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Abstract

As a first step in developing better molecular scale understanding of the effects of organic additives on the 

adsorption and mobility of radionuclides in cement under conditions of geological nuclear waste repositories, 

two complementary approaches, wet chemistry experiments and molecular dynamics (MD) computer 

simulations, were applied to study the sorption behaviour of two simple model systems: gluconate and uranyl on 

calcium silicate hydrate phases (C-S-H) – the principal mineral component of hardened cement paste (HCP). 

Experimental data on sorption and desorption kinetics and isotherms of adsorption for gluconate/C-S-H and 

U(VI)/C-S-H binary systems were collected and quantitatively analysed for C-S-H samples synthesized with 

various Ca/Si ratios (0.83, 1.0, 1.4) corresponding to various stages of HCP aging and degradation. Gluconate 

labelled with 14C isotope was used in order to improve the sensitivity of analytical detection technique (LSC) at 

particularly low concentrations (10-8 - 10-5 mol/L). There is a noticeable effect of Ca/Si ratio on the gluconate 

sorption on C-S-H, with stronger sorption at higher Ca/Si ratios. Sorption of organic anions on C-S-H is 

mediated by the presence of Ca2+ at the interface and strongly depends on the surface charge and Ca2+ 

concentration. In parallel, classical MD simulations of the same model systems were performed in order to 

identify specific surface sorption sites most actively involved in the sorption of gluconate and uranyl on C-S-H 

and to clarify molecular mechanisms of adsorption. 
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1. Introduction

Cementitious materials are expected to be widely used in the design and construction of a geological 

radioactive waste repository in the argillaceous rock (Callovo-Oxfordian geological formation) in the East of the 

Parisian basin (e.g., Grambow, 2016). One of the ways to enhance the durability, strength and workability of 

hardened cement pastes (HCP) is to introduce various types of organic additives into the cement mixture (0.1-

2% wt). However, the presence of organic molecules in the HCP pore water can also affect the long-term 

radionuclide mobility: organic molecules can form water-soluble complexes and compete with radionuclides for 

sorption sites at the cement surface. Previous studies (Hanehara and Yamada, 1999; Joliecoeur and Simard, 

1998; Lesage et al., 2014; Mollah et al., 2000; Nalet and Nonat, 2015; Perez, 2007; Zhu et al., 2014) were 

mostly focused on the effect of additives on the hydration processes, while much less efforts were made (e. g. 

Glaus et al., 2006; Pointeau et al., 2008) to understand and explain their postproduction effects within the 

contest of radioactive waste storage applications. The development of a quantitative molecular scale 

understanding of these effects, based on a simplified model system, is the primary objective of this work. 

Cement is mostly composed of calcium silicates, aluminates and aluminoferrites. The main hydration product of 

cement (up to 70% of the total mass) and its principal binding component are calcium silicate hydrate (C-S-H) 

phases. They are formed by the interaction of alite (C3S) and belite (C2S) with water. Being the most essential 

part, C-S-H phase was selected as a model of a typical cement system. Uranium (VI) was selected as a model 

radionuclide because it is one of the most important and well-studied actinide elements that strongly sorbs on 

C-S-H in the form of the uranyl ion UO2
2+. The chemical mechanisms of its sorption processes on C-S-H phases 

have been previously studied by Pointeau et al., 2004; Harfouche et al., 2006; Tits et al., 2011; Gaona et al., 

2012; Mace et al., 2013. Gluconate (anionic form of the gluconic acid, C6H12O7) was used in our work as a 

model organic additive because it is a simple organic molecule with well-described structure, chemically stable 

in highly alkaline solutions, and a strong complexing agent towards cations. It is also important that gluconate 

has the same functional groups as more complex polycarboxylic polymers that are used as actual 

superplasticisers in cement production. Earlier studies of the binary systems (C-S-H/gluconate, HCP/gluconate 

(Glaus et al., 2006) and C-S-H/U(VI) (Pointeau et al., 2004; Tits et al., 2011)) provide initial reference data for 

the investigation of a more complex ternary system (C-S-H/gluconate/U(VI)).
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Cementitious materials are truly multiscale and their molecular level properties can be difficult to understand 

and interpret without having in mind a clear atomistic picture of the structure and processes involved. 

Computational molecular modelling is very helpful in this respect by allowing a consistent interpretation of the 

observed interfacial behaviour on the fundamental molecular scale considering the effects of local C-S-H 

surface structure and composition on the interaction (Kalinichev et al., 2007; Sanchez and Sobolev, 2010). Our 

study is designed to get understanding of the molecular mechanisms of such interactions using a combination of 

several experimental techniques and computational molecular modelling approaches.

