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Abstract > / /
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We-etud-y Unstable zero-sound waves and cluster formation' in the framework of

molecular dynamics approaches based on gaussian single particle wave packets.

We observMhat zero-sound properties are significantly affected when the gaussian

width takes large values. In approaches considering the widths as dynamical

variables, cluster formation by spinodal decomposition is inhibited, due to the

spreading of the nucleon wave packet.
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During the past decade numerous theoretical efforts have been devoted to

build new approaches able to deal with the (nuclear) many-body problem. In-

deed, the advent of more exhaustive experimental data has put in evidence the

inadequacy of average descriptions based on mean-field approaches, such as the

Time Dependent Hartree-Fock (TDHF) theory [1, 2], to explain the large variety

of final configurations observed in the data. In the 80's numerical simulations

based on molecular dynamics have been introduced [3, 4, 5, 6, 7]. The basic

idea of these approaches is that the diversity of final states originates from small

differences in the initial conditions which are magnified by the chaotic nature

of the molecular propagation. These molecular dynamics models are usually of

classical nature [7]. However new approaches incorporating some quantum as-

pects have been recently developed [3, 4, 5, 6]. This is in particular the case of

the so-called Antisymmetrized Molecular Dynamics (AMD) [3, 6] and Fermionic

Molecular Dynamics (FMD) [5].

From a formal point of view, these approaches are, first of all, based on the

parameterization of the many body wave function in terms of a Slater determi-

nant, i.e. as an independent particle wave function. In this sense these models

are deeply related to TDHF. However, while in TDHF the single particle wave

functions are not constrained, in AMD or FMD they are approximated by gaus-

sian wave packets and the parameters of the gaussians are supposed to evolve

smoothly with time. In AMD, only the gaussian centroids are considered as dy-

namical variables, while in FMD also the gaussian widths can evolve with time.

It should be noticed that this additional gaussian ansatz induces a localization

of the particles and violates the indistinguishability principle. In fact the indis-

tinguishability of N independent identical particles is mathematically enforced

by a U(N) gauge invariance among the N occupied single particle states. This

local symmetry in time is explicitly broken by the Gaussian assumption since a
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unitary mixing of gaussian functions is not gaussian. This is the reason why in

these simulations one can always trace back the origin of any wave packet. For

example, during a collision, it is possible to recognize if an evaporated nucleon

comes from the target or from the projectile. Conversely, in a TDHF description

several pieces of different single particle wave functions can always co-operate to

build a new orbital.

From this point of view, nuclear molecular dynamics approaches can be seen

as an approximation to TDHF. However it should be noticed that breaking sym-

metries is a general way to introduce correlations, so that the molecular dynamics

can be able to afford more physics than the original TDHF. For example, when the

width is kept constant one might recover the exact classical many body dynamics

that goes much beyond the mean-field approach. This is the reason why several

attempts to study the multifragmentation problem within these approaches have

appeared in the literature [4, 5, 6, 7, 8].

In this letter we will focus on dynamical properties and fragment formation

in dilute systems. Mean-field dynamical simulations are known to exhibit zero-

sound waves that, in the case of systems prepared inside the spinodal region of

the nuclear matter phase diagram, become unstable and may lead to fragmen-

tation [9, 10, 11, 12]. The existence of unstable zero-sound is deeply related to

the possibility to observe first order liquid-gas phase transitions. We will study

sound properties and investigate realistic scenarios of spinodal decomposition in

the framework of molecular dynamics approaches. Then the zero-sound prop-

erties can be compared to the response of TDHF calculations to local density

perturbations.

