R. C. Reynolds, An X-ray study of an ethylene glycol-montmorillonite complex, 1965.

, American Mineralogist, vol.50, pp.990-1001

R. C. Reynolds, The Lorentz-polarization factor and preferred orientation in oriented 598 clay aggregates, Clays and Clay Minerals, vol.34, p.359, 1986.

T. Sato, T. Watanabe, and R. Otsuka, Effects of layer charge, charge location, and 600 energy change on expansion properties of dioctahedral smectites. Clays and Clay 601 Minerals, vol.40, pp.103-113, 1992.

H. Sato, A. Yamagishi, and K. Kawamura, Molecular simulation for flexibility of a 603 single clay layer, J. Phys. Chem. B, vol.105, pp.7990-7997, 2001.

B. Schampera, R. Solc, S. K. Woche, R. Mikutta, S. Dultz et al., , p.605

D. , Surface structure of organoclays as examined by X-ray photoelectron 606 spectroscopy and molecular dynamics simulations, Clay Minerals, vol.50, pp.353-367, 2015.

N. T. Skipper, K. Refson, and J. D. Mcconnell, Computer simulation of interlayer 608 water in 2:1 clays, Journal of Chemical Physics, vol.94, pp.7434-7445, 1991.

N. T. Skipper, F. R. Chang, and G. Sposito, Monte Carlo simulation of interlayer 610 molecular structure in swelling clay minerals. I: Methodology. Clays and Clay 611 Minerals, vol.43, pp.285-293, 1995.

D. E. Smith, Molecular computer simulations of the swelling properties and interlayer 613 structure of cesium montmorillonite, Langmuir, vol.14, pp.5959-5967, 1998.

P. D. Svensson and S. Hansen, Intercalation of smectite with liquid ethylene glycol615, 2010.

, Resolved in time and space by synchrotron X-ray diffraction, Applied Clay Science, vol.48, pp.616-358

J. L. Suter and P. V. Coveney, Computer simulation study of the materials properties of 618 intercalated and exfoliated poly (ethylene) glycol clay nanocomposites, Soft Matter, vol.5, pp.619-2239, 2009.

J. L. Suter, P. V. Coveney, R. L. Anderson, H. C. Greenwell, C. et al., Rule based 621 design of clay-swelling inhibitors, Energy & Environmental Science, vol.4, pp.4572-4586, 2011.
DOI : 10.1039/c1ee01280k

J. L. Suter, D. Groen, and P. V. Coveney, Chemically specific multiscale modeling of 623 clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and 624 emergent materials properties, Advanced Materials, vol.27, pp.966-984, 2015.

J. B. Swadling, P. V. Coveney, and H. C. Greenwell, Clay minerals mediate folding 626 and regioselective interactions of RNA: a large-scale atomistic simulation study, Journal of the American Chemical Society, vol.627, pp.13750-13764, 2010.

M. Szczerba, Z. K?apyta, and A. G. Kalinichev, Ethylene glycol intercalation in 629 smectites. Molecular dynamics simulation studies, Applied Clay Science, pp.87-97, 2014.
DOI : 10.1016/j.clay.2014.02.014

URL : http://hal.in2p3.fr/in2p3-01066243/file/Szczerba-Appl_Clay_Sci-accepted-manuscript-2014.pdf

M. Szczerba, A. Kuligiewicz, A. Derkowski, V. Gionis, G. D. Chryssikos et al., , p.631

A. G. , Structure and dynamics of water-smectite interfaces: Hydrogen bonding 632 and the origin of the sharp O-Dw/O-Hw infrared band from molecular simulations. 633 Clays and Clay Minerals, 2016.

J. ?rodo?, Precise identification of illite/smectite interstratification by X-ray powder 635 diffraction, Clay and Clay Minerals, vol.28, pp.401-411, 1980.

T. J. Tambach, P. G. Bolhuis, E. J. Hensen, and B. Smit, Hysteresis in clay swelling 637 induced by hydrogen bonding: accurate prediction of swelling states, Langmuir, vol.22, pp.1223-1234, 2006.

B. J. Teppen, K. R. Rasmussen, P. M. Bertsch, D. M. Miller, and L. Schafer, , p.640, 1997.

, Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophillite, and 641 beidellite, The Journal of Physical Chemistry B, vol.101, pp.1579-1587

K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong et al., , p.643

O. Guvench, P. Lopes, I. Vorobyov, and A. D. Mackerell, CHARMM 644 general force field: A force field for drug-like molecules compatible with the 645 CHARMM all-atom additive biological force fields, Journal of Computational, vol.646, pp.671-90, 2009.

A. Wallqvist and R. D. Mountain, Molecular Models of Water: Derivation and 648, 1999.

, Description, Reviews in Computational Chemistry, p.649

. Eds, , pp.183-247

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, C. et al., Development 651 and testing of a general amber force field, Journal of Computational Chemistry, vol.25, pp.652-1157, 2004.

Y. Wang, J. Wohlert, M. Bergenstråhle-wohlert, J. J. Kochumalayil, L. A. Berglund et al., , p.654

Y. Ågren and H. , Molecular adhesion at clay nanocomposite interfaces depends 655 on counterion hydration-Molecular dynamics simulation of 656 montmorillonite/xyloglucan, Biomacromolecules, vol.16, pp.257-265, 2014.

Q. H. Zeng, A. B. Yu, G. Q. Lu, and R. K. Standish, Molecular dynamics simulation of 658 organic-inorganic nanocomposites: Layering behavior and interlayer structure of 659 organoclays, Chemistry of Materials, vol.15, pp.4732-4738, 2003.