2. Materials and methods

2.1.Synthesis and characterization of C-S-H

Synthetic C-S-H phases were prepared individually in PPCO centrifuge tubes (Nalgene™) by the direct reaction 

of calcium oxide (Sigma Aldrich, ≥ 99.9%) and silica fume (Aerosil® 200, Evonik) in degasified water with solid-

to-water ratios of 2×10-2 kg/L. This method allows obtaining C-S-H gels with different Ca/Si ratios by controlling 

the amount of initial reagents.

Degasified water was prepared by heating (T=50°C) and steering under partial vacuum of Milli-Q® ultrapure 

water (>18.2 MΩ·cm). The synthesis was performed in the absence of carbon dioxide in a glove-box under inert 

atmosphere (argon). Three compositions of calcium silicate hydrates were synthesised corresponding to three 

values of Ca/Si ratio (0.83, 1.0 and 1.4) in order to be able to compare the sorption properties of pure hydrate 

phases. 

After an aging period of 1 month, the suspensions were centrifuged (4000 rpm, 40 min) and filtered through 

0.22 μm PTFE syringe membrane filters (VWR). Separated solids were analysed by XRD (D5000, Bruker) to 

confirm the absence of crystalline phases such as portlandite (excess of calcium) and calcite (carbonation). 

Before the analysis, solids were dried in inert atmosphere over silica gel for 2 weeks. The resulting 

diffractograms were compared with the reference patterns from the ICDD-PDF database. No peaks of 

portlandite and calcium carbonate polymorphs were detected. Thus, the phases were assumed to be “pure” 

(single-phase). pH values were measured using a combined microelectrode (Radiometer) calibrated with buffer 

solutions of 9.18 (pH9.180, Radiometer Analytical)  and 12.45 pH (pH12.45, Radiometer Analytical)  at room 

temperature (T = 23°C). Concentrations of Si and Ca in solutions were measured by quadrupole inductively 

coupled plasma - mass spectrometry (XSeries II ICP-MS, Thermo Fisher Scientific) and cation-exchange ion 
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chromatography (ICS1000, Thermo Scientific Dionex). The resulting Ca/Si ratios were calculated from the 

difference between the initial and residual (after equilibration) amounts of Ca and Si (see Table 1). It was 

confirmed that the synthesised C-S-H phases had the Ca/Si ratios that corresponded to the target ones and 

their equilibrium characteristics agree well with literature data (Chen et al., 2004; Lothenbach and Nonat, 2015). 

Table 1. Characterisation of C-S-H equilibrated solutions.

Ca/Si ratio (target) pH value [Si] equilibrated  in 

solution, mol/L

[Ca] equilibrated  in 

solution, mol/L

Ca/Si ratio 

(calculated)

0.83 10.24±0.05 (2.68±0.31)×10-3 (1.25±0.12)×10-3 0.85±0.05

1.0 11.51±0.05 (0.42±0.63)×10-4 (2.10±0.12)×10-3 0.98±0.05

1.4 12.32±0.05 (1.70±0.71)×10-5 (11.10±0.12)×10-3 1.38±0.05

2.2.  Wet chemistry experiments

Sorption process is classically described by an adsorption isotherm (concentration of ion sorbed as a function of 

ion concentration in equilibrated solution). Series of batch experiments were performed to evaluate the sorption 

of gluconate (D-Gluconic acid sodium salt, ≥ 99%, Sigma Aldrich) and 238U (VI) on C-S-H with various Ca/Si 

ratios by using the method of depletion in solution (eqs. 1 and 2). The solutions were separated by 

centrifugation (4000 rpm, 40 min) and filtered through 0.22 μm PTFE syringe membrane filters (VWR). The 

amount of C-S-H was estimated from the amount of Si in the solid (eq. 3):

[Gluconate]sorbed = ([Gluconate]initial – [Gluconate]solution) × (V/Q(Si)C-S-H)                        (1)

[U(VI)]sorbed = ([U(VI)]initial – [U(VI)]solution) × (V/Q(Si)C-S-H)                                                (2)

Q(Si)C-S-H = Q(Si)initial – Q(Si)solution                                                                                                         (3)

where [species]sorbed is the concentration on the solid (mmol/mol of Si); [species]initial is the concentration initially 

present in solution (mmol/L); [species]aolution is the equilibrium concentration in solution (mmol/L); V is the 
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solution volume (L); Q(Si)C-S-H is the amount of Si in C-S-H (mol); Q(Si)initial is the concentration of Si initially 

added during synthesis (mol); Q(Si)solution is the equilibrium concentration of Si in solution.