We consider a quantal variational derivation of the equations of motion for a

many-body system. Let us assume that the many-body state is parameterized by

a set of time-dependent complex parameters {Z;}: %p(t) = V>(Z(t)). The equations



that determine the time evolution of the system are obtained by extremizing the

action / , defined as:

/ = / d t < il>\ifij - H\il> >= Idt{C0-H), (1)

where £0 = < V'N^IV' >• We denote by C = Co — % the "Lagrange" function

of the system. Ti. is the expectation value of the total Hamiltonian H, 7i = <

tp\H\ip >. The resulting equations of motion for the parameters \Z{\ are the

Euler-Lagrange equations:
ddCodC

dtdZi

that, for the most general choice of the complex parameters {Zi}, lead to the

Schroedinger equation. We notice that the function £0 depends linearly on Z/,

so it is possible to expand £0 as £0 = Yli ff1^') a n ^ Eq.(2) can be rewritten in

the form:

T,Au>Zi> = j£, (3)

where the matrix Aiti< is defined as:

d2c0 d2c0

'•'' dZdzp dZdzp

For a system of identical fermions, the most simple N-body state \ij) > is a Slater

determinant built from N different single-particle wave packets. This approxima-

tion leads automatically to the concept of mean field and to the use of effective

two-body interactions, like in TDHF [1, 2].

Introducing the single-particle density matrix />, it is easy to demonstrate

that, using a Slater determinant for the state \xj) >, eq.(3) becomes:

i f t ^ - [ * , , ] = <), (5)

where h is the mean-field Hamiltonian. This approximation has been particularly

successful to study nuclear systems, where, due to the delocalization of the nu-



cleon wave packets, the use of mean-field concepts seem to be quite appropriate

[1,2].

In FMD or AMD the single-particle wave functions \qn > are chosen to be

gaussians:

9n(r, sn, rn) = e-^-x^^a"\s(sn)Xr(rn), (6)

with n = 1,2, ...,./V. sn and rn denote the spin and the isospin respectively.

This implies that, as parameters Z/, we shall consider the time evolution of four

complex parameters (the three components of the centroid xn and the width an)

for each gaussian function \qn >. So we will use the notation Z\ = zn,i, where

i = 1, .,4 indicates one of the complex parameters associated with a gaussian n.

As for the effective interaction, in order to simplify the treatment of the exchange

term, we use a local interaction of the Skyrme type:

t>i,2 = {to + — n + c An)6(ri - r2)
o

where n(r) is the diagonal part of the one-body density in the coordinate repre-

sentation. For spin-isospin saturated nuclear matter this leads to the following

expression for the expectation value V of the potential part of the Hamiltonian :

(7)r 4 i o » + < 3 n c ) ,
o ID n

In numerical simulations the effect of the surface term c An is simulated through

the folding of the mean-field potential with a function g, that is taken to be

gaussian [2].

As stressed before, the development of instabilities in dilute nuclear systems

can be considered as one of the possible mechanisms responsible for fragment

formation. It should be noticed that important information about the early

dynamical evolution of the system considered can be obtained already in the



framework of the linear response approach. Complete calculations, not based on

the linear response analysis, will be also discussed below.

In order to establish a connection with the unstable zero-sound properties

observed in mean-field calculations of the TDHF type, let us first briefly recall the

derivation of zero-sound frequencies in a quantal RPA. According to this theory,

the response of the system to the small perturbations 8p of the single particle

density matrix around a stationary solution characterized by p0, are determined

by the linearized equation,

ih^-[ho,6p]-[6U,Po] = 0 (8)

where h0 is the mean-field Hamiltonian associated with p0, and 8U denotes the

fluctuating part of /i[ll]. For infinite nuclear matter, ho is uniform. Hence, the

equilibrium single particle density matrix is diagonal in the plane wave repre-

sentation k. Within this representation, carrying out a Fourier transform with

respect to time, we obtain, from eq.(8), the following quantal dispersion relation

for the frequency of the collective mode corresponding to the wave number k [11],

i _ dU(k) I dk' po(k' - k/2) - po(k' + k/2)
dp J (2TT)3 uk - ek'+k/2 + £k'-k/2

where ek = k2/(2m) and U(k) is the Fourier transform of the mean-field potential.

The characteristic zero-sound frequencies occur in pairs ±u>;t, and they are real

for the stable modes and imaginary for the unstable ones, u>t = i/r^ where ±r^

is the characteristic growth or decay time of the mode. Unstable solutions are

found in the case of dilute systems, initialized inside the spinodal region of the

nuclear matter phase diagram.

