Mode" from are plotted.

"Plot Spectrum" frame: This frame is used to plot either 3D spectra (activity versus energy and time) for γ, β, α and neutrons or "time slice cuts" using the "2D slice" slider of these spectra. For 3D spectra, only one nucleus (or one group among "total", "FP" or "MA") can be plotted. 

Spectrum Class

It's a base class to define energy spectra for γ, β, α and neutrons. This class defines Spectrum objects, i.e. one array store intensities an other store energies. The size of these array are NumberOfBins+1. To declare a Spectrum proceed as follow :

Spectrum* MySpectrum=new Spectrum(EnergyMin,EnergyMax,NumberOfBins); //Energy unit: eV

Creates a energy spectrum with a constant linear binning from EnergyMin to EnergyMax (see Spectrum for more options).

For non constant binning, one can use:

Spectrum* MySpectrum=new Spectrum(EnergyLowVector);
where EnergyLowVector is the vector of the lower bounds of each energy bin (NumberOfBins elements) except the last element (the (NumberOfBins+1) of the vector which is the upper bound energy of the last bin. Other methods allow us to build spectrum binnings from arrays or from a file.

To build a spectrum for a particular radiation one uses the GammaSpectrum, BetaSpectrum, AlphaSpectrum or NeutronSpectrum classes :

X Spectrum* MySpectrum=new X Spectrum(EnergyLowVector); //where X can be Alpha , Beta , Neutron or Gamma .

MySpectrum->Fill(MyMaterial,Volume);

This last method compute the alpha, beta, gamma or neutron spectrum of MyMaterial of volume Volume.

A spectrum can be added to an other with Spectrum::AddSpectrum() but only if the two spectra have the same energy binning:

MySpectrum->AddSpectrum(SpectrumToAdd);

If you add a XSpectrum with a YSpectrum, the particle type, that can be used for an MCNP source, is defined by the one of the object calling the method (MyGammaSpectrum->AddSpectrum(MyNeutronSpectrum) will have for particle type γ).

A Spectrum can be dump in a file with (if WithEnergies is true, the energy bounds of each bin is given, else (default), the middle energy of the bin is given) :

MySpectrum->Dump(filename,WithEnergies);

All the following classes inherit from the Spectrum class: AlphaSpectrum, BetaSpectrum, GammaSpectrum and Neu-tronSpectrum.

GammaSpectrum class

In the method GammaSpectrum::ReadENSDF(Z, A, I, Atoms, DecayMode) where Atoms is the number of atoms of the ZAI and DecayMode is the decay mode leading to the emission of a gamma ray (it is any combination of "A" (α decay), "B" (β -decay), "E" (electronic capture) and "I" (Isomeric Transition).

GammaSpectrum::ReadENSDF () searches in ENSDF files the gamma transition of the A Z X daughter(s) from these values : decay constant of A Z X (λ ), Branching Ratio of the decay (BR), Relative Intensity (RI), and the Normalization Factor (NR). It calculates the activity A for one transition of Energy E and fills the Spectrum:

A = λ × NA Z X × RI × N R × BR/100 [bq]
where RI × N R is the number of photon per 100 decays of the parent for this decay branch. RI × N R × BR is the number of photon per 100 decays of the parent. In order to compute the gamma spectrum of a sample, have a look in MURE/example/SpectrumExample.cxx.

AlphaSpectrum class

Here, the method AlphaSpectrum::ReadENSDF(Z, A, I, Atoms) is almost identical to the GammaSpectrum::ReadENSDF () one, but it looks for alpha ray energies and intensities instead of gammas.

BetaSpectrum class

The method BetaSpectrum::ReadENSDF(Z, A, I, Atoms) finds in ENSDF files decay constant, branching ratio, normalization factor, intensity, and also the the endpoint energy (or data needed to calculate it if it's not present, i.e. energy of the decaying level, Q-value (ground state to ground state) of the decay and energy of the level of the daughter)

EndP ointEnergy = Qvalue + EnergyOf T heDecayingLevel -EnergyOf T heLevelOf T heDaughter
As soon as EndPointEnergy is known, the distribution f (E) is calculated using a simplified Fermi theory where all the transition are allowed, then for each bin, the Intensity is multiplied by this normalized distribution.

A(E) = Atoms × λ × RI × N R × BR × f (E)
where

f (E) = N orm × 2Πη 1 -exp(-2Πη) × W × W 2 -1 × (EndpointEnergy -E) 2 with η = Z daughter ×e 2 4Πε0 Ve , V e = c × 1 - 1 (1+W ) 2 and W = 1 + E mec 2 .

NeutronSpectrum class

This class contains methods which are required to calculate neutron energy spectra. Neutrons taken into account are neutrons from spontanerous fission (NeutronSpectrum::ReadSFData method), neutrons from (α, n) reactions (Neu-tronSpectrum::AddAlphaNSpectra method), and neutrons from β -N (NeutronSpectrum::ReadENSDF method).

Neutron from spontaneous fission

The neutron spectra from spontaneous fission is computed using a normalized Watt distribution W (E)

W (E) = N orm. exp -E a . sinh √ b.
E where a and b are coefficient depending on the nucleus. Finally the neutron activity of the nucleus A Z X by spontaneous fission at energy E is :

A(E) = λ × NA Z X × ν × BR × W (E)
where BR is the branching ratio of the spontaneous fission and ν the average neutron per fission. The parameters ν , BR, a and b are available in literature and those used in MURE are located in /PathToMure/MURE/data/SFNeutronSpe [START_REF] Shores | Data update for SOURCE-4A computer code[END_REF].

• only one guide tube pin type is allowed (same dimension for all guide tubes) ; a guide tube pin must be composed by a inner coolant and a clad layer and a surrounding (coolant) material.

• only one control rod pin type ; a control rod pin must be composed by 4 layers (the rod, its clad, a coolant ring ("gap") and outer clad (the guide tube clad)) and a surrounding (coolant) material. The control rod outer clad should be the same than the guide tube pin clad.

• 2 types of fuel pins are allowed: standard fuel pins (a fuel inner part, its clad and the surrounding (coolant) material) or special fuel pins with 3 layers (fuel inner part, a ring of non fissile material (Gd, ...), and its clad) with a surrounding (coolant) material.

BATH solves the heat equation in case of a permanent regime and a cylindrical fuel and cladding shapes. The following estimates should be taken into account:

• heat conduction is calculated in homogeneous isotropic media (temperature only depends on radius)

simulations are done on average elementary channel(s) (no cross-flow). Several "average" channels can be simulated but thermal-hydraulics interactions between them cannot be calculated.

-The code only simulates a liquid phase (no boiling).

Description of methods

Introduction

A nuclear reactor is mainly controlled by two disciplines: neutronics and thermal-hydraulics. In fact, reactor core temperatures depend on the heat sources, and thus on the distribution of power which evolves in the course of time (calculated by neutronics codes). Yet, these codes require cross sections which depend on the temperatures, and thus on the nature of flow that is solved by thermal-hydraulics codes.

The input file for a coupled analysis is almost the same than a pure neutronics MURE calculation. Of course, some thermal-hydraulic characteristics must be added (like coolant temperature entrance, pressure,...) but a non thermal-hydraulic physicist can quickly perform a simulation with a thermal-hydraulics coupling. The generation of the COBRA input file happens automatically and without any user intervention as well as the coupling procedure between MURE and COBRA.

The neutronics code calculates the power distribution in the fuel pins, which is transferred to the thermal-hydraulics code. Then, this latter determines new properties in each pin and sub-channel (temperatures, densities,...). Finally, these data are used as new inputs for the next neutronics calculation. Iterations can be repeated until a converged state is obtained or during a step time for an transient analysis.

Meshing grids are different between neutronics and thermal-hydraulics (c.f. figure 9.1).

In fact two different physics disciplines are dealt with, but their solving methods have nothing in common. This is the reason why two different meshes are defined. Consequently classes manage the correspondence and the symmetrization of these meshes. Updates are done using mean values by zones (c.f. figure 9.2).

These zones are chosen by the user and are dependent on the precision required. In each radial zone and axial level, neutron flux, reaction rates, properties of materials or coolant and fuel burn-up are treated separately.

Any increase in the discretization must be carefully considered because it may use more computing resources for a marginal accuracy gain, or even, in certain circumstances, cause a loss of precision. 

ReactorAssembly class

The ReactorAssembly class is a complete rewriting of ReactorMesh class. This class can be used in a purely neutronics way or for thermohydraulics/Thermics-neutronics coupling. As already emphasis, when COBRA_EN is involved, some restrictions are mandatory (see § 9.2).

Utilization for pure neutronics calculation

Examples are provides in RA_1ass.cxx (1 hexagonal assembly), RA_1ass_serpent.cxx (1 cuboid assembly) and

RA_lattice.cxx (a cylindrical core filled by cuboid assembly).

IMPORTANT : The order of calling method in the ReactorAssembly class is not arbitrary! This is because some methods defined and/or calculate some quantities depending on previous ones. This normally has been protected (by a MURE error). But to avoid problems here are some rules (methods not mentioned there after can be called without specific order):

1. Define a ReactorAssembly object via ReactorAssembly::ReactorAssembly(double, int, int, string) . and last method to be called 1 must be ReactorAssembly::BuildAssemblyGeometry()

As an example, user first defines Materials and PinCell (Fuel, Guide Tubes, Control Rods, ...) he want to use. Then, he defines the shape of the assembly (either a cuboid or a hexagon):

Shape_ptr AssemblyShape(new Brick(S/2., S/2., H/2.)); //cuboid assembly S x S x H or Shape_ptr AssemblyShape1(new Hexagon(H/2., S)); //Hexagon assembly with edges of size S and height H.

This shape determines the type of the ReactorAssembly (Cuboid or Hexagonal) ; if, for some reasons, the assembly shape is more complex (e.g. a cuboid assembly with a hole inside that is not filled by any pins, user should provide this complex shape as well as the real cuboid (Brick class) or hexagonal (Hexagon class) of the outer bounding shape).

Then user defines a ReactorAssembly object by given the pitch of the pin lattice and the number of radial zone and axial levels

ReactorAssembly* RA = new ReactorAssembly(pitch,4,10); // 4 radials zones, 10 axial levels 1 Except if the ReactorAssembly is used to fill a core lattice. LatticeGenerator->FillLattice(RA->GetUniverse())

In this short example, the fuel core is filled with the assembly, but a more realistic filling scheme is presented in MURE/examples/RA_lattice.cxx (see Fig. 9.4).

For evoltion example, see the documented example MURE/example/Evolution/RMAssembly.cxx (c.f. figure 9.5). and to enlarge arrays (parameters IDSIZE in source files).

Coupling Thermo-hydraulics and neutronics

1. In the MURE input file, you must provide a gMURE->GetTemperatureMap()->SetDeltaTPrecision(Delta_T);

where Delta_T is the temperature precision (in K) used to choose the closest temperature for cross-sections (this number could be big, let say arround 1500K).

2. Then, each material where temperature evolution is wanted should know it via the Material::SetTemperatureEvolution() ; this should be done for the fuel as well as for the coolant part.

3. a ReactorAssembly is built (as described above but be sure to have created real clones of evolving temperature's materials ; for example the coolant used in fuel pins, plenums, guide tubes,... should be a different material.