Sorption can be characterised by the distribution ratio (Rd), describing the distribution of the species of interest 

(here gluconate and U(VI)) between the solid phase and the liquid phase in a batch sorption experiment:

Rd (L/kgsolid) = ([Gluconate]sorbed / [Gluconate]solution) x L/S                                                   (4)

where L/S is the liquid to solid ratio (L/kg). For the L/S calculation the amount of solid was estimated after drying 

the C-S-H samples at T = 60°C for 48 hours.

For sorption experiments initial gluconate concentrations were ranging from 10-5 to 10-2 mol/L. Non-radioactive 

(stable) gluconate was analysed by DIONEX ICS-1000 ion chromatography system (IonPac AS18 hydroxide-

selective anion-exchange column coupled with a conductivity detector). The eluent consisted of a 5mM KOH 

solution at a flow rate of 1 ml/min. Gluconate standard solutions (D-Gluconic acid sodium salt, ≥ 99%, Sigma 

Aldrich) were used for the calibration curve in the range from 0.5 to 10 mg/L. An injection loop of 100 µl was 

used to lower the detection limit for gluconate (0.5 mg/L of gluconate).

The kinetics of adsorption was studied by measuring the evolution of gluconate concentration in contact solution 

after 0.5, 1, 3, 7, 15 and 30 days of reaction (for the initial gluconate concentration of 1.03×10-3 mol/L). For all 

samples, a full ion analysis with IC was performed to provide a complete system description. Sodium 

concentrations were also analysed because Na+ was added to the systems as a counterion of gluconate.

For low concentrations, ranging from 10-9 to 10-6 mol/L, mixtures of stable and 14C radiolabelled gluconate (D-[1-

14C], > 99%, ARC) were used. Equilibrated solutions were then analysed by liquid scintillation counting (Tri-Carb 

3170 TR/SL, PerkinElmer) in order to determine the residual amount of the radioactive tracer.  When 

radiotracers were used, the amount of adsorption was calculated using equation (1) with the activity of 14C-

gluconate instead of the concentration, assuming full isotopic exchange between 14C labelled and stable 

gluconate.

The solids separated by centrifugation at the end of the sorption experiment were used for the desorption 

studies (kinetics and isotherms). 25 ml of organics-free solutions prepared with the pH and concentrations of Ca 
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and Si defined by the C-S-H steady state (Table 1) were then added to the samples. The gluconate 

concentration at the end of the desorption step was then calculated as:

[Gluconate]desorption = [Gluconate]sorbed – [Gluconate]desorbed                                      (5)

where [Gluconate]desorption is the gluconate concentration on the solid at the end of the desorption step 

(mmol/mol of Si); [Gluconate]sorbed is the gluconate concentration on the solid at the end of the adsorption step 

(mmol/mol of Si); [Gluconate]desorbed is the equilibrium gluconate concentration in solution at the end of the 

desorption step (mmol/mol of Si). For the calculation of [Gluconate]desorbed, the amount of gluconate in the 

residual solution left after solid separation was evaluated. The water content for each C-S-H phase was 

calculated by weight loss during drying at 60°C. 

U(VI) sorption experiments were performed on C-S-H with Ca/Si = 1.4. The initial concentrations were ranging 

from 10-5 to 10-2 mol/L. For each concentration, an appropriate volume of 238U solution in 10-2 mol/L hydrochloric 

acid was added to the C-S-H suspension. A contact time of 2 weeks was applied. The range of concentrations 

was selected to avoid the formation of U(VI) precipitates ([U] < 10-2 mol/L) (Tits et al, 2011). U(VI) 

concentrations were measured by ICP-MS using the standard solution for the external calibration curve (ICP 

Standard, 238U, SCP Science; in the range from 0.005 to 0.5 µg/L). A full ion analysis was also performed.

For both studies (U(VI) and gluconate), the uncertainties of each experimental step were calculated 

(micropipettes, scales, ICP-MS, IC, LSC, etc.) and the quadratic propagation formula was applied under an 

assumption of independent variables (Ku, 1966). The results were then expressed at an uncertainty level of 

95% (k = 2).

2.3.Computational methods 

The atomistic description of highly disordered C-S-H phases is much more challenging than a description of 

crystalline phases. However, numerous experimental studies (neutron scattering (Allen, 2007), 43Ca NMR 

(Bowers and Kirkpatrick, 2009), 29Si NMR (Brunet et al., 2004), XRD, TEM, EXAFS (Grangeon et al., 2013)) 

suggested that the crystal structure of tobermorite is one of the closest to the real cement hydrate. The unit cell 

parameters and atomic coordinates of tobermorite-11 Å (Hamid, 1981) were used as the basis of our atomistic 

C-S-H models. The simulations supercell was then formed by the unit cell multiplication along x and y 

dimensions. The bulk tobermorite supercell of 6 × 6 × 1 (40.2 × 44.4 ×  25.5 Å3) was cleaved in the middle of 
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interlayer along the (0 0 1) crystallographic plane – the typical cleavage plane for this layered crystal – to create 

a basic model of the C-S-H surface which was then further modified to construct models of C-S-H surfaces with 

various Ca/Si ratios. Since the surface is the primary object of interest in our study, it was decided that only the 

composition of the top layers of the cleaved crystal (those in direct contact with the model solutions) would be 

modified to produce the required Ca/Si ratios, leaving the initial stoichiometric tobermorite in the middle of the 

model structure. 

