R. T. Cygan, J. Liang, and A. G. Kalinichev, Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, J. Phys. Chem. B, vol.108, pp.1255-1266, 2004.

G. E. Brown, V. E. Henrich, W. H. Casey, D. L. Clark, C. Eggleston et al., Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms, Chem. Rev, vol.99, pp.77-174, 1999.

N. Güven, Bentonites-Clays for Molecular Engineering, Elements, vol.5, issue.4, pp.89-92, 2009.

F. Bergaya, B. K. Theng, and G. Lagaly, , 2006.

R. T. Cygan, J. A. Greathouse, H. Heinz, and A. G. Kalinichev, Molecular Models and Simulations of Layered Materials, J. Mater. Chem, vol.19, pp.2470-2481, 2009.

B. J. Teppen, K. Rasmussen, P. M. Bertsch, D. M. Miller, and L. Schafer, Molecular Dynamics Modeling of Clay Minerals .1. Gibbsite, Kaolinite, Pyrophyllite, and Beidellite, J. Phys. Chem. B, vol.101, pp.1579-1587, 1997.

D. Bougeard, K. S. Smirnov, and E. Geidel, Vibrational Spectra and Structure of Kaolinite: A Computer Simulation Study, J. Phys. Chem. B, vol.104, pp.9210-9217, 2000.

C. I. Sainz-diaz, A. Hernández-laguna, and M. T. Dove, Modeling of Dioctahedral 2:1 Phyllosilicates by Means of Transferable Empirical Potentials, Phys. Chem. Miner, vol.28, pp.130-141, 2001.

H. Sato, A. Yamagishi, and K. Kawamura, Molecular Simulation for Flexibility of a Single Clay Layer, J. Phys. Chem. B, vol.105, pp.7990-7997, 2001.

M. Arab, D. Bougeard, and K. S. Smirnov, Experimental and Computer Simulation Study of the Vibrational Spectra of Vermiculite, Phys. Chem. Chem. Phys, vol.4, pp.1957-1963, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00276599

H. Heinz, H. J. Castelijns, and U. W. Suter, Structure and Phase Transitions of Alkyl Chains on Mica, J. Am. Chem. Soc, vol.125, pp.9500-9510, 2003.
DOI : 10.1021/ja021248m

URL : http://arxiv.org/pdf/cond-mat/0311550

H. Heinz and U. W. Suter, Atomic Charges for Classical Simulations of Polar Systems, J. Phys. Chem. B, vol.108, pp.18341-18352, 2004.
DOI : 10.1021/jp048142t

H. Heinz, T. Lin, R. Mishra, and F. S. Emami, Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field, Langmuir, vol.29, pp.1754-1765, 2013.

R. J. Kirkpatrick, A. G. Kalinichev, G. M. Bowers, A. O. Yazaydin, M. Krishnan et al., NMR and Computational Molecular Modeling Studies of Mineral Surfaces and Interlayer Galleries: A Review, Am. Mineral, vol.100, pp.1341-1354, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201699

P. Geysermans and C. Noguera, Advances in Atomistic Simulations of Mineral Surfaces, J. Mater. Chem, vol.19, pp.7807-7821, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00463827

L. Yan, A. H. Englert, J. H. Masliyah, and Z. Xu, Determination of Anisotropic Surface Characteristics of Different Phyllosilicates by Direct Force Measurements, Langmuir, vol.27, pp.12996-13007, 2011.

I. C. Bourg, G. Sposito, and A. C. Bourg, Modeling the Acid-base Surface Chemistry of Montmorillonite, J. Colloid Interface Sci, vol.312, pp.297-310, 2007.
DOI : 10.1016/j.jcis.2007.03.062

H. Zhao, S. Bhattacharjee, R. Chow, D. Wallace, J. H. Masliyah et al., Probing Surface Charge Potentials of Clay Basal Planes and Edges by Direct Force Measurements, Langmuir, vol.24, pp.12899-12910, 2008.
DOI : 10.1021/la802112h

R. Keren, D. L. Sparks, E. Tombácz, and M. Szekeres, Colloidal Behavior of Aqueous Montmorillonite Suspensions: The Specific Role of pH in the Presence of Indifferent Electrolytes, Soil Sci. Soc. Am. J, vol.59, issue.20, pp.75-94, 1995.