4. Create a COBRA_EN object (let say this is a pointer called Channel ) with the previous ReactorAssembly. • PowerDeposits.data : are written the local power deposits and its absolute error for a representative fuel element in each zone and level (total power released in the zone/level is normalized by the number of fuel pin in the zone -unit : W)

• PLOTFILE is the COBRA-EN output plotfile

• A file called yyy_MeshZoneData.txt is also created in the initial running directory: the number of fuel pins, guide tubes, special pins for each zone are quoted ; an equivalent of the mesh MCNP_Zones is also written. This class manages temperature calculation for a coupled simulation neutronics/thermal-hydraulics with a 2D RZ precision. It is not as accurate as COBRA and must be explicitly coupled by the user but its advantages are :

• the capability to be coupled with geometry that has already bee built

• it is an explicit way of coupling, despite the fact it takes longer, users can completely control what is being simulated (it is not a "black box")

• capability to simulate a lot of coolant, cladding or fuels types: users just need to add them (thermal data and equations).

Capabilities

The code already includes data and equations necessary for simulations. It uses:

• as fuel: uranium oxide and plutonium/uranium mixed oxide and thorium oxide (full or annular pellet)

• as cladding: zircaloy 4 or 2 and stainless steel 316 SS

• as coolant: light water, heavy water and sodium.

What is solved

• heat and mass transfer:

ṁC p ∆T = q p A
• steady-state forced convection in case of turbulent flows:

T p -T coolant = q p h
• steady-state conduction inside the cladding and the fuel: Fourier law

• radiation exchange between cladding and fuel surfaces is implemented but not used (due to a leak of precision on gas composition and evolution of the gas space dimension during burn-up): Stefan law

• indication of pressure losses (due to acceleration, gravity and friction -loss due to peculiarity like grids are not calculated because it is considered as empirical data): acceleration is zero because the velocity is assumed constant, only gravity and friction (Darcy frictions model) are calculated

• thermal conductivity of zircaloy and steel, data on water, sodium, UOX and MOX are from literature.

• Nusselt dimensionless number calculation:

- To add a new coolant, equations of dimensionless number calculation are perhaps necessary and data tables must be added in thermal_data directory. As it is done for water and sodium, files containing thermal data must be created : see Water.xls in thermal_data directory.

Adding a new fuel is easier: only 2 tables of data are necessary (density and thermal conductivity : see thermal_data directory).

Contact Nicolas Capellan (capellan at lpsc.in2p3.fr) for further explanation.

Use the code

Users should create the geometry themselves. Flags will be added to indicate positions of frames and cells to the thermal-hydraulics code :

• on materials: flag SetTemperatureEvolution() and only on fuel material SetEvolution()

• on cells: flag(s) SetTHLevelPosition() (the first one at the bottom and then increasing height) and SetTH-ZonePosition() if more than one average channel is needed.

BATH is created and launched after the MCNP run. See the documented example MURE/examples/Thermal/BATHExample.cx x.

Output data

Outputs are created in the directory called Zi_Run_j (i is the "region" and j the iteration number of coupled field).

For each level, thermal results are built together with the temperature function of distance from the center (temperature gradient inside fuel, cladding and coolant, c.f. figure 9.8). For example (see [20]), in the case of 235 U , the energy released by fission Q is given in Table D.1.

Plane Cylinder

In MURE, the default value is Q235 U = 201.7 MeV. The energy of neutrinos (in this case, 9.6 MeV), is not taken into account.

If a user wishes to use specific values, 2 methods are available. The first one, MURE::SetAllFissionEnergies() allows to give a common constant value to each fissionable isotopes (default=200 MeV) ; the second method, MURE::SetFissionRelea allows user to give a file with the required value for some (or all) fissionable isotopes. Each line of the file is

Z A Qvalue
where Z and A are the proton and nucleon numbers and Qvalue is the energy released by fission (in eV). When using this method, the Q values are taken as explained above (using the linear fit) except for the isotopes specified in this file.

NOTE: MURE::SetAllFissionEnergies() and MURE::SetFissionReleasedFile() must be called BEFORE any Material declaration to be taken into account.

The fact that MURE takes into account different fission energy released values, means that there will be slight differences in the way the normalization factor is calculated, and therefore slight difference in inventory when the fissile nucleus changes as a function of time when compared with the old method.

D.1.2 How the normalization factor is calculated

The total power delivered by the total number of fissions in a given instant (in MC raw units) is given by the double sum shown hereafter :

P MC = j i N j i σ j i φ j MC ξ
where the subscript i refers to the nucleus considered whereas j refers to the cell considered. The sum is to be carried out over all cells and all nuclei belonging to each cell's material.

P M C can be thought of as the power delivered per source particle transported in the global geometry in question : If φ j is in standard MC cell tally output units (particles per unit surface per source particle) then P MC will be also normalized per source particle.

• N j i is the number of nuclei i present in cell j.
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• σ j i is the average fission cross-section of nucleus i in cell j.

• φ j is MC's neutron flux track-length estimation for cell j.

• ξ is the average energy delivered in one fission (∼200 MeV).

Therefore, the scaling factor α, by which tallies will be normalized and which has to be taken into account in order to simulate a constant burn-up at the desired power P user (if P user is provided in watts and ξ in eV) is written :

α ≡ P user P M C 1, 6.10 -19 = P user i j N j i σ j i φ j MC ξ 1, 6.10 -19 D.1.3 An alternative approach (for information only)

For a critical system, if one multiplies the desired power in fissions per second times the average number ν of neutrons emitted per fission, one obtains the amount of existing neutrons in the geometry at a given instant. This can be thought of as the intensity of the neutron source needed to achieve this desired power. This value, in neutrons per second, should be equivalent to the value of α calculated in the previous paragraph. If the system is critical (K ef f = 1)

this number is constant during a time interval small enough so that the amount of fissile material remains unchanged in a first approximation. If the system is critical and P user is in watts and ξ in electron-volts, then:

α ∼ = ν P user ξ 1. 6 10 -19 For our problem example, the first method gives a value of alpha of roughly 8.280 10 +12 whereas the second method gives a value of 8.124 10 +12 with νtaken at 2.599. The two values are therefore comparable within less than 2 percent.
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4 .Figure 1 . 1 :

 411 Figure 1.1: Principle of fuel evolution in MURE.

  tar zxvf MURE_XX.tgz or gunzip MURE_XX.tgz ; tar xvf MURE_XX.tar

  , 2 examples are described ; other examples are described in this User Guide (see for example, § 4.8.1, 4.8.2, 4.8.3 and 4.5). In examples directory, one finds static examples (i.e. without burn-up calculations) and their outputs 6 (in MURE/examples/Output/ directory). To run some of these examples you must provide an MCNP xsdir file, whereas for other ones user has to build the BaseSummary.dat and AvailableReactionChart.dat files. The "evolution" examples are in MURE/examples/Evolution/ directory. Again you will find an "Output" directory that contains directory output of the examples (also gzip). In these result directories, one has suppressed the MCNP "o" and "m" files but left the MCNP input files as well as the MURE results files. 1.1.5.1 basic MURE possibilities This example (MURE/examples/Putin_example.cxx and MURE/examples/Putin_example_serpent.cxx ) shows basic geometrical methods.

2 ,

 2 the link between classes is assured by the main class MURE. The Shape_ptr and Nucleus_ptr of the figure are smart pointer on Shape and Nucleus objects. The figure 1.3 shows the Shape inheritance graph using the 2 name spaces associated to the MC transport code used (MCNP or Serpent).

Figure 1 . 3 :

 13 Figure 1.3: Shape inheritence scheme using with the 2 namespaces.
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 14 Figure 1.4: MureTally class.

Figure 1 . 5 :

 15 Figure 1.5: MureTallyBin class.

Figure 3 . 1 :

 31 Figure 3.1: The ConnectorPlugin class.

  ); Cell *clad=new Cell(Clad,Iron); Cell *surrounding_clad=new Cell(OutClad,H2O); Cell *whole=new Cell(Whole,H2O); //Exterior of the vessel: void and importance=0 Cell *exterior=new Cell(Exterior,0,0); Cell *vessel=new Cell(Vessel); vessel->SetComment("The vessel"); //the lattice LatticeCell *Pavage=new LatticeCell(LatticeGenerator); Pavage->SetLatticeRange(-range,range,-range,range); for(int i=-range; i<=range; i++) for(int j=-range; j<=range; j++) { int pos[3]={i,j,0}; double xt = HexaSide*sqrt(3.) * (i + j*0.5 ) ; double yt = 1.5 * HexaSide * j; double X[2]={xt,yt}; if(IsHexagonInTube(X,LatticeGenerator,0.9)) Pavage->FillLattice(Pin,pos); else Pavage->FillLattice(Whole,pos)Vessel : a full Tube Shape_ptr Vessel(new Tube(VesselH/2, VesselR)); //the Exterior Shape_ptr Exterior(!Vessel); //the lattice generator Shape_ptr LatticeGenerator(new Hexagon(HexaH/2,HexaSide)) LatticeGenerator->SetUniverse(); // put the lattice generator in the vessel LatticeGenerator> >Vessel; PinCell; pin->AddLayer(UOx,PinR); //layer 0 = fuel pin->AddLayer(Iron,CladR); //layer 1 = the clad pin->SetSurroundingMaterial(H2O);//surrounding the clad PinCell *whole=new PinCell; whole->SetSurroundingMaterial(H2O); //no layer in that P //Exterior of the vessel: void and importance=0 Cell *exterior=new Cell(Exterior,0,0); Cell *vessel=new Cell(Vessel); vessel->SetComment("The vessel"); //the lattice LatticeCell *Pavage=new LatticeCell(LatticeGenerator); Pavage->SetLatticeRange(-range,range,-range,range); for(int i=-range; i<=range; i++) for(int j=-range; j<=range; j++) { int pos[3]={i,j,0}; double xt = HexaSide*sqrt(3.) * (i + j*0.5 ) ; double yt = 1.5 * HexaSide * j; double X[2]={xt,yt}; if(IsHexagonInTube(X,LatticeGenerator,0.9)) Pavage->FillLattice(pin,pos); else Pavage->FillLattice(whole,pos); } Chapter 4

  Shape_ptr B(new Brick(HalfX, HalfY, HalfZ, Signe)); Shape_ptr H(new Hexagon(HalfHeight, Side, Signe));where HalfX (resp. Y and Z) is the Half length of the brick in the X (resp. Y and Z) direction, HalfHeight the half height (!) of the hexagon, Side its side, and Signe the sign defining whether it is the inner or the outer part, just as for the sphere. For infinite ones, to avoid conflicts between the definitions, a string at the beginning is necessary (and, of course, HalfHeight and HalfZ are irrelevant) :Shape_ptr B(new Brick("any string you want", HalfX, HalfY, Signe)); Shape_ptr H(new Hexagon("any string you want", Side, Signe));

Figure 4 . 1 :

 41 Figure 4.1: Operator > > (put in). (a) A and B before the action of the operator ; (b) A and B after the action of the operator.