The model C-S-H surfaces corresponding to different Ca/Si ratios can be constructed in two ways: 1) by 

randomly removing silica tetrahedra from the crystalline tobermorite structure using as a guidance the 29Si MAS 

NMR data for C-S-H (Cong and Kirkpatrick, 1996; Beaudoin et al., 2009); 2) by introducing additional Ca2+ 

cations into the interlayer. To achieve higher Ca/Si ratios, the bridging tetrahedra were extracted randomly 

taking into account that a dimer is the most abundant of all silicate species in C-S-H and a linear pentamer is 

the second most abundant (Richardson et al., 2010; Sáez del Bosque et al., 2016). For each model surface the 

amount of added Ca2+ was different, reflecting the required Ca/Si ratio. The formation of defects in the silicate 

chains can result in extra adsorption of water molecules at the surface. At the same time, H2O dissociation in 

reactive media leads to the formation of additional hydroxyl groups on the surface and protons that bind at the 

sites of missing silicon tetrahedra. Different cases of protonation (Churakov et al., 2014) should be considered 

since they can result in the accumulation of different surface charge. Aqueous hydroxyl ions were added to the 

system in order to maintain the total electrostatic neutrality of the models. For the C-S-H model with the lowest 

Ca/Si ratio all silanol groups of bridging Si and one of the pairing Si (replacing the introduced defect) were 

deprotonated; for the C-S-H models with high Ca/Si ratio all of the surface silanol groups were deprotonated. 

The deprotonated oxygens of the surface were assigned a higher partial charge (q = -1.3|e|) than the protonated 

ones, following the atomistic models of kanemite (Kirkpatrick et al., 2005). Three dimensional periodic boundary 

conditions were applied to the constructed model interfaces, and for each Ca/Si ratio three such interfaces were 

simulated: C-S-H/water, C-S-H/uranyl solution, and C-S-H/gluconate solution.

Most interatomic interaction parameters, including the partial atomic charges for C-S-H, H2O, and Ca2+ ions 

were taken from the ClayFF parameterization (Cygan et al., 2004) and its later modifications for cement 

systems (Kirkpatrick et al., 2005; Kalinichev et al., 2007). The interaction parameters for uranyl ions used in this 

work (Guilbaud and Wipff, 1993, 1996) are also consistent with ClayFF (Teich-McGoldrick et al., 2014). For 
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organic gluconate the GAFF set of parameters was used (Wang et al., 2004). Standard Lorenz-Berthelot mixing 

rules were applied to calculate short-range Lennard-Jones interactions between the unlike atoms. Long-range 

electrostatic forces were evaluated by means of the Ewald summation method. Materials Studio software 

package (BIOVIA, San Diego, CA, USA) was used to prepare the simulation models and to visualize the results, 

but all simulations were carried out with the LAMMPS software package (Plimpton, 1995). 

Geometry optimisation of each model structure was performed first using the Polak-Ribiere version of the 

conjugate gradient algorithm of energy minimization. The optimized structures were then used in molecular 

dynamics (MD) simulations. The Verlet leapfrog algorithm was used to integrate the equations of motion with a 

time step of 0.001 ps. During the pre-equilibration MD run performed for each model system, several 

parameters were carefully monitored: individual components of the potential energy, density, stabilization of the 

system atomic configuration. After an equilibration period of ~1 ns (NPT-ensemble), the main MD production 

runs for each system were performed for 2 ns (NVT-ensemble). Ambient conditions (T = 300 K, P = 0.1 MPa) 

were assumed in all MD runs.

3. Results and discussion

3.1.  Adsorption experiments

3.1.1. U(VI) – C-S-H system

The behaviour of the binary C-S-H/U(VI) system was investigated for the C-S-H sample with the highest Ca/Si 

ratio of 1.4. It is thought that U(VI) binding by C-S-H is mostly happening due to the surface sorption and might 

involve Ca uptake. Sorption is the highest under alkali-free conditions and it was found to be dependent on pH 

and the C-S-H composition (Tits et al., 2011). 