B. R. Bickmore, D. Bosbach, M. F. Hochella, L. Charlet, and E. Rufe, Situ Atomic Force Microscopy Study of Hectorite and Nontronite Dissolution: Implications for Phyllosilicate Edge Surface Structures and Dissolution Mechanisms, Am. Mineral, vol.86, pp.411-423, 2001.
DOI : 10.2138/am-2001-0404

A. Decarreau, S. Petit, P. Andrieux, F. Villieras, M. Pelletier et al., Study of Low-Pressure Argon Adsorption on Synthetic Nontronite: Implications for Smectite Crystal Growth, Clays Clay Miner, vol.62, pp.102-111, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076575

I. Sondi, V. Tomasic, and N. Filipovic-vincekovic, Release of Silicon and Aluminum from Montmorillonite Surfaces in Aqueous Systems, Croat. Chem. Acta, vol.81, pp.623-629, 2008.

N. C. Marty, J. Cama, T. Sato, D. Chino, F. Villieras et al., Dissolution Kinetics of Synthetic Na-Smectite. An Integrated Experimental Approach, Geochim. Cosmochim. Acta, vol.75, pp.5849-5864, 2011.
DOI : 10.1016/j.gca.2011.06.037

URL : https://hal.archives-ouvertes.fr/hal-00665321

M. L. Rozalén, F. J. Huertas, P. V. Brady, J. Cama, S. García-palma et al., Experimental Study of the Effect of pH on the Kinetics of Montmorillonite Dissolution at 25 °C, Geochim. Cosmochim. Acta, vol.72, pp.4224-4253, 2008.

L. Dzene, E. Tertre, F. Hubert, and E. Ferrage, Nature of the Sites Involved in the Process of Cesium Desorption from Vermiculite, J. Colloid Interface Sci, vol.455, pp.254-260, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01334224

L. L. Aung, E. Tertre, and S. Petit, Effect of the Morphology of Synthetic Kaolinites on Their Sorption Properties, J. Colloid Interface Sci, vol.443, pp.177-186, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01327316

R. Dähn, B. Baeyens, and M. H. Bradbury, Investigation of the Different Binding Edge Sites for Zn on Montmorillonite Using P-EXAFS-The Strong/Weak Site Concept in the S2PNE SC/CE Sorption Model, Geochim. Cosmochim. Acta, vol.75, pp.5154-5168, 2011.

D. Soltermann, M. M. Fernandes, B. Baeyens, R. Dähn, J. Miehé-brendlé et al., II) Sorption on a Synthetic Montmorillonite. A Combined Macroscopic and Spectroscopic Study, Environ. Sci. Technol, vol.47, pp.6978-6986, 2013.
DOI : 10.1021/es402783r

M. Fernandes, M. Baeyens, B. Dähn, R. Scheinost, A. C. Bradbury et al., U(VI) Sorption on Montmorillonite in the Absence and Presence of Carbonate: A Macroscopic and Microscopic Study, Geochim. Cosmochim. Acta, vol.93, pp.262-277, 2012.

R. Dähn, A. M. Scheidegger, A. Manceau, M. L. Schlegel, B. Baeyens et al., Structural Evidence for the Sorption of Ni(II) Atoms on the Edges of Montmorillonite Clay Minerals: A Polarized X-Ray Absorption Fine Structure Study, Geochim. Cosmochim. Acta, vol.67, pp.1-15, 2003.

M. L. Schlegel and M. Descostes, Uranium Uptake by Hectorite and Montmorillonite: A Solution Chemistry and Polarized EXAFS Study, Environ. Sci. Technol, vol.43, pp.8593-8598, 2009.
DOI : 10.1021/es902001k

T. Hattori, T. Saito, K. Ishida, A. C. Scheinost, T. Tsuneda et al., The Structure of Monomeric and Dimeric Uranyl Adsorption Complexes on Gibbsite: A Combined DFT and EXAFS Study, Geochim. Cosmochim. Acta, vol.73, pp.5975-5988, 2009.