Let us perform the same study in the framework of FMD. By linearizing eq.(3)

around a stationary solution (zn<i — zOni + <5zni,) one obtains:

d2H d2/H
n.i.n'.i'lo £<<,,•' = Y^ *„ a , lo Szn',i' + R ~ » |o <$<<,,< (10)

n',t' uzn,i(Jzn',i' uzn,i{JZn',\'



In the case of stationary infinite nuclear matter, the centroids of the gaussian

functions are placed on a lattice of a given mesh d, so that the sum over n' in

eq.(10) can be considered to run on the lattice sites. Eq.(lO) does not depend on

n anymore, because of the spatial symmetry. The imaginary part of the centroid

position and of the width is equal to zero in the stationary state because of

the time-reversal invariance. If we agitate the complex centroid position only

along one direction, the x direction for instance, indicating 8znj by the vector

(8xn,6an), eq.(10) leads to the following two coupled equations :

f*<> + K?*<- = £ B^fSxn. + B*;a8an, + C;?6xl. + Cx
n;

a8a'n,
n' n'

Aa
nf6x*n, + Aa

nf6a'n, = J2 Ba
nf8xn, + Ba

nf8an, + Ca
n?8x*n, + Cn

a;a6<,, (11)

where A^ = An,,B.,|o, W = ̂ g ^ l o and C^" = a ^ f c
Taking the Fourier transform with respect to time and considering the plane

wave representation: 8zn<yi = J2k^zk,ielk^d Xn'\ we finally obtain:

i(Ax
k'

x8x*_k + Ax
k'

a8a*_k)uk = Bx
k
x8xk + Bx

k'
a8ak + Cx

k
x8x*_k + Cx

k'
a8a*_k

i(Aa
k
x8x*_k + Aa

k'
a8a*_k)uk = Ba

k'
x8xk + Ba

k
a8ak + Ck'

x8x*_k + Ck'
a8a'_k, (12)

where, for instance, Ax'x is the Fourier transform of A^f.

To get information about the evolution of the system, we have to look for

eigenvalues and eigenvectors of this system of two complex equations. The four

eigenvalues come by pairs of solutions with opposite sign, so that there are two

independent solutions for o>|.

In order to provide some quantitative application of the previous analytical

derivation let us first consider, for the sake of simplicity, two-dimensional infinite

nuclear matter at zero temperature. The parameters of the potential are: to ~

-243.5 MeV fm2, t3 = 846 MeV fm4 [13].



Since the effective interaction considered does not depend on spin or isospin,

it is possible, at zero temperature, to group the single particle wave functions

four by four in the initial conditions. Then, this symmetry is preserved along the

entire time evolution. In the unperturbed state, for spatial symmetry reasons,

all gaussian functions have the same width. In Fig.l we represent the behaviour

of the energy per nucleon as a function of the width parameter in the case of a

2D square lattice of mesh d = 5 fm (full line). For a large value of the width,

the system really resembles uniform nuclear matter (with homogenous density)

and indeed the energy value approaches the value expected for 2D nuclear matter

at the density n = A/d2 = 0.16 frn~2 (the saturation density for the considered

force in 2D is n0 = 0.55 fm~2). However, the minimum value of the energy is

obtained for a finite value of the width: a = 2 fm2. This means that the system

gains energy by grouping the nucleons into a-like structures. For this value of the

width the density exhibits bumps centered on the lattice nodes. The presence of

this minimum is observed for all dilute systems.

Let us first consider the case where the width of the gaussian function is kept

fixed, like in AMD calculations. In this case the width value is arbitrarilly fixed

once for ever. The only time-dependent parameter is then the gaussian centroid.

The electric isoscalar modes are then defined by the unique complex equation for

the displacement of the centroid positions of the wave functions:

iAx
k
x6x'_kuk = Bx

k'
x8xk + Ck'

xSx*_k (13)

Then we have only one solution u>l for each wave number k.

Let us study a situation where quantal RPA calculations predict instabilities.