  Shape_ptr B1(new Tube(1,0.5)); Shape_ptr T1(new Tube(1,0.4)); Shape_ptr T2(new Tube(1,0.3)); T2> >T1> >B1; Shape_ptr B2=B1->Clone(); B2->Translate(1,0,0);

For

  example to construct a cell composed of a full tube of radius R and height H, made of B 4 C Shape_ptr C(new Tube(H/2,R)); Cell* c=new Cell(C,B4C);

NOTE:

  If not only neutrons are transported in MCNP, it is useful to define the desired mode (i.e., NP, NE, NPE for Neutron and Photon, Neutron and Electron and Neutron, Photon and Electron) before any Cell definition ; indeed, in this case, the given cell importance applies to all particle types. For example:gMURE->SetModeNP(); Cell *c=new Cell(C,B4C);Cell *exterior=new Cell(Exterior,0,0); will set the transport mode to neutrons and photons and the cell c will have an IMP:N=1 and IMP:P=1 whereas the cell exterior will have an IMP:N=0 and IMP:P=0.4.7.1 Cell and clone shapesSuppose we have defined 2 tubes B1 and B2 as follows: Shape_ptr B1(new Tube(1,0.5)); Shape_ptr T1(new Tube(1,0.4)); Shape_ptr T2(new Tube(1,0.3)); T2> >T1> >B1; Shape_ptr B2=B1->Clone(); B2->Translate(1,0,0); the cell definition for B1 is not a problem: Cell *b1=new Cell(B1,Graphite); Cell *t1=new Cell(T1,Iron); Cell *t2=new Cell(T2);

  (a) define the Shape_ptr C that will be filled by the lattice (like core), (b) define the Shape_ptr G that is used as lattice generator (a Brick or an Hexagon) and give to that generator a universe number (via Shape::SetUniverse()), (c) put G in C with G> >C (d) define all Shape_ptr B i that shall be used in the lattice and assign them a universe number (via Shape::SetUniver or use PinCell (see (a) of Cell Section) 2. In the Cell section (a) define PinCell P i (and/or use (d) of previous part)

Figure 4 .

 4 Figure 4.2: A simple implicit lattice.

4. 8 . 2

 82 An explicit lattice example with different zones (SimpleLattice2.cxx & Simple-Lattice2_serpent.cxx)

  whole=new PinCell; whole->SetSurroundingMaterial(H2O); LatticeCell *Pavage=new LatticeCell(LatticeGenerator); int range=int(VesselR/(1.5 * HexaSide))+1; Pavage->SetLatticeRange(-range,range,-range,range); //define a explicit lattice for(int i=-range; i<=range; i++) for(int j=-range; j<=range; j++) { int pos[3]={i,j,0}; //the lattice index double xt = HexaSide*sqrt(3.) * (i + j*0.5 ) ; double yt = 1.5 * HexaSide * j; double X[2]={xt,yt}; //the center of each hexagons if(IsHexagonInTube(X,LatticeGenerator,0.9)) //true if the hexa center at X is Pavage->FillLattice(pinUox,pos); //inside a tube of radius 90cm else Pavage->FillLattice(whole,pos); //inside a tube of radius 90cm } //--------------------Line B --------------------

Figure 4 .

 4 Figure 4.3: A lattice with different zones .
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 44 Figure 4.4: A lattice with more than one shape.

Figure 4 . 5 :

 45 Figure 4.5: Lattice of a Lattice.

  25); // This is natural C (Z=6, A=0) ; for 1 mol of B one has 0.25 mol of C Just before wrintting Material in MC file, proportions are normalized to 1. The Material::AddNucleus() method has the general form Material::AddNucleus(Z,A,I,prop); or Material::AddNucleus(Z,A,prop);

  Material::AddNucleus(Z,A,I,prop,UNITS)

H

  /Zr for H in ZrH poly for H in polyethylene D2O for D in heavy water BeO for Be in Be oxide Be for Be in Be metal Gr for graphite Zr/H for Zr in ZrH
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 6162 Figure 6.1: The chart of nuclides used in MURE containing 3834 Nuclei. Nuclei colored in red are those present in the Nuclear Tree of 232 Th. To build this tree, simple rules are used for determining which reactions are possible: if Z < 50, (n, γ) reactions are allowed, if Z < 90, (n, γ) and (n, 2n) reactions are allowed, and if Z ≥ 90, (n, γ) and (n, 2n) and fission reactions are allowed.

Figure 6 . 3 :

 63 Figure 6.3: Tree simplification if nucleus X is produced via radioactive decay

Figure 6 . 4 :

 64 Figure 6.4: Tree simplification if nucleus X is produced via a reaction. The decay daughters of X become reaction daughters of A.

Figure 6 . 5 :

 65 Figure 6.5: The simplified nuclear tree for 232 Th. Nuclei in yellow are those which were cut out during the tree exploration process because their half-lives were too short (less than 1 hour). Nuclei in red remain in the tree. Reactions follow the same rules that those defined in fig. 6.1.
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 66 Figure 6.6: The UOX tree for T 1/2 ≥ 1 hour. Reactions follow the same rules that those defined in fig. 6.1.
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 67 Figure 6.7: 232 T h tree with MCNP default cross-sections and T 1/2 ≥ 1 hour.

Figure 6 . 8 :

 68 Figure 6.8: The UOX tree with MCNP default cross-sections for T 1/2 ≥ 1 hour.
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 6961610 Figure 6.9: MCNP default available reaction data are shown in light blue.
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 611 Figure 6.11: Fission yield for 235 U.

Figure 6 . 12 :

 612 Figure 6.12: Fission yield for 235 U with T 1/2 > 1 hour.

Figure 6 . 13 :

 613 Figure 6.13: Effect from limiting the recursion depth for successive reactions in the 232 T h tree, where nuclei with T 1/2 < 1 hour have been removed.
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 71 Figure 7.1: Evolution principle.

Figure 7 . 2 :

 72 Figure 7.2: Illustration of a reaction rate evolution. MCNP results are in black dots. The reaction rate used during the evolution from step k to step k + 1 is in green whereas the red squares indicate the time where the extrapolation is performed.
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 73 Figure 7.3: EvolutionControl class and siblings.

2 and b = b +b 2 •

 22 or else, a = a and b = b if |a | < |a | or a = a and b = b if |a | < |a | 7.4 Reactivity Control NOTE: only few tests have been performed and therefore many bugs may be present in the Evolution Control.

  .
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•

  MureGui [-type c -dataname str] DirName1 [DirName2 ...]where DirName1 is the MURE evolution directory (containing the BDATA_* or DATA_* files) and optional DirName2,

8 . 1 )

 81 and can have up to 8 plot windows 1 ROOTSYS and LD_LIBRARY_PATH have been set as explained in the ROOT installation guide 2 [B]DATA_b* are also read when available.

Figure 8 . 1 :

 81 Figure 8.1: MureGui main window. Inventory Tab.

Figure 8 . 2 :

 82 Figure 8.2: Neutron Balance window. In this example, the reaction rates less than 3 per mil are grouped in the "Others" category.

8 . 2

 82 and fig 8.3). The "Dir" number is the number of the Dirname argument of MureGui and the number following the "@" character corresponds to the time at which the MC run is done (thus figure8.2 corresponds to first Dirname at time t=1004.44 days where a MCNP run was performed)
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 83 Figure 8.3: Neutron balance plot.
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 84 Figure 8.4: MureGui : the radiotoxicity Tab.

Figure 8 . 5 :

 85 Figure 8.5: "Irradiation" frame. Here, the first Dirname at time t=0, i.e., the first MCNP step, is used. The fuel cooling will be plotted from 1 year to 100 million of years with 50 log steps.
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 86 Figure 8.6: Spatial Var Tab -This will plot the flux as a function of Z for t = 0 whatever the spatial variables (no condition).

Figure 8 . 9 :Figure 8 . 7 :

 8987 Figure 8.9: MureGui -Interpolation and Error Bars.

Figure 8 . 8 :

 88 Figure 8.8: MureGui -Spatial Variable combo box selected for the cell located at R = 1 and Z = 0.

8. 3 . 4

 34 Frame "Error Bars" in the main window When statistical errors are available, error bars may be added to the corresponding graphs. Note that MCNP provides errors on fluxes, reaction rates and k ef f values. Thus, the Error Bars Button has no effect on the Inventory and Conversion Rate tabs. In [B]DATA_xxx files, are written k ef f , fluxes (with their MCNP absolute error), compositions of each nuclei (in atoms), and cross-sections with their error. This error is not really correct because it has been calculated as ∆σ σ =

8. 3 . 6

 36 More about Radiotoxicity Tab 8.3.6.1 Radiotoxicity of a user input composition (cooling only)

Figure 8

 8 Figure 8.10: MureGui Radiotoxixity Tab
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 811 Figure 8.11: Find gamma emitters at 185keV ± 1keV . They are sorted by decreasing intensity (gamma intensity×atoms) and the decay mode is indicated (alpha, beta, ...).

Figure 9 . 1 :

 91 Figure 9.1: Meshing grids.

Figure 9 . 2 : 4

 924 Figure 9.2: 4 Radial zones and 10 axial levels.

2 .) 3 . 4 .

 234 Define eventually plenum thickness and materials if they exist via ReactorAssembly::SetPlenum(double, Material*, Material*) and assembly duct (assembly channel) if needed via ReactorAssembly::SetAssemblyDuct(double, Material*Assign the assembly Shape to the object via ReactorAssembly::SetAssemblyShape(Shape_ptr ) Add all standard fuel pins that fill the whole assembly (without specify position) via ReactorAssembly::AddFuelPin(PinC 5. Add specific pins at the given position via ReactorAssembly::AddFuelPin(PinCell*, int, int) or via ReactorAssembly::AddGuideTube(PinCell*, int, int) or via ReactorAssembly::AddControlRod(PinCell*, int, int) 6. ...

7

 7 

Figure 9 . 3 :

 93 Figure 9.3: A complex assembly with 7 radial zones: 3 zones for standard fuel pins, 3 zones for specific fuel pins and 3 zones for guide tubes..

Figure 9 . 4 :

 94 Figure 9.4: A core filled by a ReactorAssembly: Axial (rigth) and radial cut (left) ; a zoom on the ReactorAssembly object is also shown (middle).

9. 3 . 3 Figure 9 . 5 :

 3395 Figure 9.5: Example of an assembly created with ReactorAssembly.

5 .

 5 Set to this object the boundary conditions (inlet temperature, mass flow, exiting pressure,...), see § 9.3.3.2 6. then build and run the COBRA-EN file 7. Optionally, to achieve temperature convergence, one can loop on successive iterations between MC/thermohydraulics calculation.All theses steps are exemplified in MURE/examples/Thermal/SimpleTHAssembly.cxx.9.3.3.2 Input/Output fileThe run of successive MC code and COBRA code required input files for both codes and transfer files that allow communication and cross-check of the simulation. MC file (inpXXX ) is generated as usual in MURE, in the (MC) run directory. In this directory, a "TH_yyy" (where yyy is the name of the reactor assembly), input/output and transfer file for COBRA-EN are written.• INFILE is the COBRA-EN input file• OUTFILE is the COBRA-EN output file • Mesh_MURE_COBRA_Data.txt : are written the lattice positions for each pin in the mesh grid of neutronic code and thermalhydraulics code • MCNPCellsTemp.data : are written averages temperatures in each zone and level for fuels, cladding and coolant (K)

Figure 9 . 7 :

 97 Figure 9.7: Complex COBRA coupled simulation : 20 axial levels and 4*7 radial regions

4 -

 4 water: Dittus-Boelter equation N u = 0.023 Re 0.8 P r 0.sodium: Notter & Sleicher N u = 6.3 + 0.0167 Re 0.85 P r 0.93 9.3.4.3 How to add data If thermal conductivity of new cladding is needed, one has to modify the source of ThermalCoupling class, adding flags and switching cases in ThermalCoupling::CladConduction().

Figure B. 2 :

 2 Figure B.2: The tree of figure B.1 after simplification. Since one node was included in the other, it has been removed.