I. F. Vasconcelos, E. A. Haack, P. A. Maurice, and B. A. Bunker, EXAFS Analysis of cadmium(II) Adsorption to Kaolinite, Chem. Geol, vol.249, pp.237-249, 2008.
DOI : 10.1016/j.chemgeo.2008.01.001

M. Schlegel, Polarized EXAFS Characterization of the Sorption Mechanism of Yttrium on Hectorite, Radiochim. Acta Int. J. Chem. Asp. Nucl. Sci. Technol, vol.96, pp.667-672, 2008.

S. V. Churakov and T. Gimmi, Up-Scaling of Molecular Diffusion Coefficients in Clays: A Two-Step Approach, J. Phys. Chem. C, vol.115, pp.6703-6714, 2011.

T. Croteau, A. K. Bertram, and G. N. Patey, Adsorption and Structure of Water on Kaolinite Surfaces: Possible Insight into Ice Nucleation from Grand Canonical Monte Carlo Calculations, J. Phys. Chem. A, vol.112, pp.10708-10712, 2008.

T. Croteau, A. K. Bertram, and G. N. Patey, Simulation of Water Adsorption on Kaolinite under Atmospheric Conditions, J. Phys. Chem. A, vol.113, pp.7826-7833, 2009.
DOI : 10.1021/jp902453f

T. Croteau, A. K. Bertram, and G. N. Patey, Water Adsorption on Kaolinite Surfaces Containing Trenches, J. Phys. Chem. A, vol.114, pp.2171-2178, 2010.
DOI : 10.1021/jp910045u

N. W. Ockwig, J. A. Greathouse, J. S. Durkin, R. T. Cygan, L. L. Daemen et al., Nanoconfined Water in Magnesium-Rich 2:1 Phyllosilicates, J. Am. Chem. Soc, vol.131, pp.8155-8162, 2009.

H. Du and J. D. Miller, A Molecular Dynamics Simulation Study of Water Structure and Adsorption States at Talc Surfaces, Int. J. Miner. Process, vol.84, pp.172-184, 2007.

J. Nalaskowski, B. Abdul, H. Du, and J. Miller, Anisotropic Character of Talc Surfaces as Revealed by Streaming Potential Measurements, Atomic Force Microscopy, Molecular Dynamics Simulations and Contact Angle Measurements, Can. Metall. Q, vol.46, pp.227-235, 2007.

D. Ebrahimi, A. J. Whittle, R. J. Pellenq, and .. , Mesoscale Properties of Clay Aggregates from Potential of Mean Force Representation of Interactions between Nanoplatelets, J. Chem. Phys, p.154309, 2014.

D. M. Martins, M. Molinari, M. A. Gonçalves, J. P. Mirão, and S. C. Parker, Toward Modeling Clay Mineral Nanoparticles: The Edge Surfaces of Pyrophyllite and Their Interaction with Water, J. Phys. Chem. C, vol.118, pp.27308-27317, 2014.

A. G. Newton and G. Sposito, Molecular Dynamics Simulations of Pyrophyllite Edge Surfaces: Structure, Surface Energies, and Solvent Accessibility, Clays Clay Miner, vol.63, pp.277-289, 2015.
DOI : 10.1346/ccmn.2015.0630403

A. G. Newton, K. D. Kwon, and D. Cheong, Edge Structure of Montmorillonite from Atomistic Simulations. Minerals, vol.6, p.25, 2016.

S. V. Churakov, Ab Initio Study of Sorption on Pyrophyllite: Structure and Acidity of the Edge Sites, J. Phys. Chem. B, vol.110, pp.4135-4146, 2006.

K. Yu and J. R. Schmidt, Elucidating the Crystal Face-and Hydration-Dependent Catalytic Activity of Hydrotalcites in Biodiesel Production, J. Phys. Chem. C, vol.115, pp.1887-1898, 2011.