For example, we can consider the mesh d = 3.8 fm, that corresponds to an

average density, n = no/2. The eigenvalues a;*'obtained in this case are negative

in the specific range of k compatible with the lattice mesh. Therefore, the system



is unstable, in agreement with the RPA predictions. However, the instability time

Tjt = i/uk, that is displayed in Fig.2 as a function of k, is affected very much by

the value considered for the initial width. For values of a around 2 fm2 the

instability times are close to the ones predicted by the RPA. However, in such a

case, due to the small width value, the observed instabilities can be understood as

spinodal instabilities of a gas of a-particles. Indeed, the a-a effective interaction,

which can be built by calculating the energy per particle as a function of the

lattice mesh, resembles to a Van der Waals force.

Increasing the width of the gaussian functions we observe an important quench-

ing of instabilities. In particular, in the case of homogeneous initial density (large

values of the width), instabilities are almost suppressed, in contradiction with the

quantal RPA calculations (see Fig.2). This originates from the fact that in AMD

the wave-functions are localized so that the zero-sound can only propagate by

an explicit motion of the centroids. However, because of the smoothing of the

interaction due to the large width of the wave packets, very weak forces act on the

centroids. Then, the motion of the centroids is inhibited. It should be noticed

also that waves with wave-lengths shorter than twice the lattice mesh cannot

propagate. Conversely, in a full TDHF calculation sound waves can be propa-

gated by the co-operative contribution of several single-particle wave functions.

Moreover, the RPA dispersion relation presents a cut at larger wave numbers

k > 0.2 / m " 1 , due to quantal effects.

When the width is kept fixed, like in AMD, it is well-known that particles

can experience a spurious dynamics, due to conflicts between the fixed width of

the wave packets and the need to have anti-symmetric Slater determinants. In

particular, particles of the same type exhibit a spurious scattering. Recently,

it has been shown that this may lead to chaotic behaviours also in absence of

interaction [14]. This problem, that could affect the results presented above,
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is removed in calculations of the FMD type, by letting also the widths of the

wave packets evolve. In this case, in order to have a stationary state as initial

condition for the typical mesh size of d = 3.8/ra, we shall consider the value

a — 2 fm2 since it corresponds to the minimum of the energy. However, we will

also study the case a = 1 fm2 that corresponds to a quasi-stationary state since

the derivative of the energy is small for large values of the width (see Fig.l).

Large widths mimic also stationary states for more disordered systems (where

the spin/isospin symmetry is explicitly broken), as we will see later.

With the width as a time-dependent parameter, we get two solutions for

u>l associated with different motions in which the centroids and the widths are

coupled. In Fig.2 we display the solution associated with the eigenfunction that

corresponds mostly to a displacement of the centroid positions (thick lines). We

observe that the inclusion of the width as a dynamical parameter slightly modifies

the AMD dispersion relation. We conclude that, also in the framework of FMD

calculations, instabilities are suppressed when the stationary width is large, in

disagreement with the predictions of quantal RPA calculations.

As illustrated in Fig.s 1-2, when a spin/isospin symmetry is considered, the

system condensates into a gas of a particles, the nucleon wave packets taking

a rather small width, compatible with the a ground state. In such a case the

system does present zero-sound waves. However, this corresponds to a rather

peculiar situation. From a physical point of view one would expect that in a

nuclear collision, even if in the ground state the partners present an a— clus-

ter structure, this should be partly destroyed during the evolution by both the

residual interaction (such as the spin-orbit and the Coulomb interaction) and the

strong agitation expected during the dense phase of the collision.

In the case of a nucleon gas, the minimum energy is reached asymptotically

for large values of the width a (see the dashed line in Fig.l). Therefore, one can



conclude that in an excited situation the natural tendency of the nucleons will

be to present large width. This is in fact the well-known effect related to the

the wave packet spreading. Then, according to our discussion about dispersion

relations, one should expect an important quenching of the spinodal instabilities

when the width is considered as a dynamical variable (FMD).