Figure B. 3 :Figure B. 4 :

 34 Figure B.3: An other example of tree before simplification.

  

  

  Then compile (compilation line at the end of the file) and run CheckReaction • copy AvailableReactionChart.dat and BaseSummary.dat in MURE/data • Now you can run any examples of MURE.

	1	1	0 ENDFB 6.1 293.62 .24c STD	1001.24c 0.999170 /path_2_ace_files/la150n2 0 2 1 10106 4096 512 2.5301E-08
	...			
	1	1	0 ENDFB 6.1 293.62 .66c STD	1001.66c 0.999170 /path_2_ace_files/endf66a2 0 2 1 10128 4096 512 2.5301E-08
	...			
	92	235 0 ENDFB 6.1 293.62 .66c STD 92235.66c 233.025000 /path_2_ace_files/endf66c2 0 2 6899 722105 4096 512 2.5301E-08 ptable
	...			

•

  NOTE: If an existing BaseSummary.dat is already present in MURE/utils/datadir, this file is completed ; otherwise it is created.-CheckReaction.cxx must be used after building/modifying the BaseSummary.dat file in order to build the Each time a new evolution is run, a directory ReactionList is locally built (if it is not already there) with the available reaction of user's nuclear data base (one binary file for each Z). A list of suppressed reactions for some of the nuclei (because they are lower than a given threshold) is also written in ReactionList/SuppressReaction.dat. The aim of theses files is to save time when using the same nuclear data base AND the same reaction threshold, life-time cutting and so on. Thus if you modify one of these, DO NOT FORGET to remove the ReactionList directory. New methods MCNPSource::SetAXS and MCNPSource::SetVec allows user to define collimated sources.

	1.4.6 Other files (a) Add an optional equilibrium treatment for 135 Xe (see 7.7) (b) New option of MureGui : use the "radiotoxicity tab" of MureGui on a dumped Material created with MURE
		(see 8.3.6 and "MURE/example/GammaSpectrumExample.cxx ")
		7. April 2013: (c)
		(a) Version of base and isomeric states (metastable and ground state) for 242 Am in BaseSummary.dat file for
	standard library (distributed with MCNP or available@NEA) are now more conform to the reality ; you Chapter 2 have to regenerate your BaseSummary.dat/AvailableReaction.dat files with the exec of MURE/utils/datadir.
		DON'T FORGET TO REMOVE YOUR ReactionList DIRECTORY IN ORDER TO TAKE INTO AC-
		COUNT THESE MODIFICATION.
	What's new in MURE (b) BasePriority has been debug and it seems to work as expected...
		AvailableReactionChart.dat. 8. March 2013:
		(a) Add a generalization of the MURE::SetMode() method to allow any type of particle transport (mainly for
		1. November 2016: MCNPX)
		(a) Add Z revolution axis Torus for MCNP and Serpent ; see MathZTorus , MCNPZTorus and SerpentZTorus (b) Cell importance may have different value for each transported particles (by successive call to Cell::AddParticle
		classes. method)
		(b) Update "chart.jef3T" file that contains periods and decay modes for all the chart ; this file (JEFF 2 lib.) is (c) extend the MCNPSource possibilities (particle distributions are now allowed for MCNPX)
		kept unchanged, but a new file has been created "chart.jeff3.1.1" (from ref. [16]); it is the new default. 9. July 2012:
		2. November 2015: (a) Generalization of isomer production by (n, γ) for special cases (such as 241 Am, 109 Ag, . . . ), and bug cor-
		(a) ReactorMesh and ReactorChannel class have been removed ; a new GenericReactorAssembly, and its con-rection in (242Cm, 242P u) production, see 6.1.6.
		crete versions MCNP::ReactorAssembly and Serpent::ReactorAssembly replace the ReactorMesh class. It is (b) Improve MurGui Spectrum radiotoxicity tab
		a complete rewriting of that class, bu the spirit is kept (see § 9.1 and 9.3.2). It adds lot of new possibilities (add duct to an assembly, filling core with a ReactorAssembly, ...). (c) Allow to plot neutron balance in the "Reaction Rate" tab.
	(b) COBRA class is renamed COBRA_EN and rewritten ; again backward compatibility is broken (it does 10. June 2012:
		not inherit from GenericReactorAssembly) but the spirit is not changed. (a) Add functions in MureGui (see MureGui's Radiotoxicity tab)
		3. October 2015: i. Nuclei extraction is now possible after a given cooling time.
		(a) Correct a bug when reading the "standard" xsdir of MCNP5 ; isomeric cross-section libraries are now in ii. γ,β, α and neutron spectra for evolving materials can be computed.
		accordance with the MCNP5 documentation. (b) New MURE install procedure (more simple, more robust): any fresh install or update NEED to run
		first the install.sh script (require bash shell).
		#include <MureMCNPHeaders.hxx> 4. July 2015: (c) Add the possibility to used multi-threading (OpenMP ) during the evolution and for updating multigroup
	or	• New MURE version 2.0 (SMURE). This is a major release of MURE. It couples now both MCNP σφ when the gcc version support this option (see INSTALL procedure and install.sh script and section & Serpent. Due to technical, philosophical difficulty and also to beauty in programming (dry codes), 7.2.2.2).
		#include <MureSerpentHeaders.hxx> backward compatibility is broken. But the changes to user input files between MURE v1 and MURE v2 (d) Add some new kind of MCNPSource (see section 5.2.3)
	If needed on can add also : are small. See 3. (e) Add fluence to dose conversion for tallies
	#include <libmctal/TMTally.hxx> #include <libmctal/TMComment.hxx> 5. November 2014: 11. May 2011:
		#include <libmctal/TMctal.hxx> (a) Add the possibility to use standard MCNP tallies 238 U and multi-group tallies for other nuclei (see 5). (a) Add a new class GammaSpectrum class (section 8.4.2)
		6. October 2014:

NOTE: After running ExtractXsdir /ExtractTree and CheckReaction, you have to copy the BaseSummary.dat and AvailableReactionChart.dat in your MURE/data.

1.4.4 Graphical User Interface "MURE/gui"

The GUI of MURE is located in the MURE/gui directory. The executable name is "MureGui" and it reads the result of a MURE or Dragon evolution. To use it, user must install ROOT (free download at https://root.cern.ch).

Normally, the install.sh script of MURE, defined all available library in the MURE/config directory. If the Lapack package is needed, (see http://www.netlib.org/lapack/index.html)
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. The compilation is obtained by a "make" in the MURE/gui directory. Using MureGui without argument gives a short description of the code used (see also § 8.3).

1.4.5 MURE Source files "MURE/source/include" and "MURE/source/src"

The MURE source files are located in "MURE/source/include" for the header files (.hxx ) and in "MURE/source/src" for implementation (.cxx ). When user is modifying the MURE source, he has to recompile the MURE package (by a "make" in MURE/source/src). In MURE/source/external, one finds 2 auxiliary libraries, ValErr and Mctal that are used in MURE. The ValErr defines a class to handle numbers and their errors, and Mctal is dedicated to reading/writing MCNP "m" files.

In any program using MURE, you have to include at least: #include >MureHeaders.hxx> and either one of the following

  Suppress the writing of BDATA_xxx and DATA_xxx ; now, by default, only BDATA_xxx are written.

	i. "like but" cells can be used (but not evolved) 20. September 2007:
	ii. "MCNP Transformation" cards can be used (a) Correct an important bug in evolution using an MCNP User Input geometry file: number of Materials were iii. the 3rd block of the MCNP file is read and copied except the materials (that must be defined in the MURE file). Thus the source as well as all other cards of this block can be used without defining them not correct (Thanks to Jan Frybort).
	in the MURE file (this is also true for user defined tallies). 21. Juin 2007:
	19. October 2007: (a) Rename the MURE header file Shapes.hxx into MureHeaders.hxx : this is more logical...but
	(a) Switch from ccdoc to Doxygen for class documentation you have to change your MURE files....
	(b) Change completely the MURE directory trees (b) Add a new class EvolutionWrapper to simplify and extend EvolutionControl capabilities
	(c) NON BACKWARD COMPATIBILITY (c)
	i. Material definition has changed: now only 2 constructors must be used:
	• Material (): for standard material (you have to specify density, ... with the Set methods)
	• Material (int): for using materials from an MCNP input file geometry.
	13. Avril 2009: MURE is available at NEA DataBank ii. THE COPY CONSTRUCTOR HAS NOT TO BE CALL: CALL only the Material::Copy().
	14. January 2009: iii. The Material::Mix has been modified (number of arguments, units required). see Material.hxx
	iv. The Material::AddNucleus has been modified (number of arguments). By default the proportion units (a) Improve reading time of BaseSummary.dat file : it is now greatly recommended that this file is ordered by are "kpMOL" (i.e. molar proportion). But the unit must be specified if you use a moderator (MT card Z,A,I (this is the case if it is generated by ExtractedXsdir.cxx and ExtractTree.cxx ). of MCNP).
	(b) Rewrite long parts of the documentation (User Guide and HTML class description) v. The proportion units (both for Density and Proportion) must be used for any Material::GetProportion()
	(c) Modify examples directory: it now contains documented examples and output. and Material::GetDensity() methods
	• for Proportion the only valid units are: kpMOL(molar prop), kpMASS (mass prop), kpATCM3 15. November 2008: Improve radiotoxicity post treatment in MureGui. (at/cm3), kpATBCM (at/barn.cm)
	16. September 2008: Implement "multigroup" calculation for reaction rates: a very narrow energy binning for flux • for density the only valid units are: kdGCM3 (g/cm3), kdATCM3 (at/cm3), kdATBCM (at/barn.cm)
	calculation is put in each MCNP run ; then reaction rates are obtained by reading ACE MCNP files after each vi. A new material has been defined : ControlMaterial (public of Material). This class is used for Poison, MCNP run. The result of such method saves a considerable amount of CPU time for MCNP (at least a factor 30) Fissile or other control of reactivity (e.g. poison.cxx in MURE/examples) with only a low percentage of discrepancy (∼1 to 3%) in result compared to the standard calculation (reaction vii. All Print() methods now return a string instead of a void: to use them: cout< <Mat->Print()< <endl; rates are tallied in MCNP ). for example.
	17. April 2008: viii. EvolutionControl class has been cleaned (as well as MURE class). If you want to use special control you
	have to write your own derivative class. Examples using PoisonControl, FissileControl & HNControl (a) implementation of Predictor-Corrector method in the evolution (but Adrien you have to rewrite them and look carefully at TMSR.cxx in MURE/examples.) and Rod
	(b) possibility to read ASCII nuclear data file (ACE format): this avoids problems due to binary compatibility control are defined in source/src. You can used them as they are or defined your own using these
	(size of real (float or double?), little or big endian, ...). BUT it is much longer to (1) build the ReactionList examples.
	directory and (2) run a MCNP. (d) Almost all cout/cerr have been removed from classes; used instead LOG_DEBUG, LOG_INFO, ... ;
	18. December 2007: LOG_INFO is now independent of LogLevelMessage ; it is always printed. If MURE::SetMessageLevel
	is set to LOG_LEVEL_DEBUG, all LOG_DEBUG are printed. But if MURE::SetSilentDebug is used,
	(a) Disable the σφ extrapolation by default. It has been shown, but not really understood, that this treat-only the LOG_DEBUGs of methods where a "int DODEBUG=1" is inserted are printed. Thus, using
	ment introduces a larger dispersion in the result, after N identical evolutions, than doing nothing (no σφ LOG_DEBUG, avoids to comment all "cout" when no debugging is desired.
	extrapolation). (e) ALL EXAMPLES HAVE BEEN UPDATED TO TAKE INTO ACCOUNT THESE MODIFICATIONS:
	(b) Modify the evolution using a MCNP User Input geometry file: please READ THEM!!!!!!!!!!