T. R. Zeitler, J. A. Greathouse, J. D. Gale, and R. T. Cygan, Vibrational Analysis of Brucite Surfaces and the Development of an Improved Force Field for Molecular Simulation of Interfaces, J. Phys. Chem. C, vol.118, pp.7946-7953, 2014.

M. Catti, G. Ferraris, S. Hull, and A. Pavese, Static Compression and H-Disorder in Brucite, Mg(OH) 2 , to 11 Gpa-a Powder Neutron-Diffraction Study, Phys. Chem. Miner, vol.22, pp.200-206, 1995.

R. Demichelis, Y. Noel, P. Ugliengo, C. M. Zicovich-wilson, and R. Dovesi, PhysicoChemical Features of Aluminum Hydroxides As Modeled with the Hybrid B3LYP Functional and Localized Basis Functions, J. Phys. Chem. C, vol.115, pp.13107-13134, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650732

S. Nagendran, G. Periyasamy, P. V. Kamath, and . Dft, Study of Polymorphism in Al(OH)3: A Structural Synthon Approach, Z. Für Anorg. Allg. Chem, vol.641, pp.2396-2403, 2015.

M. F. Peintinger, M. J. Kratz, and T. Bredow, Quantum-Chemical Study of Stable, MetaStable and High-Pressure Alumina Polymorphs and Aluminum Hydroxides, J. Mater. Chem. A, vol.2, pp.13143-13158, 2014.

H. Saalfeld and M. Wedde, Refinement of Crystal-Structure of Gibbsite, Z. Krist, vol.139, pp.129-135, 1974.

S. L. Wang and C. T. Johnston, Assignment of the Structural OH Stretching Bands of Gibbsite, Am. Mineral, vol.85, pp.739-744, 2000.

A. M. Rzhevskii and F. H. Ribeiro, UV Raman Spectroscopic Study of Hydrogen Bonding in Gibbsite and Bayerite between 93 and 453 K, J. Raman Spectrosc, vol.32, pp.923-928, 2001.

T. Hiemstra, H. Yong, and W. H. Van-riemsdijk, Interfacial Charging Phenomena of Aluminum (Hydr)oxides, Langmuir, vol.15, pp.5942-5955, 1999.

X. Liu, J. Cheng, M. Sprik, X. Lu, and R. Wang, Understanding Surface Acidity of Gibbsite with First Principles Molecular Dynamics Simulations, Geochim. Cosmochim. Acta, vol.120, pp.487-495, 2013.

F. Pascale, S. Tosoni, C. Zicovich-wilson, P. Ugliengo, R. Orlando et al., Vibrational Spectrum of Brucite, Mg(OH)2: A Periodic Ab Initio Quantum Mechanical Calculation Including OH Anharmonicity, J. Phys. Conf. Ser, vol.396, issue.60, p.12018, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01891704

S. Grimme and . Semiempirical, GGA-Type Density Functional Constructed with a LongRange Dispersion Correction, J. Comput. Chem, vol.27, pp.1787-1799, 2006.

D. Tunega, T. Bucko, and A. Zaoui, Assessment of Ten DFT Methods in Predicting Structures of Sheet Silicates: Importance of Dispersion Corrections, J. Chem. Phys, vol.137, p.114105, 2012.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

B. Santra, A. Michaelides, and M. Scheffler, On the Accuracy of Density-Functional Theory Exchange-Correlation Functionals for H Bonds in Small Water Clusters: Benchmarks Approaching the Complete Basis Set Limit, J. Chem. Phys, p.184104, 2007.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu, J. Chem. Phys, p.154104, 2010.

I. Lin, A. P. Seitsonen, I. Tavernelli, and U. Rothlisberger, Structure and Dynamics of Liquid Water from Ab Initio Molecular Dynamics-Comparison of BLYP, PBE, and revPBE Density Functionals with and without van Der Waals Corrections, J. Chem. Theory Comput, vol.8, pp.3902-3910, 2012.

A. Bankura, A. Karmakar, V. Carnevale, A. Chandra, and M. L. Klein, Structure, Dynamics, and Spectral Diffusion of Water from First-Principles Molecular Dynamics, J. Phys. Chem. C, vol.118, pp.29401-29411, 2014.