The presently obtained results for isothermal adsorption (Fig. 1) show the approximately linear behaviour: the 

slope of ~1, with the coefficient of determination of R2 = 0.98. This is in good agreement with the data reported 

earlier by Tits et al. (2011) for C-S-H with Ca/Si ratios of 0.75 and 1.07. In their work the non-linear behaviour 

was observed for C-S-H phase with Ca/Si = 1.65 and at higher pH = 13.3, when the formation of aqueous 

hydroxo complexes in solution of U(VI) (UO2(OH)4
2-) becomes preferable to the sorption. It still remains unclear 

at what Ca/Si ratio this transition actually occurs. The results of our work provide additional information on the 
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U(VI) interaction with C-S-H in the range of intermediate Ca/Si ratios between 1.07 and 1.65 discussed above. 

From our results, the adsorption isotherm at pH = 12.3 is already slightly non-linear but this non-linearity is not 

yet well-defined, so the sorption of U(VI) remains the dominant process.

Fig. 1. The isotherm of U(VI) adsorption on C-S-H with Ca/Si = 1.4, S/L = 20 g/L.

The evolutions of pH, Ca and Si concentrations were measured and presented in Table 2. No changes in pH 

and Si concentrations were observed. As reported by Tits et al. (2011), the addition of U(VI) does not greatly 

affect the equilibrium state of C-S-H phases. Three main sorption species were identified by Tits et al. (2015): a 

surface complex, incorporated species, and a surface precipitate. A slight increase in Ca concentration with the 

increase of U(VI) initial concentration may be caused by Ca-U(VI) exchange on the sorption sites of the C-S-H 

surface.

Table 2. pH, Si and Ca concentrations in C-S-H equilibrated solution as a function of U(VI) concentration in 

equilibrium (C-S-H with Ca/Si = 1.4).

[U] in equilibrium, 
mmol/L

pH values [Ca] in equilibrium, 
mmol/L

[Si] in equilibrium, 
mmol/L

(2.10±0.11)×10-7 12.35±0.05 8.93±0.73 0.028±0.0.002
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(2.71±0.14)×10-7 12.29±0.05 7.72±0.64 0.030±0.0.002

(1.63±0.08)×10-6 12.25±0.05 8.09±0.67 0.029±0.0.002

(3.90±0.19)×10-6 12.36±0.05 8.48±0.69 0.029±0.0.002

(1.92±0.09)×10-5 12.23±0.05 11.03±0.87 0.028±0.0.002

(4.21±0.20)×10-5 12.31±0.05 11.15±0.89 0.031±0.0.002

(4.91±0.25)×10-5 12.35±0.05 12.07±0.96 0.030±0.0.002

3.1.2. Gluconate – C-S-H systems

The kinetics of gluconate adsorption on C-S-H was investigated for all C-S-H phases with different Ca/Si ratios. 

The adsorption of gluconate was relatively fast, with the reactions almost completed within 1 day and reaching a 

steady state in 3 days (Fig. 2). Thus, a contact time of 3 days for adsorption isotherm studies was selected. 

Rapid sorption was also observed for hydrated cement paste as reported by Glaus et al. (2006). Fast kinetics is 

generally interpreted as evidence of the predominance of surface sorption processes over incorporation into the 

structure.

Figure 2 (right) presents combined results of two sorption experiments performed for 14C-labelled gluconate (10-

9 to 10-5 mol/L) and stable-C gluconate (10-5 to 10-2 mol/L). The sorption isotherms show the influence of Ca/Si 

ratio on the gluconate adsorption by C-S-H phases. For the three C-S-H compositions studied, the sorption 

gradually increases for the entire concentration range used, with higher sorption at lower Ca/Si ratios. The data 

overlap between the two analytical methods used (ion chromatography and liquid scintillation counting) 

demonstrates good reproducibility of the results. 
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Fig. 2. Kinetics of gluconate adsorption on C-S-H (left) and isotherms of gluconate adsorption (right) for C-S-H 

phases with 3 Ca/Si ratios (0.83, 1.0, 1.4), S/L = 20 g/L. 

The calculated distribution coefficients (Rd) have the maximum values of approximately 285, 40, and 4.5 L/kg for 

the C-S-H samples with Ca/Si = 1.4, 1.0, and 0.83, respectively. The sorption at small concentrations 

([Gluconate]eq < 10-3 mol/L) is approximately linear for all C-S-H compositions studied leading to a nearly 

constant Rd value. The linear sorption (the slope of the isotherm ≈ 1) may be an indication of the presence of 

one type of the preferential sorption site or of several sites with equal probabilities of the adsorbate binding.