  First header file, is the "pure" MURE header : MureHeaders.hxx which includes all pure MURE classes. It is thus included in all MURE input files, whatever will be the output. The second header file is linked to the output ; MureMCNPHeaders.hxx and MureSerpentHeaders.hxx includes all classes that couple MURE with MCNP and Serpent respectively. They include particularly MCNP::Connector (Serpent::Connector), MCNP::Sphere (Serpent::Sphere), ... Of course connectors, because of some profond differences between MCNP & Serpent, have specific methods existing only in one type of connector. The same applies also for the Tally class which is more complete in MCNP. The last case is for particle sources which are very different from MCNP to Serpent. This is why, sibling of MCSource class keep the MC code prefix in there name (MCNPSource and SerpentSource) in order that the user don't forget its specificity. An other cause of problems, switching from one code to the other is the MURE::AddSpecialCard() which allows to use specific Serpent or MCNP cards that have not been implemented in MURE. Thus a carefull check of Connector, MCSource and MURE::AddSpecialCard() should be done when switching from one code to the other.

Table 3 .

 3 1: Switching from MCNP (left) to Serpent (right) output files.

			#include <iostream>
			using namespace std;
	#include <iostream> using namespace std; #include <MureHeaders.hxx>	#include <MureHeaders.hxx> #include <MureSerpentHeaders.hxx> using namespace Serpent;
	#include <MureMCNPHeaders.hxx>	int main(int argc, char **argv)
	using namespace MCNP;	{	
	int main(int argc, char **argv)		Connector *plugin=new Connector();
	{			
		Connector *plugin=new Connector();		
	//remove the MCNP "r" file after each evo step plugin->SetRemove_r_files(); gMURE->SetConnectorPlugin(plugin); // // Nuclei tree construction & nuclear data library // gMURE->SetMessageLevel(3); gMURE->SetDATADIR("../../data/"); gMURE->SetAutoXSDIR(); gMURE->SetShortestHalfLife(3600); gMURE->GetTemperatureMap()->SetDeltaTPrecision(1500); gMURE->KeepOnlyFissionProductSelection(); // // Materials // Material *H2O= new Material();	gMURE->SetConnectorPlugin(plugin); // // Nuclei tree construction & nuclear data library // gMURE->SetMessageLevel(3); gMURE->SetDATADIR("../../data/"); gMURE->SetAutoXSDIR(); gMURE->SetShortestHalfLife(3600); gMURE->GetTemperatureMap()->SetDeltaTPrecision(1500); gMURE->KeepOnlyFissionProductSelection(); // // Materials // Material *H2O= new Material(); H2O->SetDensity(1.);// density in g/cm3
				evolving material
	evolving material Shape_ptr Shape_MySphere(new Sphere(0.5)); // // Shapes // Shape_ptr Shape_Exterior(!Shape_MySphere); Shape_ptr Shape_MySphere2(new Sphere(0.4));	// // Shapes // Shape_ptr Shape_MySphere(new Sphere(0.5)); Shape_ptr Shape_Exterior(!Shape_MySphere); Shape_ptr Shape_MySphere2(new Sphere(0.4)); Shape_ptr Shape_MySphere3(new Sphere(0.3));
		Shape_ptr Shape_MySphere3(new Sphere(0.3));		Shape_MySphere3> >Shape_MySphere2> >Shape_MySphere;
	Shape_MySphere3> >Shape_MySphere2> >Shape_MySphere; // // Cells //	// // Cells // Cell* CellSphere = new Cell(Shape_MySphere , H2O);
		Cell* CellSphere = new Cell(Shape_MySphere , H2O);		Cell* CellSphere2 = new Cell(Shape_MySphere2, UOx);
		Cell* CellSphere2 = new Cell(Shape_MySphere2, UOx);		Cell* CellSphere3 = new Cell(Shape_MySphere3, Uranium_metal);
		Cell* CellSphere3 = new Cell(Shape_MySphere3, Uranium_metal);		Cell* CellExterior = new Cell(Shape_Exterior, 0, 0);
	Cell* CellExterior = new Cell(Shape_Exterior, 0, 0); // // General Cards // //define the neutron source (KCODE) MCNPSource *s=new MCNPSource(500); s->SetKcode(60,30,1.); s->SetEnergy(2e6);	// // General Cards // //define the neutron source (KCODE) SerpentSource *s=new SerpentSource(500); s->SetKcode(60,30,1.); s->SetEnergy(2e6); gMURE->SetSource(s);
		gMURE->SetSource(s);		// MC option
		// MC option gMURE->SetComment("Evolution of a Sphere"); gMURE->SetMCInputFileName("inp"); gMURE->SetMCRunDirectory("sphere","keep");		gMURE->SetComment("Evolution of a Sphere"); gMURE->SetMCInputFileName("inp"); gMURE->SetMCRunDirectory("sphere_serpent","keep"); gMURE->AddSpecialCard("plot 3 2000 2000");
	// // Evolution // gMURE->SetPower(1e8); //give the total power: 100 MW	// // Evolution // gMURE->SetPower(1e8); //give the total power: 100 MW
		double TEnd=3*365.25*3600.*24;		double TEnd=3*365.25*3600.*24;
		vector<double> T; int Nt=6; double dt=TEnd/Nt;		vector<double> T; int Nt=6; double dt=TEnd/Nt;
		for(int i=0; i<Nt;i++) T.push_back(i*dt);		for(int i=0; i<Nt;i++) T.push_back(i*dt);
	}	gMURE->Evolution(T);	}	gMURE->Evolution(T);

H2O->SetDensity(1.);// density in g/cm3 H2O->AddNucleus(1, 1, 0, 2.); // H of H2O H2O->AddNucleus

(8, 16, 

0, 1.);// O of H2O Material *Uranium_metal= new Material(); Uranium_metal->SetDensity(19.); Uranium_metal->SetTemperature(600.); //Temperature in K Uranium_metal->AddNucleus(92,235,0.20);//U-235 in mol Uranium_metal->AddNucleus(92,238,0.80);//U-238 in mol Uranium_metal->SetEvolution(); //this is an evolving material Material *UOx= new Material(); UOx->SetDensity(10.2); UOx->AddNucleus(92,235,0, 0.05);// 5%(in mol) of U-235 UOx->AddNucleus(92,238,0, 0.95);// 95%(in mol) of U-238 UOx->AddNucleus(8,16,0, 2.); // 2 O for 1 U02 UOx->SetEvolution(); //this is an H2O->AddNucleus(1, 1, 0, 2.); // H of H2O H2O->AddNucleus(8, 16, 0, 1.);// O of H2O Material *Uranium_metal= new Material(); Uranium_metal->SetDensity(19.); Uranium_metal->SetTemperature(600.); //Temperature in K Uranium_metal->AddNucleus(92,235,0.20);//U-235 in mol Uranium_metal->AddNucleus(92,238,0.80);//U-238 in mol Uranium_metal->SetEvolution(); //this is an evolving material Material *UOx= new Material(); UOx->SetDensity(10.2); UOx->AddNucleus(92,235,0, 0.05);// 5%(in mol) of U-235 UOx->AddNucleus(92,238,0, 0.95);// 95%(in mol) of U-238 UOx->AddNucleus(8,16,0, 2.); // 2 O for 1 U02 UOx->SetEvolution(); //this is an

Table 3 .

 3 2: Summary of changes from MURE to SMURE.

	MURE version 1	MURE version 2 : SMURE
	#include <MureHeaders.hxx>	#include "MureHeaders.hxx"
		#include "MureMCNPHeaders.hxx"
		using namespace MCNP;
	int main(...)	int main(...)
	{	{
		Connector *plugin=new Connector();
		gMURE->SetConnectorPlugin(plugin);
	gMURE->SetRemove_r_files();	plugin->SetRemove_r_files();
	gMURE->BuildMCNPFile();	gMURE->BuildMCFile();
	gMURE->SetMCNPInputFileName("inp");	gMURE->SetMCInputFileName("inp");
	gMURE->SetMCNPRunDirectory("sphere","keep")	gMURE->SetMCRunDirectory("sphere","keep")
	gMURE->SetMCNPExec("mcnp5");	gMURE->SetMCExec("mcnp5");
	gMURE->SetWriteASCIIData();	gMURE->GetEvolutionSolver()->SetWriteASCIIData();
	gMURE->SetWriteBinaryData();	gMURE->GetEvolutionSolver()->SetWriteBinaryData();

gMURE->UseMultiGroupTallies(); gMURE->GetEvolutionSolver()->UseMultiGroupTallies(); gMURE->SetUseNewDBCN(); gMURE->SetUseNewRandomSeed(); Cell *MyLattice=new Cell(AGenerator); MyLattice->Lattice(1,-rx,rx,-ry,ry,-rz,rz); LatticeCell *MyLattice=new LatticeCell(AGenerator); MyLattice->SetLatticeRange(-rx,rx,-ry,ry,-rz,rz);

Table 3 .

 3 3: Comparison of a lattice in the Old Mure version1 (left) and with the PinCell of SMURE(right).

	//
	//Shapes
	//
	//the Vessel : a full Tube
	Shape_ptr Vessel(new Tube(VesselH/2, VesselR));
	//the Exterior
	Shape_ptr Exterior(!Vessel);
	//the lattice generator
	Shape_ptr LatticeGenerator(new Hexagon(HexaH/2,HexaSide));
	LatticeGenerator->SetUniverse();
	// put the lattice generator in the vessel
	LatticeGenerator> >Vessel;
	Whole->SetUniverse();
	//
	//Cells
	//
	Cell *pin=new Cell(Pin,UOx

// a small cylinder that will contain UOx Shape_ptr Pin(new Cylinder(PinR)); Pin->SetUniverse(); // a bigger one that define fuel clad Shape_ptr Clad(new Cylinder(CladR)); Clad->SetUniverse(Pin->GetUniverse()); //Outside of the CladShape_ptr OutClad=!Clad; Pin> >Clad; //the whole space that is use near the vessel border Shape_ptr Whole(new Node(-1));

  • The "Spatial Var " tab allows the plotting of spatial flux (or power deposit) dependence if you have defined spatial variables (see the Cell class and next paragraph). It is present only if Spatial variables have been defined. The "Plotting Time" frame allows user to select the time at which the plot is done. The "Variable choice" frame allows user to select what to plot (in the "Plotting Variable" combo box) and with, eventually, a condition on spatial variables ("Conditional Variable" combo box). For example, if a core has been divided in N radial zone and M axial zone, you can plot the mean flux as a function of Z for every radial zone (see figure8.6). One can also plot this flux but only for a given radial zone by selecting the desired "ring" in the "Conditional Variable" combo box. The "Same Plot" check button, allow users to overlap plots.

Table D .

 D 1: Energy Released per fission for 235 U . Fission Product kinetic energy 166.2 ± 1.3 MeV Prompt fission γ 8.0 ± 0.8 MeV Delayed (after β decays) γ 7.2 ± 1.1 MeV β decays 7.0 ± 0.3 MeV Neutron kinetic energy 4.8 ± 0.1 MeV (n, γ) capture(6 MeV × 1.42 neutrons) 8.5 MeV Energy released Q 201.7 ± 0.6 MeV By default MURE assumes that the energy released from fission for each fissionable isotope is different. For several common fissile isotopes, the fission energy values are taken from: W.H. Walerk, "Mass balance estimate of energy per fission in reactors AECL-3109, 1968". For all other fissionable isotopes, fitted values are used. The linear fit (as a function of mass) is made for the common isotopes [232Th -241Pu] and extrapolated to the uncommon ones.