These conclusions are confirmed by direct 3D simulations. We have performed

calculations for dilute systems at different excitation energies. We present here

the results of these simulations for a spherical source of 160 nucleons. The pa-

rameters of the force are t0 = -1033. MeV fm3, t3 = 14687.5 MeV fm6. The

potential has been folded with a gaussian function of width g = 0.4 fm. The posi-

tions of the various nucleon centroids are randomly distributed inside a sphere of

radius R — 8 fm so that the average density is about no/2 (no = 0.16 /m~ 3 ) . In

the results presented here we have given to the system a small self-similar expan-

sion velocity. We consider, as initial width of the gaussian functions, two cases:

a = 2 fm2, that corresponds to an energy per nucleon of 2 MeV and a = 4 fm2,

that corresponds to E/A = -2 MeV. In Fig.3 we show the time evolution of the

sources considered in these two examples.

In both cases we observe that the early dynamics is dominated by an increase

of the width. This is the behaviour expected for a disordered system since the

minimum energy is obtained for large widths (see Fig.l). The more excited sys-

tem undergoes a vaporization into individual nucleons, while the other system

collapses into a single source, evaporating few nucleons from its surface . Almost

no clusterization is observed. This absence of spinodal instabilities in the simula-

tions confirms the conclusion drawn from the linear response treatment. Because

of the appearance of large widths the residual interaction between centroids is

smoothed out so that spinodal instabilities are quenched.

We have also performed 3D calculations considering the a clustering in the
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initial conditions. In this case the dynamical evolution is dominated by the

oscillation of the gaussian width around the equilibrium value (2 /m 2 ) for a

particles. When, depending on the initial conditions, these oscillations are not too

large, so that the widths remain small during the entire evolution, the formation of

"fragments" (that are nothing but clusters of a particles) is observed (see Fig.4).

As discussed before, this mechanism resembles the spinodal decomposition of

a gas of a particles. Finally it should be noticed that, if the widths are kept

fixed (as in AMD) at a rather small value (like a = 2 fm2) we also observe the

occurrence of instabilities and cluster formation.

In conclusion, we have investigated the dynamical properties of widely used

quantum molecular approaches such as AMD and FMD. In particular, we have

carefully studied zero-sound properties and compared to the well-known features

of mean-field approaches. This is of particular interest since unstable zero-sound

waves may play a role in multifragmentation scenarios (like in spinodal decom-

position). Performing a linear response treatment, as well as complete 3D sim-

ulations, we show that zero-sound properties and fragment formation can be

significantly affected by the gaussian ansatz, especially when the widths of the

wave packets are large. Indeed, in this case the single particle wave functions

might be so broad that all the dynamical features expected at the TDHF level

are washed-out.

In the case of a a-particle gas we observe the occurrence of spinodal decom-

position essentially because the widths of the nucleon wave packet remain small,

as nucleons are bound in the a's. Conversely, in the case of a disordered nucleon

gas, if the width is considered as a dynamical parameter, we observe that large

widths are generated, during the evolution, in the bulk of nuclear matter, leading

to the suppression of unstable zero-sound waves and spinodal decomposition.
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Fig.l: The energy per nucleon as a function of the gaussian width a calculated
for a 2D lattice of a-particles (full line) and individual nucleons (dashed line) with
an average density n = 0.16 fm~2. The energy associated with a homogeneus
medium is equal to -6 MeV per nucleon (dotted line).

Fig.2: The dispersion relation obtained in AMD calculations for a 2D lattice of
a-particles. The mesh size of the lattice is equal to 3.8 fm. Results associated
with the width value a — 2 fm2 (dot-dashed line), 4 fm2 (dashed line), 7 fm2

(dotted line) are presented. The thick lines correspond to the results obtained in
FMD. The full line represents the results of a quantal RPA.

Fig.3: Time evolution of a dilute spherical source of 160 nucleons, as obtained
in 3D FMD calculations, having an initial width value of 2 fm2 (top figure)
and 4 fm2 (bottom part). The dots correspond to the centroid positions of
the individual nucleons, projected on a plane, and the circles display a typical
gaussian width.

Fig.4: Time evolution of a dilute source of 160 nucleons initialized considering
a-clusters. The initial value of the widths is taken equal to 4 fm2.
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