The gradual increase in the amount of gluconate sorbed on C-S-H can be explained by electrostatic interactions 

between the surface and the adsorbate. It is known that with increasing Ca/Si ratio the net surface charge 

changes from negative to positive as a result of Ca2+ overcharging (Viallis-Terrisse et al., 2001). In alkaline 

solutions gluconate exists in the form of a negatively charged ion (pKa of gluconate carboxyl group is 3.86), so 

its adsorption would be driven primarily by electrostatic forces. At the same time, the hydroxyl groups of 

gluconate are expected to remain protonated in the given pH range (pKa of the most acidic hydroxyl group is 

approximately 13, according to Zhang et al., 2007)). The observed rapid kinetics of adsorption (steady state 

reached after only 1 day) is also in agreement with this assumption.

For a complete description of the studied systems, full cation and anion analysis was performed for each 

sample: pH, [Ca], [Si], [Gluconate], [Na]. The results for major cations are presented in Fig. 3. 
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Fig. 3. Evolution of Si (left) and Ca (right) concentrations in the C-S-H equilibrated solution as a function of 

gluconate concentration at the steady state.

Sodium was added to the system as a counterion of gluconate (sodium salt of gluconic acid). It was found that 

the addition of Na+ in relatively small concentrations (the same concentration range as for the gluconate ion) 

does not affect the equilibrium state of C-S-H. Nalet and Nonat (2016) reported results for the adsorption of 

gluconate on C-S-H for higher concentrations. In their case, the presence of gluconate can seriously change 

concentrations of major cations in the equilibrium state since it is a strong complexing agent for Ca. But for 

[Gluconate]eq < 5 mmol/L, Ca and Si concentrations are not affected significantly. No change in pH values was 

also observed for all C-S-H phases. This means that the presence of gluconate at low concentrations does not 

cause measurable transformations of the C-S-H phases. 

The results of the present study can be compared with the gluconate sorption measurements on hydrated 

cement paste (Glaus et al., 2006) taking into account that for HCP the Ca/Si ratio is higher (circa 1.6) and that 

C-S-H phases represent a mass fraction of about 70%. According to the presented trend for C-S-H phases, 

more gluconate should be sorbed on the hydrated cement phase. The estimated Rd values for HCP (Glaus et 

al., 2006) are 100 times higher (>104 L/kg) than for C-S-H with Ca/Si = 1.4. It can be suggested that C-S-H can 

be considered as the main phase responsible for the adsorption of organic anions from solution but it is clearly 

not the only one.
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Fig. 4. Kinetics of gluconate desorption from C-S-H (left) and isotherms of gluconate desorption (right) from the 

C-S-H phases with 3 Ca/Si ratios (0.83, 1.0, 1.4), S/L = 20 g/L. Lines show averaged positions of the sorption 

isotherms.

The desorption kinetics and isotherms of gluconate from C-S-H are reported in Fig. 4. All systems reached a 

steady state in 1 day, so the reaction time of 3 days was selected for the desorption study. It was observed that 

the desorption is not fully reversible for all C-S-H phases studied indicating the occurrence of additional 

chemical processes. It can be seen that the hysteresis is more prominent for the C-S-H composition with lower 

Ca/Si ratio, while the sorption is reversible for Ca/Si = 1.4 within the stated levels of uncertainty for both 

experiments. The observed desorption hysteresis can also be a result of the sorption non-equilibrium.

To our knowledge, the desorption processes of gluconate on C-S-H have never been studied before, and only a 

comparison with the data for hydrated cement paste (Glaus et al., 2006) is then possible. In that work, two 

sorption sites for gluconate where classically defined: a strong site and a weak site. The sorption process was 

found to be reversible for the weak site and the reversibility of the strong site was assumed based on the 

experimental results for α-isosaccharinic acid (α-ISA) desorption. However, the nature of the weak and the 

strong sites remained undefined. The C-S-H surface provides different sorption sites for organic anion that have 

to be studied (see the molecular modelling section below). Also, some of the hydroxyl groups of gluconate may 
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participate in the sorption process and contribute to its stronger binding on the C-S-H surface. The calculated 

uncertainties are large due to the propagation through numerous steps of the desorption experiment. Wet 

chemistry experiments allow identification of the main trends in the behaviour of the investigated species on C-

S-H surfaces, but they do not provide sufficient information on the molecular mechanisms involved. Thus, 

molecular modelling was further used here as a tool for the interpretation of macroscopic observations.