In french, a mûre is a blackberry ; the blue fish with legs of the MURE's logo is the Darwin evolution symbol (a fish leaving the sea), with a small wrench that symbolize that MURE is a tool. The fish climb on a tree with blackberries ; they represents the nuclei tree need for the evolution, each drupelet of the berries being the nucleons. The small serpent is of course link with the biblical tree of knowledge (but here for the neutronics knowledge) as well as the Serpent Monte-Carlo code used together with MCNP.

Basic knowledge of C/C++ may help to understand MURE. Nevertheless, careful reading of examples is sufficient to understand and use the package. In appendix A, a very short introduction to C++ terminology is given in order to facilitate the use of the User Guide and examples.

For reactor physics, it is not generally necessary to take into account the evolution of every material (such as reflectors, vessels, ...).

It is, nevertheless, relatively easy to make evolution of user defined MCNP file.

MURE v1 was designed only for MCNP. It was closely linked to MCNP. The first phase of MURE v2 has been to decouple MURE from MCNP ; the second phase was to couple MURE to a MC code in a "generic" way". This has caused the break in backward compatibility.

Output files are mainly MCNP/Serpent input files named inp.example_name. All output files have been compressed ; so you have to make a "gunzip *" inside MURE/examples/Output.

One can use either, gMURE->SetDATADIR(path) or the environment variable DATADIR (setenv DATADIR path in csh and export DATADIR=path in bash). Note that if you are using gMURE->SetDATADIR(path) you must call it before any Material definition.

Most of LINUX distributions provide LAPACK package ; a 'locate liblapack.so' shows if it is already installed ; if only liblapack.so.version_number is found, you either have to install the "lapack-devel" package or to make a 'ln -s /path_to_lapacklib/liblapack.so.version liblapack.so' in the MURE/lib directory.

In C++ this operator is known as the bitwise right shift operator

The importance given in the Cell constructor will be the same for all transported particles (define by one of the MURE::SetMode methods) ; if user want to give specific importances for each particle, one needs to call for ALL transported particles the Cell::AddParticle("particle_Name", importance_for _that_part).

i.e. a pointer on a Material, see Appendix A

Because we are in a lattice, this whole space is cut by the lattice generator. It is also possible to give a bigger volume to obtain the same kind of result ; however, MCNP has to check all surfaces of this volume for a neutron in the cell so it will result in a longer MCNP run...

One can make ACE binary format from ASCII ACE format using MCNP makxsf exec. Even if NJOY is theoretically able to create such files (ACE binary files), our experience shows that only ASCII files made by NJOY are usable. So you can process ACE ASCII files from ENDF format with NJOY and then, use makxsf to convert them to binary.

An ASCII file may be used but since the run time increases significantly, we recommend to convert the ASCII ACE file to a binary ACE file with makxsf.

This threshold has been chosen in order to suppress "exotic" reactions, such as (n,nα), as well as other insignificant reactions and to keep "essential" reactions ; a file, SuppressReaction.dat in the ReactionList directory contains the removed reactions. Don't forget to verify it!!!!

When using parallel calculation for MCNP (omp,mpi) this factor is reduced: for example, running MCNP in omp on a 8 processor machine leads to only 16 times faster for a simple problem.

This is of the same order of magnitude than the deviation observed in a series of N identical evolution starting with a different random seed. Using this multi-group method, unresolved probability tables are not taken into account for reaction rates evaluations ; this explain that for fast systems, the discrepancy is larger than for thermal ones.

The default is

[START_REF]PSG2 / Serpent Monte Carlo Reactor Physics Burnup Calculation Code[END_REF], and it can be changed with MURE::SetFitRangeNumber().

But if FP and/or AM check boxes are selected, they are not part of the sum

The input cooling time is then chosen as the lower bound of the time binning defined in the "Evolution period" frame ; see the exact value in the terminal window.

The principle of this method is to "run" MCNP in "information mode", then search the print table 60 containing the cell volumes information.

The volume given in table 60 is the volume of the cell alone ; if a universe is defined, then the volume of the true cell is the volume of all places where that universe is input. Thus only stochastic volume calculations can be made.

Material extension for MC

In MCNP or Serpent, material codes have extensions (like ".60c"). These extensions are very important because they distinguish isotopes at different temperatures, bases, versions,. . . In practice, if no extension is specified in MCNP file, the first isotope encountered in the xsdir is chosen regardless the temperature imposed in the cell where the material is (but this is not the case in Serpent). In MURE user has different ways to specify an extension.

• This can be done manually for each nucleus of the material composition: mat->GetNucleus(Z,A,I)->SetXSExtension(".49c")

• This can be done manually for all nuclei of the material composition: mat->SetDefaultXSExtension(".49c") then each nucleus of the Material mat will have this " .49c" extension.

• If the MCNP code for a particular Nucleus (Z,A,I) of a given Material mat is known, it can be specified by using: mat->GetNucleus(Z,A,I)->SetXSExtension(".49c")

• This can be done automatically (this is the recommended way): the specific file, the so-called "BaseSummary.dat" file, which contains xsdir/xsdata information written in a different way for search efficiency, is used. The extension is chosen according to the Material temperature. In fact the closest temperature to the one of the Material is chosen with the help of classes BasePriority and TemperatureMap. (see below)

NOTE:

• If evolution is need, the automatic procedure is certainly required...but I am not sure (PTO).

• If one specifies the extension value (either via Nucleus::SetXSExtension() or Material::SetDefaultXSExtension() or Nucleus::SetModeratorName()) then you must provide in the xsdir the corresponding data files.

S(α, β) Treatment and MT card

When the special treatment S(α, β) is desired for low energy, MCNP MT card arguments or Serpent moder and therm cards have to be specified. Consider the water example: H2O->AddNucleus(1,1,2.,kpMOL,"H2O"); H2O->AddNucleus(8,16,1.);

• this can be done manually: the string "H2O" must not be empty ; then H2O->GetNucleus(1,1)->SetModeratorName("lwtr.01t");

• this can be done automatically: the BaseSummary.dat file is read to find the code of S(α, β) treatment file ; this time, because S(α, β) treatment is material dependent, the string has to refer to a given "Category" to specify which kind of effects are taken into account ; in the above example, hydrogen has different S(α, β) treatment for light water, polyethylene, benzene, ... The complete list of available Categories is given in Nucleus in the Nucleus::SetModeratorCategory():

In that case, only nuclei given in the wanted nuclear base are used.

• TemperatureMap class: this class defines a temperature "binning" T [i] and a precision ∆T ; an input temperature T in can be searched in this binning with respect to the precision. For example, if T [0] = 300 K, T [START_REF] Méplan | MURE : MCNP Utility for Reactor Evolution -Description of the methods, first applications and results[END_REF] = 500 K and ∆T = 50 K, then all T in in [250 K, 350 K] will have a score of |Tin-T [0]| ∆T , all T in in [350 K, 450 K] will have a 0 score. The precision ∆T can be set via gMURE->GetTemperatureMap()->SetDeltaTPrecision(). A zero score in temperature stops the MURE execution: you may either increase the ∆T precision or build the nucleus data file (ACE format) at the desired temperature.

Automatic XSDIR construction

Using the extension finding, MURE can build the XSDIR/XSDATA file that is used by MC code to get the crosssections used in the problem. To use this option, you just have to set : gMURE->SetAutoXSDIR();

When getting the code for MC file, MURE will then save the best line it finds in BaseSummary.dat. Therefore, right before building the MC file (the XSDIR is built at the first step of an evolution), MURE will build the XS-DIR/XSDATA file by using all these best lines it saved.

IMPORTANT : If an existing XSDIR/XSDATA is already present in the MC run directory, then MURE will NOT build a new one ; the existing one will be used by MC code. Thus either the xsdir/xsdata is correct, either you have to remove it.

Particle Source

Because the difference between particle source definition in MCNP and Serpent is great, MURE source definition uses 2 different classes, MCNPSource and SerpentSource to avoid confusion for the user ; they are sibling of the MCSource class.

When in LatticeBins, you can precise the positions of the cell in the lattice, use a string which gives the position in the MCNP way, that is : string pos="[0 0 0]"; LatticeBin *lpb=new LatticeBin(rod); //rod is a cell associated to an element of a Lattice lpb->AddContainer(core,pos); //core is a cell fills by "rod" (e.g. a lattice)

This means that you are interested by the flux in the cell rod which is in the cell core at the lattice position [0,0,0].

The result in MCNP file will be (given that the number of cell rod is 1 and cell core is 2):

Finally, you can use the universe shorthand (u=1 for instance), simply by giving the universe number, either directly if you know it or by using Shape::GetUniverse() :

Tally *t1=new Tally(); t1->Add(MainShape->GetUniverse());

Please note that, in MCNP, the universe shorthand doesn't work for lattice elements filled with the universe number, that is to say, when a lattice is filled by position, for instance when in MURE we use Cell::FillLattice(Universe_Number, Position), the universe is not detected by MCNP. (see example Tally_Test.cxx )

As this shorthand is replaced by all the cells filled with the universe, we strongly recommend that you use it only if you are perfectly sure of the number of cells involved in the tally defined in that way.

Each tally must have a definite volume (or surface). The volume is set via the Tally::SetBinVolume() or for a given bin, via the TallyBin::SetBinVolume() or TallyBin::SetVolume(). This may be done manually or automatically: if no bin volume has been provided, the volume is automatically calculated by a stochastic method (see also the note C.1 concerning the volume calculation). For lattices and universe shorthand, as multiple volumes are needed for each bin, the SetBinVolume() method precises a partial number. The partial number follows the order of the output. (to know exactly the order for lattice bin volumes, see MCNP doc or example Tally_test.cxx ).

Fluence to dose conversion (MCNP Only)

The Tally::AddFluenceToDoseConversion() method converts fluence (only for F4 type tally) to dose rate (rem/h) using fluence to dose conversion factors. It can be use only for photons or neutrons. The conversion factor are store in /path_to_mure/MURE/data/GammaFluenceToDose.dat and NeutronFluenceToDose.dat (they are taken from [START_REF]Neutron and Gamma-Ray Fluence to Dose Factors[END_REF]).

Chapter 6

Nuclei Tree

Nuclei Trees: general considerations

To evolve a given material, it is essential to know in advance the ensemble of nuclei which it can produce via successive nuclear reactions and decays. This information comes from the Nuclei Tree object, which is defined by the NucleiTree class, and contains the linking information between all the nuclei that exist in the chart of nuclides. Nuclei can be transformed into other nuclei by nuclear decays (β, α, electron capture, etc.) and nuclear reactions ((n, γ), (n, 2n), fission, etc.). In general a particular nucleus has daughters (those nuclei it can transform into) and parents (those nuclei that can produce it). To calculate how much of a particular nucleus is produced during the evolution it is essential to know the ways in which it can be produced and the ways it can be destroyed.

We cannot only define the total global nuclear tree (the connections between all 3834 nuclei), but also the local or particular tree for a given nucleus. The particular tree for a certain nucleus is, in general, a subset of nuclei and their linking from the global tree. To extract an individual tree from the global tree, the NucleiTree::ExtractZAI method is used. The local tree is explored recursively by starting at the given nucleus (see figure 6.1) and then finding each successive reaction and decay daughters.