J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach, Comput. Phys. Commun, vol.167, pp.103-128, 2005.

J. Vandevondele, J. Hutter, S. Goedecker, M. Teter, and J. Hutter, Gaussian Basis Sets for Accurate Calculations on Molecular Systems in Gas and Condensed Phases, J. Chem. Phys, vol.127, issue.70, pp.1703-1710, 1996.

J. A. Greathouse, J. S. Durkin, J. P. Larentzos, and R. T. Cygan, Implementation of a Morse Potential to Model Hydroxyl Behavior in Phyllosilicates, J. Chem. Phys, p.134713, 2009.

H. J. Berendsen, J. P. Postma, W. F. Gunsteren, and J. Van;-hermans, Interaction Models for Water in Relation to Protein Hydration, The Jerusalem Symposia on Quantum Chemistry and Biochemistry, pp.331-342, 1981.

O. Teleman, B. Jönsson, and S. Engström, A Molecular Dynamics Simulation of a Water Model with Intramolecular Degrees of Freedom, Mol. Phys, vol.60, pp.193-203, 1987.

J. D. Gale and A. L. Rohl, The General Utility Lattice Program (GULP), Mol. Simul, vol.29, pp.291-341, 2003.

J. Schmidt, J. Vandevondele, I. W. Kuo, D. Sebastiani, J. I. Siepmann et al., Isobaric?Isothermal Molecular Dynamics Simulations Utilizing Density Functional Theory: An Assessment of the Structure and Density of Water at NearAmbient Conditions, J. Phys. Chem. B, vol.113, pp.11959-11964, 2009.

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys, vol.117, pp.1-19, 1995.

G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé-Hoover Chains: The Canonical Ensemble via Continuous Dynamics, J. Chem. Phys, vol.97, pp.2635-2643, 1992.

M. Parrinello and A. Rahman, Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, J. Appl. Phys, vol.52, pp.7182-7190, 1981.

F. Zigan and R. Rothbauer, Neutronenbeugungsmessungen am Brucit. Neues Jahrb. Für Mineral.-Monatshefte, pp.137-143, 1967.

L. Desgranges, G. Calvarin, and G. Chevrier, Interlayer Interactions in M(OH) 2 : A Neutron Diffraction Study of Mg(OH) 2, Acta Crystallogr. B, vol.52, pp.82-86, 1996.

J. Parise, K. Leinenweber, D. Weidner, K. Tan, and R. Vondreele, Pressure-Induced HBonding-Neutron-Diffraction Study of Brucite, Mg(OD) 2 , to 9.3 Gpa, Am. Mineral, vol.79, pp.193-196, 1994.

M. Mookherjee and L. Stixrude, High-Pressure Proton Disorder in Brucite, Am. Mineral, vol.91, pp.127-134, 2006.

S. Raugei, P. L. Silvestrelli, and M. Parrinello, Pressure-Induced Frustration and Disorder in Mg(OH) 2 and Ca(OH) 2, Phys. Rev. Lett, vol.83, pp.2222-2225, 1999.

M. Jodin-caumon, B. Humbert, N. Phambu, and F. Gaboriaud, A Vibrational Study of the Nature of Hydroxyl Groups Chemical Bonding in Two Aluminium Hydroxides, Spectrochim. Acta Part-Mol. Biomol. Spectrosc, vol.72, pp.959-964, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01342725

K. Ichikawa, Y. Kameda, T. Yamaguchi, H. Wakita, and M. Misawa, NeutronDiffraction Investigation of the Intramolecular Structure of a Water Molecule in the Liquid Phase at High Temperatures, Mol. Phys, vol.73, pp.79-86, 1991.

, Lengths are in Å, angles in degrees, volumes in Å 3. Average NPT MD (300 K, 1 bar) values at equilibrium for classical calculations, cell optimization for DFT

, Supercell with respect to the orthorhombic cell built from the trigonal unit cell according to a * = a-b and b * = a + b

, in %; cf. Eq, issue.1