3.2.  Molecular modelling of binary systems

The structure and composition of MD-simulated C-S-H-solution interfaces was quantitatively analysed in the 

form of atomic density profiles (Fig. 5). These profiles, as well as other simulated properties, were calculated as 

time averages over the entire duration of the corresponding equilibrium production runs and over two 

statistically independent solid/solution interfaces created after the C-S-H crystal cleavage for each simulation 

box: both surfaces are characterized by the same amount of created structural defects and are in contact with 

the solution of the same composition. The thickness of the aqueous layer separating two surfaces was large 

enough (≈ 70 Å) to ensure that the interactions at the one surface would not affect the other and result in bulk-

like behaviour of the model solution in the middle of the aqueous layer simulation box. The distance of solution 

atoms from the surface, d, was calculated taking as a reference (d = 0) the average z-coordinates of the oxygen 

atoms of the top-most pairing Si tetrahedra at each C-S-H surface.

3.2.1. Uranium (VI) – C-S-H system

In alkaline solutions U(VI) exists in the form of uranyl cation UO2
2+. In aqueous environment uranyl ion is usually 

coordinated in the first hydration shell by 5 H2O molecules (Guilbaud and Wipff, 1993,1996) some of which can 

be substituted by hydroxyl ions at high pH. Although the number of uranyl ions introduced to the system was 

limited to 8, some adsorbed aqua complexes were observed on the C-S-H surface. 

The calculated atomic density profiles reveal clear differences in the uranyl/C-S-H interaction at two Ca/Si 

ratios. Formation of two types of complexes can be seen for Ca/Si = 0.83 (Fig. 5 (left)) with UO2
2+ peaks 

located, respectively, around 3-4 Å (inner-sphere surface complex) and at 5-6 Å (outer-sphere surface 

complex). 
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Fig. 5. Atomic density profiles of UO2
2+ containing solutions near C-S-H surfaces: left – Ca/Si = 0.83; right – 

Ca/Si = 1.4. The profiles of U are shown with an enlarged auxiliary scale on the right for clarity. Abbreviations: 

Ow and Hw – O and H of water; Ohyd – O of solution hydroxyl group; Odep – deprotonated silanol group of the 

surface. 

All adsorbed uranyl ions remain in the five-fold coordination with oxygens in the equatorial plane. Previous 

studies have shown that the linear [O=U=O]2+ structure is preserved upon sorption onto C-S-H or incorporation 

in the C-S-H structure (Harfouche et al., 2006; Mace et al., 2013; Tits et al., 2011). Furthermore, the inner-

sphere coordination of UO2
2+ appears to be the predominant type of interaction with the surface (Fig. 6(a)). Fig. 

6 also demonstrates that uranyl complexation with the surface groups of pairing silicon tetrahedra is blocked by 

the presence of two axial oxygen atoms and considerable number of bridging tetrahedra on the C-S-H surface 

at the lowest Ca/Si ratio.

Outer-sphere surface complexes are mostly coordinated by two deprotonated hydroxyls of the bridging Si 

tetrahedra (as it is shown on a typical simulation snapshot in Fig. 6(b).The positions of both complexes can be 

easily identified looking at the atomic density surface maps  calculated for the defined interfacial solution layers 

(see Fig. 5).
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Fig. 6. Left: time-averaged atomic density surface maps of UO2
2+ ions within 2.5 – 4.5 Å from the C-S-H surface 

(the first molecular layer) at Ca/Si = 0.83. Right: typical coordination of the inner-sphere (a) and outer-sphere (b) 

UO2
2+ surface complexes. Colour scheme: yellow – Si, red – O, white – H, blue – U. 

When the surface contains only Si dimers (Ca/Si = 1.4) a new sorption site can be identified. In this case the 

atomic density profile of uranium distribution (Fig. 5 (right)) near the surface reveals three distinct peaks. The 

peak positions are shifted closer the surface since all bridging Si tetrahedra are absent from the C-S-H model 

studied. The first peak (~1-2 Å) corresponds to the uranyl cations complexing with two deprotonated silanol 

groups of the surface in their coordination sphere (bidentate coordination, see Fig. 7 below). Monodentate inner-

sphere surface complexation of uranyl is evidenced by the second peak of uranyl distribution at ~2-3 Å from the 

surface. Similar to other interfaces, the uranyl cations located more than 3 Å from the surface are assumed to 

be forming outer-sphere complexes and preserve their hydration shell almost unperturbed. Since all bridging 

silicon tetrahedra are missing at this high Ca/Si ratio, it is much easier for the uranyl cation to reach the 

deprotonated sites of the paring tetrahedra and form stronger inner-sphere complexes.

In general, UO2
2+ cations are bound to the same surface sites as Ca2+ cations and a competition between them 

can be expected. There is also a preferential UO2
2+ coordination to the deprotonated sorption sites (more 

negatively charged). When the surface silanol groups are all deprotonated under high pH conditions, the 

bidentate adsorption configuration is strongly predominant to the monodentate configuration.
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Fig. 7. Inner-sphere complex of uranyl ion with CSH surface at Ca/Si = 1.4: left - distribution of aqueous species 

within 1–2 Å from the C-S-H surface (the first molecular layer of surface solution); right – a typical simulation 

snapshot illustrating the inner-sphere bidentate configuration.