How the tree information is stored

• The global nuclear tree has a vector of all the physically possible ZAI objects, representing the different isotopes, including long-lived isomers of the same isotope, as an attribute. Each ZAI object contains vectors of pointers to other ZAI which are either its reaction daughters or its decay daughters. When a particular tree is extracted, the parental relations are also determined (see figure 6.2). It is then possible to follow the tree by jumping from ZAI to ZAI, and to understand for each ZAI object all the ways it can be created and destroyed.

Cutting or simplifying the tree

Isotopes in the chart of nuclides have half-lives ranging over ~40 orders of magnitude. In a reactor core neutron fluxes are much lower (∼ 10 15 neutron/cm 2 /s) than in supernova explosions (up to ∼ 10 24 neutrons/cm 2 /s) and thus decay rates are usually much higher than reactions rates for most short-lived nuclei. Furthermore, the reactor fuel composition only changes significantly after some years, so short-lived isotopes play no important role in the evolution.

We can therefore assume that nuclei with short half-lives decay instantaneously which allows us to simplify the tree version is used, please note that this will take longer...). The main advantage of this method is a considerable CPU time saving (more than 30 times faster 1 than the "standard" evolution). The accuracy of the result are quite good (~1% for thermal systems and 5% for fast ones 2 ). To use this method, one has to define "gMURE->GetEvolutionSolver()->UseMultiGroupTallies(); " at the beginning of the input file The main problem of multi-group evolution is the 238 U . Its capture cross section has been chosen to "optimize" the group structure (number of bins/energy interval). In order to take the advantage of the multi-group CPU time saving, it has been implemented the possibility to use multi-group runs for all nuclei but 238 U : in that case, the "standard" method (real MC tally) is used for 238 U , and multi-group tallies for the other nuclei. This is done by setting the "StdTallyFor238U" to "true" in the "EvolutionSolver::UseMultiGroupTallies() " method.

Cross-section Evolution

Cross-sections are evolving with time because of the flux shape evolution. Between 2 MCNP steps, cross-sections are either constant, either evolving. Taking the cross-section evolution during the "evolving step" should enable a better precision and increase evolution step duration, reducing the CPU time. It is based on linear extrapolation of previous MC runs.

!!!! After a study of error propagation, it appears that fitting σφ leads to a bigger dispersion of cross-section evolution in the result (with a constant power). Thus this treatment is no more used by default. To use it you must specify it by a MURE::FitSigmaPhi(true).

How does it work?

The treatment is applied for each cross-section of each nucleus in each cell. Thus, for the sake of simplicity, we will only consider a reaction cross-section σ i of a nucleus in a cell.

Since for evolution, reaction rates are used, we should rather consider the reaction rate σ i φ and not the crosssection σ i . Suppose that we have performed an evolution up to step k (i.e., kth MC run is just finished). To know the reaction rate evolution up to step k + 1 (i.e., just before a new MC run), a linear fit (least square method from Numerical Recipes) is applied to EvolutionSolver::GetFitRangeNumber() previous MC reaction rates 3 (that is to say, MC runs k -3, k -2, k -1, and k). Then, for the evolution over step k → k + 1, the reaction rate is extrapolated with (σ i φ)(t) = at + b, where a and b are the results of the linear regression. Note that for the first EvolutionSolver::GetFitRangeNumber() MC runs, reaction rates are kept constant.

As already mentioned, integration of Bateman equations is in fact done in N rk Runge-Kutta steps which are automatically divided in other shorter time steps (adaptive step RK method) ; the reaction rate evolution is only

A simple example using standard EvolutionControl

The example file poison.cxx (MURE/example/poison.cxx ) corresponds to a very simple reactor (cylinder of borated water with a hexahedral fuel pin lattice). The reactivity control is done by adjusting the concentration of a poison (the boron) in the water. We assume that a large reserve of boron is available and thus, when necessary, we can adjust the boron concentration at a desired value. The method principle is to calculate an estimation of k ef f using the reaction rate extrapolations:

(n,xn), "escape" and σ poison are supposed to be constant between 2 MC steps ; the poison concentration N p is thus determined using the desired k ef f in the formula. A ControlMaterial is a Material which is used to control the evolution, and in this case, a poison to control the reactivity. The 3th an 4th lines informs us that boron 10 (and 11) are the nuclei used to control the reactivity. See the "poison.cxx " example. This material must not be an evolving material, because we'll consider that we can adjust boron concentration every time .

Poison material declaration

Escape calculation

In the k ef f formula, neutron leakage is needed ; in order to calculate these escapes, one has to define a F2 tally (flux through surface) through the most outer Shape of the geometry ; in the example this leads to:

because "Vessel" is the outer cylinder of this "reactor".

Evolution definition

You have to declare the Evolution Control object:

PoisonEvolutionControl *ECon=new PoisonEvolutionControl(); ECon->AddReactions(BoratedWtr); gMURE->SetEvolutionControl(ECon);

The 2nd line gives the specific EvolutionControl command to add the required reactions useful for the control (poison absorption, ...)

Using your own EvolutionControl

The aim of this section is to help user implement its own EvolutionControl using inheritance mechanism. Then you will be able to write your own specific methods that will be called for the evolution control. Supposed we wish to create a MyEvolutionControl class: the hxx and cxx files are in MURE/example/. NOTE: Don't forget to redefine the EvolutionControl* Clone() as: 

Evolution of a MCNP user defined geometry

This section is devoted to users who have already defined a complex MCNP file and would rather not use the MURE geometry capability when making evolution. Even if this task requires some work, the procedure is simple. User has to redefine in MURE style, ALL materials of its geometry and all EVOLVING cells (but not the shapes associated to the cells). Of course, user will need all files required by a standard evolution (BaseSummary.dat, AvailableReactionChart.dat, ...)

The principle is the following: a line by line of a MCNP user input file are copied, but

• if the cell number found corresponds to one of the "virtual" evolving cells defined, then the density of the evolving material at the given evolution step is taken into account. Be sure that 2 evolving cells must have 2 different materials (because they usually evolve differently even if at the beginning they are the same) ; thus, it is at present not possible to make the evolution of a cell defined by "like but" because there is no material on this cell line.

Chapter 8

Looking at results from the evolution

The MURE data files

At present, results from the evolution are stored in the MC Run directory. There are 4 types of MURE files generated in addition to the MC files for each evolution step:

• DATA_xxx files are written for each step number xxx, and contain not only the Material composition information, but also average cross-sections for every possible reactions for all evolving cells in the geometry. In addition, average flux for each cell, cell spatial variables (if defined), k ef f , and time are also written out. They are written just before RK steps ONLY IF EvolutionSolver:SetWriteASCIIData() has been called.

• BDATA_xxx files contain the same information as the above files but in binary format. Initially it was expected that these files would be much shorter in length than the ASCII files, but it appears that not much space is saved if binary files are used to store MURE results. Nevertheless it is much faster to use these files for post-treatment. They are written just before RK steps by default. On can disable this writing by using EvolutionSolver::SetWriteBinaryData(false).

• KDATA contains all the k ef f information (with statistical errors) for all evolution steps in one file. These data are also contained in [B]DATA_xxx.

• FDATA contains all the data pertaining to the fission rates of various nuclei. For all the 50 or so nuclei which can fission, the rate (in fissions per second) integrated over all the evolving cells, is written out.

When using reprocessing feature DATA_bxxx or/and BDATA_bxxx files are also written just at the end of RK steps. When using PoisonEvolutionControl, additional files are also written such as POISON_PROPS which contains the poison proportion as a function of time.

Reading the data files with Tcl/Tk graphical interface scripts

This graphical interface is now deprecated. Except for ExamTree.tcl "Save Data" button: This button can save the last plotted values in either ASCII format or "MCNPSource Input" format (only working for "2D Slice" plot)

• ASCII format: dump the last plotted data in a file.

• "Source Input for MURE" format: a MCNPSource C++ form file is generated in order to be used for a MURE/MCNP simulation. This source as the energy spectra of the selected plot, it is a collimated, uniformly distributed on a disk of a radius of 10cm source. Particles are emitted perpendicularly to the disk. This can be very useful for radio-protection studies.

"Use binning from file" button: This button is used to load the energy binning for Spectrum from a file . The format of this file is the same of the one used for Spectrum class (see for example /path_to_MURE/MURE/gui/NEA_Binning_ energies are in eV):

NumberOfBins LowerEnergy[bin=0] //lower bound of energy bin in eV

LowerEnergy [START_REF] Méplan | MURE : MCNP Utility for Reactor Evolution -Description of the methods, first applications and results[END_REF] ...

LowerEnergy[NumberOfBins]

UpperEnergy[NumberOfBins+1] // upper bound of the last energy bin in eV

If a spectrum of a given cell or of sum of selected cells is wanted, check the wanted cell(s) in Flux Tab.

Radiotoxicity of a sample

To compute inventories, decay heat, radiotoxicity and alpha, beta, gamma and neutron spectra of a sample over the time one can use the option "-onlytox " of MureGui.

First define the sample Material : Finally open it with MureGui :

Write in you terminal :

MureGui -onlytox SampleName

Spectrum Classes (MCNP only)

The aim of these classes is to characterize any irradiated sample in order to create elaborate sources for radio-protection studies. Spectrum class is the base class and have not to be used directly bu via its daughters (GammaSpectrum, NeutronSpectrum, . . . )

Neutron from (α, n) reactions

Neutrons can be produced by (α, n) reactions on light nuclei during slowing down of alpha particle in the sample.

Here the reactions taken into account are only 17 O (α, n) 20 N e and 18 O (α, n)

21 N e. To compute neutron spectra from these reactions, one needs alpha spectra, stopping power in the media, cross sections leading to different level of A N e and oxygen density (for each isotopes). Default values are natural oxygen density in UOx fuel (ρ = 10.4g.cm -3 ).

The stopping power was calculated for a U O 2 media using SRIM [START_REF] Ziegler | The S topping and Range of I ons in M atter (SRIM)[END_REF], (α, n) cross section are from JENDL(JENDL (α,n) Reaction Data File 2005 (JENDL/AN-2005)). The probability p i of an alpha of energy E α having a (α, n)

reactions on target i while alpha slowing down on dx is p i = N i σ i dx, where σ i is the (α, n) cross section on target i.

The probability p i can be expressed as a function of the variation of energy of the alpha particle on dx : p i = N σ dx dE dE. By integrating the energy of the alpha particle from it's initial energy to 0:

Assuming that neutrons are emitted isotropically in the center of mass, neutrons are uniformly distributed in energy in the laboratory system between a maximum energy and a minimum energy defined by the conservation of momentum and energy (see for example [START_REF] Wilson | Calculated α induced thick target neutron yields and spectra,with comparison to measured data[END_REF] for more information). • The neutron production is taken into account only when both %(β -n) decays and neutron energy E n is given in ENSDF files. In july 2012, only 6 identified nuclei have this two information: 85 As, 87 Br, 88 Br, 95 Rb, 135 Sb and 137 I.

Define MCNP Source with Spectrum object

A computed Spectrum can be used to define a MCNP source (see also section 5.2.3, and examples SpectrumExample.cxx, and TubeSource2.cxx in MURE/example).

• First define the sample Material than can emits source particles (γ, n, β).

• Then define the Spectrum (GammaSpectrum, NeutronSpectrum or BetaSpectrum) with one of the constructors • Finally proceed as follow (for a punctual and isotropic source) : where Volume is the Volume of your sample and DistributionNumber is the MCNP source distribution number (default 800).

Chapter 9

Thermal-hydraulics/neutronics coupling

Preliminary Remarks

In MURE 2/SMURE, some classes have been removed (ReactorChannel) or renamed (ReactorMesh) and completely rewritten. There are no more backward compatibility of the renamed classes with older ones. Read carefully the following guide and the provided examples.

• Geometry builders : GenericReactor Assembly (abstract class), and the 2 concrete implementations MCNP::ReactorAss and Serpent::ReactorAssembly • Thermal-hydraulics flow simulation class : COBRA_EN class.

• BATH (Basic Approach of Thermal Hydraulics) : ThermalCoupling, ThermalDataReader.

Coupling neutronics and Thermohydraulics (like the examples given in MURE/examples

) is relevant only if temperature dependent cross-sections for MC transport codes have been provided for each isotope.

General Overview

Simulations of nuclear power plants can need a discretization of the core in 3 dimensions. The ReactorAssembly classes provide an easy way to build a full core (with radial and axial discretization) for hexagonal or cubuoid assemblies.

These classes allow to define automatically radial zones and axial levels per assembly from a general pins (built via the PinCell class) scheme. In each radial zone and axial level, all pins of the same type (e.g. Fuel pins, Guide Tube pins, ...) will have the same composition (all fuel pins have the same clad, coolant and fuel composition in the radial zone, idem for Guide Tube, ...). Zoning is defined via virtual circle (center at in the middle of the assembly) or via given explicit positions. For the former case, a pin belong to a zone if its most outer layer (e.g. clad radius) is fully inside the given circle. These assemblies can then be used to fill a core.

COBRA_EN class has been created for the coupling analysis with a qualified thermal-hydraulics sub-channel code : COBRA-EN [START_REF] Chao | COBRA-3C/RERTR -A Thermal-Hydraulic Subchannel Code with Low Pressure Capabilities[END_REF][START_REF] Basile | an Updated Version of the COBRA-3C/MIT Code for Thermal-Hydraulic Transient Analysis of Light Water Reactor Fuel Assemblies and Cores Report[END_REF] (Coolant Boiling in Rod Arrays). The coupling is "transparent" for users: the ReactorAssembly is passed to COBRA_EN class. At the present time, COBRA_EN class only support cuboid ReactorAssembly with the following restrictions:

If equal size upper and lower plenums are needed, user should call ReactorAssembly::SetPlenum(thickness, Plenum-Material) method before any other call to a ReactorAssembly 's method. The shape of the assembly is passed to the ReactorAssembly object:

RA->SetAssemblyShape(AssemblyShape); // physical limits And zoning is defined by given as many radial zones as it has been defined in the constructor (in this example, 3 radial zones) ; zone number range should be 0 for the most inner zone to N for the most outer. To be noticed: all lattice cell of an assembly (i.e. pins) must belong to a defined radial zone ; this implies that the last zone must include all the pins. If zones are defined via concentric virtual circle center in the middle of the assembly, the last zone radius must be at least equal to S/ √ 2 for a cuboid assembly of side S and to 2 × S for an hexagonal assembly of side S. Then, add the pins at a given position in the (x,y) lattice : the position is a position index in the lattice (with the respect to the primitive cell lattice) ; thus the (0,0) correspond to the central primitive cell, (-1,-1) to the left down adjacent cell, ... If no position is provided, the the pin fill the whole lattice (the normal way of filling normal fuel pins)

; then user can override some of the pins by adding some specific ones to a given position RA->AddFuelPin(FuelPin); // the FuelPin (PinCell *) pins fill the whole assembly.

RA->AddGuideTube(GuideTube,5,2); // add a guide tube pin at (5,2) from the assembly lattice center RA->AddGuideTube(GuideTube,0,0); // add a guide tube pin in the center of the assembly RA->AddGuideTube(GuideTube,-5,-2);// add a guide tube pin at (-5,-2) from the assembly lattice center ...

You can add different type of fuel pin, control rods (with ReactorAssembly::AddControlRod ), ... And then build the assembly geometry (this MUST be the last method of ReactorAssembly called):

RA->BuildAssemblyGeometry();

Clearly, the outside cell of the assembly cannot be defined automatically and it should be defined by user himself.

For COBRA-EN coupling, the coolant around guide tubes, control rods and fuel pin cells is the same as the ones for neighbours cells (same composition, temperature, density, ...) of the same radial zone.

A more complex example is presented in RA_complex.cxx (c.f. figure 9.3) : this example shows how to define radial zones using virtual circle radii as well as specifying the zone by a lattice position.

Using a ReactorAssembly to fill a core lattice

After defining a ReactorAssembly object with its fuel pins, guide tubes, plenums, ..., this assembly can be used to fill a reactor core. In order to do it, before calling the ReactorAssembly::BuildAssemblyGeometry(), one has to call the ReactorAssembly::SetUniverse() method. Then, one as to used the assembly as a lattice generator and to avoid problem of chain surface, the ReactorAssembly shape is taken as an infinite one: The "public:" keyword means that one can use the objects of this class from the outside of the class. P can be translated of V ( It is usually safe to "protect" the objects of a class from modifying them from the outside of the class without using a class method. One may succeed by using the "private:" keyword. But then one must define new methods to modify them. Then, one should not write P.X=1; cout< <"Coordinate of P("< <P.X< <","< <P.Y< <")"< <endl;

Basic of C++ to understand MURE

but instead, use P.SetX(1); cout< <"Coordinate of P("< <P.GetX()< <","< <P.GetY()< <")"< <endl;

Of course, this is not very useful for this simple example ; but for larger codes, it avoids bugs.

A.2.1 Header and implementation files

In the previous class Point, one has defined explicitly all methods inside the class. But when dealing with larger classes, libraries, please consider separating the class definition (.hxx files called headers) from the class implementation (.cxx files). Then, one may build libraries with implementation files whereas the header files could be included in any file using the library. For example one may rewrite the Point class header in the Point.hxx file Y+=dV [START_REF] Méplan | MURE : MCNP Utility for Reactor Evolution -Description of the methods, first applications and results[END_REF]; } Note the "Point::" ; it means that the following method belongs to the class point ("::" is the scope resolution operator ).

A.3 Default arguments

In The first argument must be given and the second one (y), if it is not given, takes the value y=2. All default arguments must be defined after the explicit argument The 2 first lines allocate 2 Points (the "new" keyword). One use the "->" instead of the "." to use a method (or a public attribute) because P1 and P2 are pointers. In the declaration of P3, no Point is allocated (no "new ") ; the "P3=P1 " line means that P3 points on the same Point than P1 ; thus translating P3 will translate P1 (and vice verse). By writing "P=new Point [START_REF]MCNP -A General Monte Carlo N-Particle Transport Code, Version 5[END_REF] ", one allocates an array of 3 Points by calling the default constructor of Point (to declare arrays, a default constructor must exist). Each P[i] is a real Point object (not a pointer). When one use pointers, the memory is not freed by itself: one has to do it manually though a "delete". Here one can delete P1 or P3 but not both ; in the example, P3 continues to point on the address of the P1 Point, but because the memory has been freed, this address does not correspond to anything. To delete arrays, one has to use the "[]" after the "delete" keyword. A tree corresponding to a geometrical object before its simplification. The representation tells whether a node is a union or intersection, then the node address is given, the address of the not of the node (complementary node) is also given if it exists. Nodes in red are usually not removable because of included, bounding or inside shapes (see Node class). For each leaf of the tree, the type of Shape (Plane, Sphere, ...) is given as well as its address and its surface number with a sign (like in surface in MCNP cell).

Appendix C

Stochastic volume calculation

WARNING: UP TO NOW SURFACE CALCULATIONS HAVE NOT YET BEEN IMPLEMENTED.

When using Tallies, cell volumes and/or surfaces are needed. In this package, cell volumes are calculated if possible ; when the program is not able to calculate cell volumes for a tally, we use the method ConnectorPlugin::FindMissingVolume() to extract the volume calculated by MC code itself (see note C.1). For MCNP, 2 options are available: the first one is to obtain missing volumes from the MCNP output file 1 (the "o" file). Then, if all missing volume have not been found, the second option is used, that is to say a stochastic volume calculation using MCNP itself. For Serpent, only the second option is used (but of course the stochastic volume calculation use Serpent...).

The principle of the stochastic volume calculation for MCNP is to use a spherical shell neutron source geometry directed inwards containing the necessary cells filled with voids. The required volumes are calculated stochastically by MCNP from the number of particle tracks which have intersected them.

In Serpent, no transport is done, just a stochastic sampling (random points over the whole geometry) is performed.

The Serpent way of volume calculation is much faster than the MCNP way, but in general, the number of "source" particles in Serpent should be greater for a same precision (a factor 2 or 4 greater is generally enough). Nevertheless, Serpent is still faster.

The precision on volumes will depend on the "source" neutron number (that can be modified via MURE::SetVolumeNPS())

as well as the relative size of the cell/source neutron sphere. In the usual procedure, a source sphere containing the whole geometry is searched ; However, the search can sometimes fail, in which case the user is required to give the source sphere characteristics manually with the command:

Shape::SetVirtualSphereRadius() and Shape::SetVirtualSphereCenter()

It should be noted that it is not necessary for the whole geometry to be included in the "virtual" sphere ; only cells with unknown volumes must be inside this sphere. A volume warning message is given if the relative precision of the worst volume variance is below 0.5% ; this precision may be change with MURE::SetVolumeWarning().

C.1 Important Note

Stochastic volume calculations are used if a tally bin has a volume equal to -1. The tally bin volume is taken from the cell used in this bin. Cell volumes are determined from Shape volumes. Sometimes, we are unable to determine relatively simple Shape volumes because the Included/Disjoint method can't return a result (e.g., a shape may be included in another one, but Shape::Included() answers 0 (i.e., not included or unknown)). For these cases it is necessary to avoid stochastic volume calculations, whereas if MC code is able to calculate the volume of such cells, we can use the method MURE::GetMCNPVolume(). For a cell without a volume (i.e. -1), if the volume has been calculated and if the cell has no universe number 2 , then the cell volume is set to what MC code has calculated.

To summarize, the MURE::BuildMCFile() method calls first the MURE::FindMissingVolume() method and afterward the input MCNP file is written.

NOTE:

The tally bin volumes should always be provided ; thus, if a group bin or a lattice bin is used, the calculated volume related to that bin. For reactor applications, in order to simulate a constant reactor power 1 , one must normalize all tallies by the equivalent number of neutrons per second for a user-given power value. This normalization factor will change as the isotopic composition of the material evolves with time and therefore needs to be calculated at the lowest level of time discretization, i.e., at every RK step, and, a fortiori, also every time neutron transport is performed.

1. Constant power P is defined by the user once and for all throughout the evolution using the gMURE->SetPower() function . This value is translated into the number of fissions per second.

2. At every MC step, flux φ and average reactions cross-sections σ i are read from MC output for every nucleus in every cell. Isotopic proportions are read from the initial user-defined composition and for all subsequent steps these values are solved according to their Bateman equations.

3. At every RK step average cross-sections σ i , read in the prior MC step, have (so far) been kept constant. New values for the isotopic proportions N i+1 are solved for using former values of other parameters. P is constant by definition : a new value of the tally normalization factor is therefore calculated in order to keep P constant.

D.1.1 Energy Released from MURE fissions

The energy released per fission is around 200 MeV, but the exact value varies by +/-5% and varies primarily with the mass of the fissile isotope.

1 For this purpose, only fissions are considered as source of power, at an average value of 200 MeV per fission.