3.2.2. Gluconate – C-S-H system

The adsorption behaviour of the organic anions was also evaluated using the same C-S-H – solution models. 

The simulated molecular structure of the adsorption layers at the liquid-solid interface are illustrated in Fig. 8. 

When the gluconate concentration in solution is relatively low, its molecules will mostly attach to the surface 

through the most active functional group – the deprotonated carboxyl group (single-group adsorption, Fig. 8). 

The hydroxyl groups of gluconate do not contribute to complexation. Negatively charged gluconate cannot form 

inner-sphere complexes directly with the C-S-H surface, which is also nominally negatively charged. However, 

as the analysis of C-S-H/gluconate interface shows, it can create complexes with Ca2+ ions present on the 

surface (cation bridging complexation). This cation bridging can be clearly identified from the calculated atomic 

density profiles of various species at the interface (Fig. 8): Ca2+ at distances of ~0.5-1.5 Å forms inner-sphere 

complexes with deprotonated surface sites (defined as d = 0 Å) and is further coordinated by carboxyl groups of 

gluconate (the peak of Ocarb at ~2.5-3.5 Å).
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Fig. 8. Atomic density profiles near C-S-H surface (Ca/Si = 1.4) for the solution containing gluconate (left), 

surface distribution of ions (middle), and a snapshot illustrating the cation bridging surface complexation. Ocarb 

– oxygen of the gluconate carboxylic group, other notations are as in Figs. 6-7.

Similarly to the uranyl surface complexes discussed above, the surface complexation with gluconate can also 

be classified as inner-sphere and outer-sphere. The inner-sphere complexes are formed when the gluconate 

carboxyl group is bound directly to the adsorbed cation (cation bridge, Fig. 8). The weaker outer-sphere 

complex is formed when solvent molecules (H2O or OH-) are present between the carboxyl group and the 

surface. Both types of complexes were observed in our simulations.

4. Conclusions

Sorption of gluconate on C-S-H phases has been studied by a combination of wet chemistry and computational 

molecular modelling techniques. The new results on the sorption and desorption of gluconate at very low 

concentrations on C-S-H were obtained. It was shown that the sorption is a rapid process and desorption is not 

fully reversible. The adsorption of gluconate is affected by the Ca/Si ratio of C-S-H: sorption ability of C-S-H 

increases for higher Ca/Si ratios showing trends similar to the ones reported in the literature (Glaus et al., 2007; 

Nalet and Nonat, 2016).
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The molecular level structural properties of the C-S-H interfaces were investigated and local adsorption 

environments were identified for a range of Ca/Si ratios from 0.83 to 1.4. There are several sorption sites for 

uranyl cations on the C-S-H surface: monodentate and bidentate complexes can be formed with deprotonated 

oxygens of the surface. The same sites also adsorb Ca2+, and a competition for these sites between the cations 

should be expected. Gluconate sorbs on the C-S-H phase by forming cation bridging inner-sphere and outer-

sphere surface complexes. 

The presently studied binary C-S-H-gluconate and C-S-H-uranyl systems can be considered as the first step in 

the comprehensive investigation of the effects of organic additives on the adsorption and mobility of 

radionuclides in the ternary system C-S-H-gluconate-uranyl. Quantitative evaluation of the adsorption free 

energies and equilibrium exchange constants for the presently identified sorption sites using the recently 

developed approach (Loganathan and Kalinichev, 2017) will be the focus of further studies.

Gluconate is a small organic molecule and a good starting model for the molecular scale quantitative 

investigation of the interaction mechanisms between organics and C-S-H surfaces. A more complex system 

involving polycarboxylate superplasticizer (PCE) will be also studied as the next step. This comb-shaped 

polymer with adsorbing anionic backbone and nonadsorbing side chains is a closer representative of a typical 

industrial admixture. The investigation of this more realistic system by the same experimental and computational 

modelling methods is currently in progress and will be reported elsewhere. 
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Highlights

 Adsorption of gluconate and uranyl on calcium silicate hydrate phases (C-S-H) is studied by 

experimental and computational molecular modelling techniques.

 14C-labelled gluconate is used to improve the analytical sensitivity at very low concentrations (10-8 - 

10-5 mol/L)

 There is a noticeably stronger gluconate sorption on C-S-H at higher Ca/Si ratios.

 Classical MD simulations help to clarify molecular mechanisms of adsorption and to identify specific 

surface sites most actively involved in the sorption of gluconate and uranyl on C-S-H.




